ECE 669

Parallel Computer Architecture

Lecture 3

Design Issues

74

UMASS

ECE669 L3: Design Issues February 5, 2004

Overview

° Fundamental issues
 Naming, operations, ordering

° Communication and replication
« Transfer of data
« How is data used?

° Modeling communication cost
« Based on programming model

° Moving towards quantitative metrics
« Communication time
« Communication cost

ECE669 L3: Design Issues February 5, 2004

Convergence: Generic Parallel Architecture

< Network >

o o o

Communication
Mem | assist (CA)
[

° Node: processor(s), memory system, plus
communication assist

e Network interface and communication controller

° Scalable network

° Convergence allows lots of innovation, within
framework
* Integration of assist with node, what operations, how efficiently

ECE669 L3: Design Issues February 5, 2004

Data Parallel Systems

° Programming model

» Operations performed in parallel on each element of data structure
* Logically single thread of control, performs sequential or parallel

steps

» Conceptually, a processor associated with each data element

° Architectural model

« Array of many simple, cheap processors with little memory each
- Processors don’t sequence through instructions
« Attached to a control processor that issues instructions

» Specialized and general communication, cheap global

synchronization

° Original motivations
- Matches simple matrix and array operations

- Centralize high cost of instruction fetch/sequencing

ECE669 L3: Design Issues

February 5, 2004

Control
processor

]
;

o [e]

o o o

o o o
o

T ° T T

m o m m

Application of Data Parallelism

« Each PE contains an employee record with his/her salary
| f salary > 100K t hen
salary = salary *1.05
el se
salary = salary *1.10
* Logically, the whole operation is a single step
« Some processors enabled for arithmetic operation, others disabled

° Other examples:
* Finite differences, linear algebra, ...
« Document searching, graphics, image processing, ...

° Some recent machines:
 Thinking Machines CM-1, CM-2 (and CM-5)
« Maspar MP-1 and MP-2,

ECE669 L3: Design Issues February 5, 2004

Connection Machine

.y

ECE669 L3: Design Issues

Nexus

Connection Machine
Parallel Precessor Unit

Connection Maching Ceonnection Machine
16,284 processors 16,384 processors
. [Saquencer Sequancer -
] 3
—tdlllie
- e
Sequencer Sequencer
1, 1 2 &
Connection Machine Connection Machine
16,384 processors 16,384 processors
Connection Machine IO System
| |] [
Data Data Data Graphic
Vault Vault Vaul Display

(Tucker, IEEE Computer, Aug. 1988)

February 5, 2004

(DECVAX or

Front end 0

Symbolics)

Bus interface

(DEC VAX Of

Front end 1

Symbolics)

Bus interface

Front end 2
(DEC VAX Of

Symbolics)

—1 Bus imerface

Bus interface

Frontend 3
(DEC VAX Or

Symbolics)

Netwaork

Evolution and Convergence

° SIMD Popular when cost savings of centralized
sequencer high

e 60s when CPU was a cabinet
* Replaced by vectors in mid-70s
- More flexible w.r.t. memory layout and easier to manage
* Revived in mid-80s when 32-bit datapath slices just fit on chip

° Simple, regular applications have good locality
* Need fast global synchronization

o Structured global address space, implemented with either SAS
or MP

ECE669 L3: Design Issues February 5, 2004

CM-5

° Repackaged
SparcStation

e 4 per board

° Fat-Tree
network

° Control network
for global
synchronization

=
=]
o

ECE669 L3: Design Issues February 5, 2004

Dataflow Architectures

° Represent computation
as a graph of essential

dependences
* Logical processor at each a-
node, activated by 9z

availability of operands

« Message (tokens) carrying
tag of next instruction sent
to next processor

« Tag compared with others in
matching store; match fires

(b+1)" (b- c)O
c’ el
a’ d

Dataflow graph

execution

< Network
Token(Program[]
store store
Waiting[] Instructio | Execute .| FormO | Network
Matching fetch token
Token queue
- Network

ECE669 L3: Design Issues

February 5, 2004

Evolution and Convergence

o

Key characteristics
« Ability to name operations, synchronization

o

Problems
» Operations have locality across them, useful to group together
 Handling complex data structures like arrays
o Complexity of matching store and memory units
 Expose too much parallelism

o

Converged to use conventional processors and memory
e Support for large, dynamic set of threads to map to processors
 Typically shared address space as well
o Separation of progr. model from hardware

