
Latency Tolerance through Multithreading in

Large-Scale Multiprocessors

Kiyoshi Kurihara�, David Chaiken, and Anant Agarwal

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

In large-scale distributed-memory multiprocessors, remote memory accesses su�er

signi�cant latencies. Caches help alleviate the memory latency problem by maintain-

ing local copies of frequently used data. However, they cannot eliminate the latency

caused by �rst-time references and invalidations needed to enforce cache coherence.

Multithreaded processors tolerate such latencies by rapidly switching between threads

when they encounter cache misses. This paper evaluates the e�ectiveness of multi-

threading in Alewife, a scalable multiprocessor that is being developed at MIT. For

the applications used in this study, multithreading results in a modest 20% improve-

ment in execution time on a 64-processor machine. The impact of multithreading is

expected to be far more signi�cant in larger machines, when remote memory latency

becomes a dominant term in the performance equation.

�Kiyoshi Kurihara is currently at IBM Japan, Ltd. Tokyo, Japan.

0

1 Introduction

Long communication latencies impose limits on the
performance attainable by large-scale multiproces-
sors. As Figure 1 illustrates, processor utilization

diminishes when the time a processor spends waiting

for responses to remote memory requests is wasted.
Idling on remote memory requests wastes not only

processor resources but also the bandwidth of the
processor interconnection network. When processors

remain idle for large periods of time, they do not sus-
tain request rates that fully utilize the available net-

work capacity. Unfortunately, the proportion of time

wasted by processors not only increases as machines

get larger, but also grows as advances in technology

increase the mismatch between the speeds of proces-
sors and the speeds of memory and communications

components.

Processor utilization can be improved if a proces-

sor that would otherwise have to wait for a pend-

ing memory or synchronization request can rapidly
switch between threads of control, thereby perform-
ing useful computation. This strategy attempts to
hide the latency of interprocessor communication by

allowing multiple outstanding transactions per pro-

cessor. While previous architectures have imple-
mented multithreading with cycle-by-cycle interleav-

ing of instructions from di�erent processes [11, 12, 16,
21] (termed �ne multithreading), we use the same

name for systems that interleave blocks of instruc-

tions from di�erent processes as well [3, 23] (termed
coarse or block multithreading).

Block multithreaded processors do not force a
context switch every cycle and can achieve high

single-thread performance. They switch between
threads only on long-latency memory requests or

synchronization attempts. We are using such a

block multithreaded processor architecture [3] in the

1

Time
Idle Idle

Mem
Req 1 Resp1

Mem
Req 2 Resp2

Figure 1: The Long Latency Problem.

Alewife design. Alewife is a large-scale multiproces-

sor being implemented at MIT; it is described in more

detail in the next section. Sparcle, the initial im-

plementation of Alewife's processor, supports multi-

threading by providing four register sets that hold

the state of four threads of control.

Multithreading has several negative side-e�ects,
including increased cache miss rates and higher net-

work contention. In addition, multithreading re-
quires the applications running on a system to pro-
vide enough parallelism to sustain several contexts
per processor. Performance gains due to hiding
communication latency must be traded o� against

the requirements of a multithreaded system. Our
evaluation methodology includes these negative ef-
fects while measuring the performance of block-
multithreaded processors.

Using multiprocessor simulations, we compare the
performance of a system with multithreaded proces-
sors to the performance of a system with standard
processors. In terms of the speed-up over a single
processor system, we �nd that a 64-processor multi-

threaded system performs about 20% better than a

system with no mechanisms for tolerating communi-
cation latency. By presenting an analysis of the cost
of various types of memory transactions, we show

that the bene�ts of block multithreading outweigh

the negative side-e�ects of the technique. We con-

clude that multithreading will provide even higher

performance gains in larger systems that su�er from
higher interprocessor communication latencies.

The rest of this paper is organized as follows.

