
ECE669 L3: Design Issues February 5, 2004

ECE 669

Parallel Computer Architecture

Lecture 3

Design Issues

ECE669 L3: Design Issues February 5, 2004

Overview

° Fundamental issues
• Naming, operations, ordering

° Communication and replication
• Transfer of data
• How is data used?

° Modeling communication cost
• Based on programming model

° Moving towards quantitative metrics
• Communication time
• Communication cost

ECE669 L3: Design Issues February 5, 2004

Mem

° ° °

Network

P

$

Communication
assist (CA)

Convergence: Generic Parallel Architecture

° Node: processor(s), memory system, plus
communication assist

• Network interface and communication controller

° Scalable network

° Convergence allows lots of innovation, within
framework

• Integration of assist with node, what operations, how efficiently

ECE669 L3: Design Issues February 5, 2004

PE PE PE° ° °

PE PE PE° ° °

PE PE PE° ° °

° ° ° ° ° ° ° ° °

Control
processor

Data Parallel Systems

° Programming model
• Operations performed in parallel on each element of data structure
• Logically single thread of control, performs sequential or parallel

steps
• Conceptually, a processor associated with each data element

° Architectural model
• Array of many simple, cheap processors with little memory each

- Processors don’t sequence through instructions
• Attached to a control processor that issues instructions
• Specialized and general communication, cheap global

synchronization

° Original motivations
• Matches simple matrix and array operations
• Centralize high cost of instruction fetch/sequencing

ECE669 L3: Design Issues February 5, 2004

Application of Data Parallelism

• Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10
• Logically, the whole operation is a single step
• Some processors enabled for arithmetic operation, others disabled

° Other examples:
• Finite differences, linear algebra, ...
• Document searching, graphics, image processing, ...

° Some recent machines:
• Thinking Machines CM-1, CM-2 (and CM-5)
• Maspar MP-1 and MP-2,

ECE669 L3: Design Issues February 5, 2004

Connection Machine

(Tucker, IEEE Computer, Aug. 1988)

ECE669 L3: Design Issues February 5, 2004

Evolution and Convergence

° SIMD Popular when cost savings of centralized
sequencer high

• 60s when CPU was a cabinet
• Replaced by vectors in mid-70s

- More flexible w.r.t. memory layout and easier to manage
• Revived in mid-80s when 32-bit datapath slices just fit on chip

° Simple, regular applications have good locality
• Need fast global synchronization
• Structured global address space, implemented with either SAS

or MP

ECE669 L3: Design Issues February 5, 2004

CM-5

° Repackaged
SparcStation

• 4 per board

° Fat-Tree
network

° Control network
for global
synchronization

ECE669 L3: Design Issues February 5, 2004

1 b

a

+ − ×

×

×

c e

d

f

Dataflow graph

f = a × d

Network

Token
store

Waiting
Matching

Instruction
fetch

Execute

Token queue

Form
token

Network

Network

Program
store

a = (b +1) × (b − c)
d = c × e

Dataflow Architectures

° Represent computation
as a graph of essential
dependences

• Logical processor at each
node, activated by
availability of operands

• Message (tokens) carrying
tag of next instruction sent
to next processor

• Tag compared with others in
matching store; match fires
execution

ECE669 L3: Design Issues February 5, 2004

Evolution and Convergence

° Key characteristics
• Ability to name operations, synchronization

° Problems
• Operations have locality across them, useful to group together
• Handling complex data structures like arrays
• Complexity of matching store and memory units
• Expose too much parallelism

° Converged to use conventional processors and memory
• Support for large, dynamic set of threads to map to processors
• Typically shared address space as well
• Separation of progr. model from hardware

° Lasting contributions:
• Integration of communication with thread (handler) generation
• Tightly integrated communication and fine-grained synchronization

ECE669 L3: Design Issues February 5, 2004

Systolic Architectures

° VLSI enables inexpensive special-purpose chips
• Represent algorithms directly by chips connected in regular pattern
• Replace single processor with array of regular processing elements
• Orchestrate data flow for high throughput with less memory access

° Different from pipelining
• Nonlinear array structure, multidirection data flow, each PE may have

(small) local instruction and data memory

° SIMD? : each PE may do something different

M

PE

M

PE PE PE

ECE669 L3: Design Issues February 5, 2004

Systolic Arrays

• Practical realizations (e.g. iWARP) use quite general processors
- Enable variety of algorithms on same hardware

• But dedicated interconnect channels
- Data transfer directly from register to register across channel

• Specialized, and same problems as SIMD
- General purpose systems work well for same algorithms (locality)

y(i) = w1 × x(i) + w2 × x(i + 1) + w3 × x(i + 2) + w4 × x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w × xin
x = xin

Example: Systolic array for 1-D convolution

ECE669 L3: Design Issues February 5, 2004

Architecture

° Two facets of Computer Architecture:
• Defines Critical Abstractions

- especially at HW/SW boundary
- set of operations and data types these operate on

• Organizational structure that realizes these abstraction

° Parallel Computer Arch. =
Comp. Arch + Communication Arch.

° Communication Architecture has same two facets
• communication abstraction
• primitives at user/system and HW/SW boundary

ECE669 L3: Design Issues February 5, 2004

Layered Perspective of PCA

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

ECE669 L3: Design Issues February 5, 2004

Communication Architecture

User/System Interface + Organization

° User/System Interface:
• Comm. primitives exposed to user-level by hw and system-level sw

° Implementation:
• Organizational structures that implement the primitives: HW or OS
• How optimized are they? How integrated into processing node?
• Structure of network

° Goals:
• Performance
• Broad applicability
• Programmability
• Scalability
• Low Cost

ECE669 L3: Design Issues February 5, 2004

Fundamental Design Issues

° At any layer, interface (contract) aspect and
performance aspects

• Naming: How are logically shared data and/or processes
referenced?