(o]

Lasting contributions:
* Integration of communication with thread (handler) generation
« Tightly integrated communication and fine-grained synchronization

ECE669 L3: Design Issues February 5, 2004

Systolic Architectures

° VLSI enables inexpensive special-purpose chips
* Represent algorithms directly by chips connected in regular pattern
 Replace single processor with array of regular processing elements
» Orchestrate data flow for high throughput with less memory access

M ([€&— M <

—>» PEr>|PE[------ —>»| PE

° Different from pipelining

 Nonlinear array structure, multidirection data flow, each PE may have
(small) local instruction and data memory

° SIMD? : each PE may do something different

ECE669 L3: Design Issues February 5, 2004

Systolic Arrays

Example: Systolic array for 1-D convolution

y(i) =wl " x(i)+w2 " x(i+1)+w3" x(i+2)+wd” x(i +3)

X8 X6 x4 X2
— » X7 —» X5 —] X3 » X1 > -
- - —=] w4 =1 w3 =1 W2 =1 wl
y3 y2 yl
Xin « |rout xout = X
X = Xin

yout=yin +w " Xxin

yin yout

* Practical realizations (e.g. iIWARP) use quite general processors
- Enable variety of algorithms on same hardware

 But dedicated interconnect channels
- Data transfer directly from register to register across channel

» Specialized, and same problems as SIMD
- General purpose systems work well for same algorithms (locality)

ECE669 L3: Design Issues February 5, 2004

Architecture

° Two facets of Computer Architecture:
» Defines Critical Abstractions
- especially at HW/SW boundary
- set of operations and data types these operate on
e Organizational structure that realizes these abstraction

° Parallel Computer Arch.=
Comp. Arch + Communication Arch.

° Communication Architecture has same two facets
e communication abstraction
e primitives at user/system and HW/SW boundary

ECE669 L3: Design Issues February 5, 2004

Layered Perspective of PCA

CAD Database Scientific modeling Parallel applications
Multiprogramming Shared Message Data Programming models
address passing parallel
Compilation o _
or library Communication abstraction

: User/system boundary
‘Operatlng systems support

Hardware/software boundary

Communication hadware

Physical communication medium

ECE669 L3: Design Issues February 5, 2004

Communication Architecture

User/System Interface + Organization

°User/System Interface:
« Comm. primitives exposed to user-level by hw and system-level sw

°Implementation:
* Organizational structures that implement the primitives: HW or OS
« How optimized are they? How integrated into processing node?
o Structure of network

°Goals:
* Performance
* Broad applicability
* Programmability
» Scalability
 Low Cost

ECE669 L3: Design Issues February 5, 2004

Fundamental Design Issues

° At any layer, interface (contract) aspect and
performance aspects

« Naming: How are logically shared data and/or processes
referenced?

 Operations: What operations are provided on these data
 Ordering: How are accesses to data ordered and coordinated?

° How these important issues addressed?
* Replication: Data replicated to reduce communication.

« Communication Cost: Latency, bandwidth, overhead,
occupancy

ECE669 L3: Design Issues February 5, 2004

Sequential Programming Model

° Contract
« Naming: Can name any variable (in virtual address space)

- Hardware (and perhaps compilers) does translation to
physical addresses

» Operations: Loads, Stores, Arithmetic, Control
 Ordering: Sequential program order

° Performance Optimizations

« Compilers and hardware violate program order without getting
caught

- Compiler: reordering and register allocation
- Hardware: out of order, pipeline bypassing, write buffers
 Transparent replication in caches

ECE669 L3: Design Issues February 5, 2004

SAS Programming Model

° Naming: Any process can name any variable in
shared space

° Operations: loads and stores, plus those needed
for ordering

° Simplest Ordering Model:
 Within a process/thread: sequential program order
e Across threads: some interleaving (as in time-sharing)
» Additional ordering through explicit synchronization

ECE669 L3: Design Issues February 5, 2004

Synchronization

° Mutual exclusion (locks)

 Ensure certain operations on certain data can be
performed by only one process at a time

« Room that only one person can enter at a time
 No ordering guarantees

° Event synchronization
 Ordering of events to preserve dependences
- e.g. producer —> consumer of data
3 main types:
- point-to-point
- global
- group