Section 2 describes the features of Alewife that are

relevant to the study of latency tolerance. Sec-

tion 3 analyzes the problem of communication la-
tency in large-scale multiprocessors and discusses

how multithreading can be used to solve the prob-

lem. Section 4 presents our simulation methodology,
and Section 5 evaluates the simulated performance

of Alewife's multithreaded architecture. Section 6

draws conclusions from our simulations and analysis.

FPU

Cache Controller

Network Router

Cache

Sparcle
Processor

Memory
Module

Figure 2: The Structure of the Alewife System.

2 The Alewife Architecture

The Alewife group at MIT is designing and imple-

menting a large-scale multiprocessor that uses mul-
tiple contexts for latency tolerance. The machine, as

depicted in Figure 2, is designed to be physically scal-
able. The system consists of a set of processing nodes

that are connected by a two-dimensional mesh net-
work. This type of network is scalable, because the

network bandwidth grows with the number of pro-
cessors and because the interconnection wire lengths

do not depend on the number of nodes in the system.

Each node consists of a network router, a Sparcle pro-
cessor, a oating-point unit, a cache, a cache-memory

controller, and a portion of globally-shared memory.

The shared memory is distributed to the processing
nodes so that the system does not su�er from the

bandwidth bottleneck of a single, monolithic mem-

ory.

2

Alewife's cache controllers synthesize a globally

shared memory address space. It uses a directory-

based cache coherence scheme called the LimitLESS

protocol [7], which realizes the performance of full-
map directory protocols [5, 22], with the memory

overhead of a limited directory protocol [4]. The di-

rectory used by the cache coherence protocol is also

distributed to the processing nodes.

Latency tolerance in Alewife is part of a lay-

ered approach to automatic management of multipro-

cessor communication locality. Several components

in the Alewife system cooperate in automatic mini-

mization of latency. Hardware-managed distributed

caches signi�cantly reduce the frequency of remote

communications by automatically copying frequently

used data locally. The software run-time system al-

lows process and data partitioning, placement, and

migration for improving locality. When the system
can not avoid a remote memory request and is forced
to incur the latency of the interprocessor communi-

cation network, the Alewife processors attempt to
tolerate this latency through the technique of block
multithreading. The next section details the role of
multithreading and its implementation.

3 Using Multithreading to

Tolerate Latency

While caching data reduces the average memory ac-
cess latency by minimizing the frequency of remote
memory accesses, a fraction of memory transactions
still require service from remote memory modules.

When transactions cause the cache coherence pro-
tocol to issue invalidation messages in order to en-

sure sequential consistency [14], the remote memory

access latency is especially high. Transactions that
require any invalidations do not complete until all
the invalidations are complete. When the resulting

remote memory access latency is much longer than

the time between memory accesses, processors spend
most of their time waiting for memory transactions

to be serviced.

This problem, caused by an imbalance between
local and remote communication latency, is similar in

principle to the problem caused by the imbalance be-
tween main memory and i/o device speeds in unipro-

cessors. The memory versus i/o speed imbalance has

been solved by using multi-programming. By time-
sharing a processor and multiplexing the communica-

tion path between the processor and its i/o devices,

their speed di�erences are e�ciently hidden.

Although the absolute communication costs in

the uniprocessor system di�er from the analogous
costs in a multiprocessor, the same type of solution

can be applied to solve the problem caused by the

imbalance between local and remote memory access

speeds in multiprocessors. By allowing each proces-

sor to have multiple outstanding memory requests, it

is possible for a processor to switch between threads

of control in order to mask the latency of remote

memory accesses. This solution may be implemented

e�ciently by designing a processor that can rapidly

switch between a number of hardware contexts and

allocating one thread of control to each context.