• Operations: What operations are provided on these data
• Ordering: How are accesses to data ordered and coordinated?

° How these important issues addressed?
• Replication: Data replicated to reduce communication.
• Communication Cost: Latency, bandwidth, overhead,

occupancy

ECE669 L3: Design Issues February 5, 2004

Sequential Programming Model

° Contract
• Naming: Can name any variable (in virtual address space)

- Hardware (and perhaps compilers) does translation to
physical addresses

• Operations: Loads, Stores, Arithmetic, Control
• Ordering: Sequential program order

° Performance Optimizations
• Compilers and hardware violate program order without getting

caught
- Compiler: reordering and register allocation
- Hardware: out of order, pipeline bypassing, write buffers

• Transparent replication in caches

ECE669 L3: Design Issues February 5, 2004

SAS Programming Model

° Naming: Any process can name any variable in
shared space

° Operations: loads and stores, plus those needed
for ordering

° Simplest Ordering Model:
• Within a process/thread: sequential program order
• Across threads: some interleaving (as in time-sharing)
• Additional ordering through explicit synchronization

ECE669 L3: Design Issues February 5, 2004

Synchronization

° Mutual exclusion (locks)
• Ensure certain operations on certain data can be

performed by only one process at a time
• Room that only one person can enter at a time
• No ordering guarantees

° Event synchronization
• Ordering of events to preserve dependences

- e.g. producer —> consumer of data
• 3 main types:

- point-to-point
- global
- group

ECE669 L3: Design Issues February 5, 2004

Message Passing Programming Model

° Naming: Processes can name private data directly.
• No shared address space

° Operations: Explicit communication through send and
receive

• Send transfers data from private address space to another process
• Receive copies data from process to private address space
• Must be able to name processes

° Ordering:
• Program order within a process
• Send and receive can provide pt to pt synch between processes

° Can construct global address space:
• Process number + address within process address space
• But no direct operations on these names

ECE669 L3: Design Issues February 5, 2004

Design Issues Apply at All Layers

° Programming model’s position provides
constraints/goals for system

° In fact, each interface between layers supports or
takes a position on:

• Naming model
• Set of operations on names
• Ordering model
• Replication
• Communication performance

° Any set of positions can be mapped to any other
by software

° Let’s see issues across layers
• How lower layers can support contracts of programming models
• Performance issues

ECE669 L3: Design Issues February 5, 2004

Ordering

° Message passing: no assumptions on orders
across processes except those imposed by
send/receive pairs

° SAS: How processes see the order of other
processes’ references defines semantics of SAS

• Ordering very important and subtle
• Uniprocessors play tricks with ordering to gain parallelism or

locality
• These are more important in multiprocessors
• Need to understand which old tricks are valid, and learn new

ones
• How programs behave, what they rely on, and hardware

implications

ECE669 L3: Design Issues February 5, 2004

Replication

° Reduces data transfer/communication
• depends on naming model

° Uniprocessor: caches do it automatically
• Reduce communication with memory

° Message Passing naming model at an interface
• receive replicates, giving a new name
• Replication is explicit in software above that interface

° SAS naming model at an interface
• A load brings in data, and can replicate transparently in cache
• No explicit renaming, many copies for same name: coherence

problem
• In uniprocessors, “coherence” of copies is natural in memory

hierarchy

ECE669 L3: Design Issues February 5, 2004

Communication Performance

° Performance characteristics determine usage of
operations at a layer

• Programmer, compilers etc make choices based on this

° Fundamentally, three characteristics:
• Latency: time taken for an operation
• Bandwidth: rate of performing operations
• Cost: impact on execution time of program

° If processor does one thing at a time: bandwidth ∝
1/latency

• But actually more complex in modern systems

° Characteristics apply to overall operations, as well as
individual components of a system

ECE669 L3: Design Issues February 5, 2004

Simple Example

° Component performs an operation in 100ns

° Simple bandwidth: 10 Mops

° Internally pipeline depth 10 => bandwidth 100 Mops
• Rate determined by slowest stage of pipeline, not overall latency

° Delivered bandwidth on application depends on initiation
frequency

° Suppose application performs 100 M operations. What is
cost?

• Op count * op latency gives 10 sec (upper bound)
• Op count / peak op rate gives 1 sec (lower bound)

- assumes full overlap of latency with useful work, so just issue cost
• if application can do 50 ns of useful work before depending on result of

op, cost to application is the other 50ns of latency

ECE669 L3: Design Issues February 5, 2004

Linear Model of Data Transfer Latency

° Transfer time (n) = T0 + n/B
• useful for message passing, memory access, vector ops etc

° As n increases, bandwidth approaches
asymptotic rate B

° How quickly it approaches depends on T0

° Size needed for half bandwidth (half-power
point): --- Note error in version A of textbook!

° n1/2 = T0 * B

° But linear model not enough
• When can next transfer be initiated? Can cost be

overlapped?
• Need to know how transfer is performed

ECE669 L3: Design Issues February 5, 2004

Communication Cost Model

° Comm Time per message= Overhead + Occupancy +
Network Delay

° Occupancy passed on slowest link in system

° Each component along the way has occupancy and delay
• Overall delay is sum of delays

• Overall occupancy (1/bandwidth) is biggest of occupancies

° Communication cost = Frequency x (Communication time –
Overlap)

ECE669 L3: Design Issues February 5, 2004

Summary

° Functional and performance issues apply at all layers

° Functional: Naming, operations and ordering

° Performance: Organization

• latency, bandwidth, overhead, occupancy

° Replication and communication are deeply related
• Management depends on naming model

° Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below

• Hardware/software tradeoffs