ECE669 L3: Design Issues February 5, 2004

Message Passing Programming Model

o

Naming: Processes can name private data directly.
 No shared address space

o

Operations: Explicit communication through send and
receive

 Send transfers data from private address space to another process
 Receive copies data from process to private address space
 Must be able to name processes

o

Ordering:
 Program order within a process
e Send and receive can provide pt to pt synch between processes

o

Can construct global address space:
 Process number + address within process address space
 But no direct operations on these names

ECE669 L3: Design Issues February 5, 2004

Design Issues Apply at All Layers

o

Programming model’s position provides
constraints/goals for system

° In fact, each interface between layers supports or
takes a position on:

« Naming model

Set of operations on names
Ordering model

Replication

« Communication performance

o

Any set of positions can be mapped to any other
by software

° Let’s see issues across layers
« How lower layers can support contracts of programming models
« Performance issues

ECE669 L3: Design Issues February 5, 2004

Ordering

° Message passing: no assumptions on orders
across processes except those imposed by
send/receive pairs

° SAS: How processes see the order of other
processes’ references defines semantics of SAS

Ordering very important and subtle

Uniprocessors play tricks with ordering to gain parallelism or
locality

These are more important in multiprocessors

Need to understand which old tricks are valid, and learn new
ones

How programs behave, what they rely on, and hardware
implications

ECE669 L3: Design Issues February 5, 2004

Replication

Reduces data transfer/communication
 depends on naming model

Uniprocessor: caches do it automatically
« Reduce communication with memory

Message Passing naming model at an interface
* receive replicates, giving a new name
» Replication is explicit in software above that interface

SAS naming model at an interface

 Aload brings in data, and can replicate transparently in cache

* No explicit renaming, many copies for same name: coherence
problem

* In uniprocessors, “coherence” of copies is natural in memory
hierarchy

ECE669 L3: Design Issues February 5, 2004

Communication Performance

° Performance characteristics determine usage of
operations at a layer

 Programmer, compilers etc make choices based on this

° Fundamentally, three characteristics:
e Latency: time taken for an operation
 Bandwidth: rate of performing operations
« Cost: impact on execution time of program

If Processor does one thing at a time: bandwidth p
1/latency

 But actually more complex in modern systems

° Characteristics apply to overall operations, as well as
individual components of a system

ECE669 L3: Design Issues February 5, 2004

Simple Example

° Component performs an operation in 100ns
° Simple bandwidth: 10 Mops
° Internally pipeline depth 10 => bandwidth 100 Mops

 Rate determined by slowest stage of pipeline, not overall latency

° Delivered bandwidth on application depends on initiation
frequency

° Supp)ose application performs 100 M operations. What is
cost”

 Op count * op latency gives 10 sec (upper bound)
« Op count/peak op rate gives 1 sec (lower bound)
- assumes full overlap of latency with useful work, so just issue cost

 if application can do 50 ns of useful work before depending on result of
op, cost to application is the other 50ns of latency

ECE669 L3: Design Issues February 5, 2004

Linear Model of Data Transfer Latency

° Transfer time (n) =T, + n/B

« useful for message passing, memory access, vector ops etc

As n increases, bandwidth approaches
asymptotic rate B

How quickly it approaches depends on T,

° Size needed for half bandwidth (half-power
point): --- Note error in version A of textbook!

o — *
Nyp=To" B

But linear model not enough

e When can next transfer be initiated? Can cost be
overlapped?

 Need to know how transfer is performed

ECE669 L3: Design Issues February 5, 2004

Communication Cost Model

Comm Time per message= Overhead + Occupancy +
Network Delay

Occupancy passed on slowest link in system

Each component along the way has occupancy and delay
* Overall delay is sum of delays
* Overall occupancy (1/bandwidth) is biggest of occupancies

° Communication cost = Frequency x (Communication time —
Overlap)

ECE669 L3: Design Issues February 5, 2004

Summary

° Functional and performance issues apply at all layers
° Functional: Naming, operations and ordering
° Performance: Organization
e Jlatency, bandwidth, overhead, occupancy
° Replication and communication are deeply related

« Management depends on naming model

° Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below

« Hardware/software tradeoffs

ECE669 L3: Design Issues February 5, 2004