As shown in Figure 3, this technique can increase

processor utilization considerably. In the �gure, solid

lines represent the portion time that a processor ex-

ecutes application code, and dotted lines represent
the time that a processor remains idle. The vertical

lines designate the requests to remote memory mod-
ules, and the corresponding responses. Time ows
from left to right. At the beginning of the scenario,
Context 1 is active, but becomes idle when it issues
Memory Request 1. After a short context switch pe-

riod (marked with the Sw label), Context 2 becomes
active, and runs until it issues Memory Request 2.
Again, the processor switches contexts. Since Mem-
ory Request 1 was satis�ed by Response 1, Context
1 is ready to continue executing. Figure 3 shows one
more context switch, which happens when Context

1 issues Memory Request 3. At this point, Context
2 is not yet ready to run, because Memory Request
2 has not yet completed. This illustrates the impor-
tant point that in order to mask long communication
latencies, threads must maximize the time between

remote memory accesses.

The type of system depicted in Figure 3 is re-

ferred to as a multithreaded architecture. The idea
of multithreading in multiprocessor systems is not

new. The prototypical multithreaded architecture is

the HEP [17]. Eight threads reside in each of the
HEP's processors, and each thread uses its own ded-
icated register set. In order to hide long memory

access latency and achieve high processor utilization,

the system schedules the threads in round-robin fash-
ion. Multithreading is also used in data ow ma-

chines [15], and some Lisp-oriented architectures [11].

These multithreaded architectures switch con-

texts after every instruction execution. Although this

switching policy o�ers the potential of high processor
utilization, it results in relatively poor scalar perfor-

3

Context 1 Time

Context 2

Effectively for 2 Contexts

Sw

Sw

Sw

Resp 1
Mem
Req3 Resp2 Resp 3

Mem
Req2

Mem
Req1

Idle Idle Idle

Figure 3: Multithreaded Timeline.

mance observed by any single thread. When there

is not enough parallelism to �ll all of the hardware

contexts, the system performance degrades signi�-
cantly. For example, in HEP, if there are exactly

eight threads, the processor utilization reaches 100%.
Otherwise, the processor cycles executed by the idle
contexts are wasted. Context switching on a cycle-
by-cycle basis reduces system performance on inher-
ently sequential portions of an application.

It is possible to provide reasonable performance
on sequential code while still enjoying the merits of
multithreading for highly parallel sections of applica-
tions. In Alewife's processor architecture, APRIL [3],

context switches occur only when a thread executes
a memory request that must be serviced by a remote
node in the multiprocessor. As long as a context's
memory requests hit in the cache or can be serviced
by a local memory module, the context continues to

execute. This context switching policy allows a single
thread to bene�t from the maximum performance of

the processor.

Sparcle, the initial APRIL implementation, uses

the register windows of the SPARC processor [19] to

implement multithreading. With a small number of
hardware modi�cations, the register window mech-

anism can be used to implement both the hardware
contexts and the rapid context switch needed for mul-

tithreading. Sparcle dedicates one register window to

each thread. When a cache miss occurs and a context
issues a memory access request that must be serviced

remotely, the cache controller traps the processor.
The trap routine saves the Program Counter (PC)

and Processor Status Register (PSR), switches regis-

ter sets by setting the Frame Pointer (FP) register,
ushes the pipeline, and switches to the next context

by setting the Frame Pointer (FP) register to point

to a new register window. [3] shows that even with

a low-cost implementation, a context switch can be

done in about 11 cycles. By maintaining a separate
PC and PSR for each context, a custom processor

could switch contexts faster than our current imple-
mentation. However, Section 5 shows that even with
11 cycles of context switch overhead, multithreading
signi�cantly improves the system performance.

Sparcle's context switching mechanism can also
be used to reduce synchronization overhead by
switching contexts when a thread encounters a de-
lay due to a synchronization variable access. This
feature is not evaluated in this paper.

A multithreaded architecture is not free in terms
of either its hardware or software requirements. The
implementation of such an architecture requires mul-
tiple register sets or some other mechanism to allow

fast context switches, additional network bandwidth,
support logic in the cache controller, and extra com-
plexity in the thread scheduling mechanism. Other

methods for allowing multiple outstanding requests,
such as weak ordering [1, 8, 10], incur similar im-

plementation complexities in the cache controller. In
Alewife, since the same context-switching mechanism

is used for fast traps and for masking synchronization
latencies, we feel the extra complexity in the proces-

sor is justi�ed. See [2] for a detailed analysis of the
interaction of multithreading with cache interference,

network contention, context-switching overhead, and

data-sharing e�ects.

4 The Simulation System

We use ASIM, the Alewife machine simulator, to
estimate the extent to which multiple contexts can

4

StatisticsTrace
File

Post-Mortem
Scheduler

System
Simulator

Figure 4: Coupled Trace-Driven Simulation.

overlap communication latency. ASIM is a cycle-by-

cycle simulator of the entire machine, including pro-

cessors, caches, and interconnection network. ASIM

can use two sources of stimulus. First, programs

written in a high-level language can be compiled,

linked with a run-time system, and executed on the

Alewife machine. Second, address traces of parallel

programs containing embedded synchronization in-

formation can be used to drive the simulations. This

paper uses the latter source.

ASIM uses a coupled trace-driven simulation
method. In a coupled scheme, memory requests obey
the synchronization constraints on the parallel pro-
gram and respond to feedback from the interconnec-
tion network. This type of simulation models a cor-
rect ordering of memory requests. The coupled sim-

ulation system is depicted in Figure 4. An address
trace of a single-processor execution of the parallel
program drives the simulation system. The post-
mortem scheduler generates a parallel trace, obey-
ing the synchronization constraints speci�ed in the

uniprocessor trace. The scheduler sends address re-
quests to the cache and network simulator, which re-
sponds to the requests from the scheduler and accu-
mulates statistics that measure memory latency and
other parameters.

The single processor trace is derived from a
uniprocessor execution of an application parallelized

using the single-processor-multiple-data (SPMD)
computational model. Single processor traces are

gathered using PSIMUL [18], a system for tracing
parallel applications on IBM S/370 machines. In the

SPMD model, each code section (task) in the system
ends with a synchronization event, typically a bar-

rier. The single processor trace describes the mem-
ory reference behavior of all the tasks and annotates

the points where synchronizations must occur.

The dynamic post-mortem scheduler produces a

parallel trace by simulating processors executing the

task segments in the trace. Figure 5 illustrates its

structure. Comparable simulators have been devel-
oped by other researchers [13]. The scheduler �rst

makes a pass through the uniprocessor trace and con-
structs a task trace from the synchronization mark-

PE1
STATE

PE64
STATE

PE2
STATE

PE3
STATE

Cache Simulator

Network Simulator

Address
Trace File

Post-Mortem
Scheduler

Performance
Statistics

Figure 5: Coupled Post-mortem Scheduler.

ers. It then simulates the processors executing these
tasks in a round-robin fashion with each processor

making one reference each cycle from its task. The
scheduler simulates the synchronization behavior of
the processor and synthesizes synchronization refer-
ences according to prespeci�ed waiting algorithms.
The implementation in this study uses software com-

bining trees for barrier synchronizations [6].

In general, a processor issues a memory request
from its task only after its previous network request
is satis�ed. However, the simulator can also choose to

switch to a di�erent thread after a network request to
model a multithreaded processor. When simulating
multithreaded processors, each processor maintains

multiple control blocks corresponding to the state of
multiple processor contexts.

The cache and network simulators model the
memory system of the Alewife machine. Each pro-
cessor has its own combined instruction and data

cache. Each processing node also contains a por-

tion of globally-shared memory. We assume that all
instructions are replicated in each processor's local

memory. Shared data is interleaved at a cache block
size across all the processing nodes. We simulate sev-

eral cache coherence protocols including full-map di-

rectories, LimitLESS directories, and chained direc-

tories. Since the e�ects of multithreading are uniform

for all of the coherence protocols that we studied, we

report results only for the LimitLESS protocol. The
network is a two dimensional mesh.

5

SIMPLE Weather

Total Memory Accesses 24.0M 26.7M

Instruction Fetch 42.1% 40.1%

Shared Read 15.1% 7.6%

Shared Write 1.9% 1.8%

Private Read 26.7% 42.8%

Private Write 14.2% 7.7%

CRCW PRAM Speed-up 105 108

Table 1: Application Characteristics.

5 Simulation Results

This section analyzes the performance of two FOR-

TRAN applications when running on simulations of

a 64 processor machine. After describing the param-

eters of the simulations, we compare the behavior of

a multithreaded architecture to a standard con�gura-

tion. We then analyze how multithreading a�ects the
contribution of synchronization, local memory access
latency, and remote memory access latency to the
time that it takes to run each application. Finally, we
compare multithreading with weak ordering, another

method for masking remote memory access latency.

5.1 Simulation Parameters

Our simulations use two application programs to
evaluate Alewife's multithreaded architecture. The
SIMPLE application simulates the hydrodynamic
and thermal behavior of a uids in two dimensions,

and the Weather application forecasts the state of the
atmosphere given an initial state. Both SIMPLE and
Weather are written in EPEX/FORTRAN [9, 20], a
version of FORTRAN that has been extended with

parallel constructs at IBM.

Table 1 summarizes the characteristics of these

programs. The total number of memory references

for each trace is the number of memory transactions
that are issued in a uniprocessor execution of the
trace. The table gives the percentage of each of

�ve types of memory references in the trace. In a

multiprocessor simulation, a processor's local mem-
ory module satis�es all cache misses on private data.

Since the simulator interleaves shared data addresses
over all of the memory modules in the system, cache

misses on shared data are usually serviced by a

remote memory module. The interleaved memory

mapping policy di�ers from Alewife's memory sys-
tem, which allocates a consecutive block of addresses

to each processor's memory module. Interleaving is

Processing Elements 64

Coherence Protocol LimitLESS4
Cache Size 64KB (4096 lines)

Cache Block Size 16 bytes

Network Topology 2 Dim. Mesh (8 � 8)

Channel Width 16 bits

Network Speed 2 � processor speed

Memory Latency 5 processor cycles

Context Switch 11 processor cycles

Table 2: Default Simulation Parameters.

used for the simulations reported in this paper, be-

cause the post-mortem scheduler makes no attempt

to address the problem of data allocation in a system

with non-uniform memory access latencies.

We approximate the available parallelism of each

application by simulating it on a 128 processor
concurrent-read, concurrent-write parallel random
access machine (CRCW PRAM). This model as-

sumes that anymemory transaction takes exactly one
cycle to complete. The parallelism reported in Ta-
ble 1 is the speed-up of each application on a CRCW
PRAM.

Our metric for evaluating the performance of a
multiprocessor is speed-up, the ratio between the ex-
ecution time of an application on a uniprocessor, and
the execution time on a multiprocessor. The unipro-
cessor execution time does not include any of the
overhead inherent in multiprocessing, including syn-

chronization and communication delay. Thus, the
speed-up metric encapsulates all of the factors that
contribute to a multiprocessor's execution time, in-
cluding network latency, network contention, syn-
chronization delay, cache coherence overhead, and

load imbalance among processors.

In addition to determining the execution time

of an application, the multiprocessor simulator gen-

erates raw statistics that measure an application's

memory access patterns and the utilization of vari-

ous system resources. We will use these statistics to
explain the performance of the multithreaded archi-

tecture. The simulations reported in the following
sections use the parameters listed in Table 2.

5.2 E�ect of Multithreading

Figure 6 shows the simulated performance for the

Weather and SIMPLE applications using one and
two threads per processor. The vertical axis shows

the speed-up of the application with 64 processors,

6

 Single Thread
 2 Threads

|0.0

|5.0

|10.0

|15.0

|20.0

|25.0

|30.0

|35.0

 S
pe

ed
-u

p
(U

ni
pr

oc
es

so
r=

1)

SIMPLE Weather

Figure 6: E�ect of Multithreading.

relative to a uniprocessor execution of the same ap-

plication without synchronization overhead. Both of
the applications realize about a 20% performance in-
crease from multithreading. Since neither of the ap-

plication problem sets are large enough to sustain
more than 128 contexts, no performance gain results
from increasing the number of contexts from two to
three per processor. This behavior is not surpris-
ing, given the fact that both applications' CRCW

PRAM parallelism is less than 128. The simulations
of several cache coherence protocols (including lim-
ited, full-map, and LimitLESS) show that the 20%
performance increase is largely independent of the co-
herence mechanism. The performance of the single-

link chain coherence protocol improved slightly more
than the other protocols, due to the greater latency
of requests to write shared data.

The simulations reveal the increase in the demand

for network bandwidth due to multithreading. Ta-

ble 3 shows the e�ect of multithreading on the av-
erage network channel utilization and the average
packet transit latency. The higher bandwidth de-

mands, evident from the increased channel utiliza-

tions, cause larger packet communication latencies.

However, the speed-up results validate the predic-

tion in [2]: as long as the network does not approach
saturation, the bene�ts of tolerating remote access

latency outweigh the increase in packet communica-
tion latency. Since the multithreaded architecture is

designed to tolerate remote access latency, its higher

network utilization indicates that it uses the sys-
tem resources more e�ciently than the standard (one

thread) con�guration. The e�cient use of network

and processor resources allows the multithreaded ar-

chitecture to realize increased speed-up when running

Channel Packet

Application Threads Utilization Latency

SIMPLE 1 21.0% 9.8

2 25.7% 12.3

Weather 1 14.7% 8.4
2 18.8% 9.3

Table 3: Network Statistics.

the two applications.

The simulations performed during the Alewife de-

sign process will reveal the e�ects of multithreading

on other applications. Some preliminary results are

currently available from full system simulations run

with compiled programs instead of trace-driven in-

put. Applications that exhibit good communication

locality did not perform better with multithreading,

as expected. Other applications with poor locality,
such as matrix transpose, exhibit 20% improvement
with 2 contexts per processor and 25% with 4 con-
texts.

5.3 Cost Analysis

An analysis of the costs of memory transactions con-

�rms the intuition that a multithreaded architecture
yields better performance by reducing the e�ect of in-
terprocessor communication latency. Our multipro-
cessor simulation system collects information about
the distribution and the latency of various types of

memory transactions. We have re�ned the statistics
into a summary of the costs of four basic types of
transactions.

1. Application transactions are the memory re-
quests issued by the program running on the

system. These transactions are the transac-

tions in the original unscheduled trace.

2. Synchronization transactions are memory re-
quests that implement the barrier executed at

the end of a parallel segment of the application.

3. Local cache miss transactions occur when

an application or synchronization transaction

misses in the cache, but can be serviced in the

local memory module.

4. Remote transactions occur when an applica-

tion or synchronization transaction misses in

the cache or requires a coherence action, re-
sulting in a network transmission to a remote

memory module. Multithreading is designed

7

to alleviate the latency caused by this type of

transaction.

The contribution of each type of transaction to
the time needed to run an application is equal to

the number of transactions multiplied by the aver-

age latency of the transaction. We assume that the

latency of application and synchronization transac-

tions is equal to 1 cycle, while the simulator collects

statistics that determine the average latency of the

cache miss transactions. Table 4 shows the cost of

each transaction type, normalized to the number of

application transactions. For example, in the simula-

tion of SIMPLE with one context per processor, the

memory system spends an average of 3.98 cycles ser-

vicing remote transactions for every cycle it spends

servicing an application data access.

The statistics in Table 4 are calculated directly
from the raw statistics generated by the multiproces-
sor simulator using the parameters in Table 2, ex-
cept for the cost of remote transactions in the multi-
threaded environment. A multithreaded architecture
can overlap some of the cycles spent servicing remote

transactions with useful work performed by switch-
ing to an active thread. We approximate the num-
ber of cycles that are overlapped from the average
remote transaction latency, the context switch over-
head, and the number of remote transactions. The

number of overlapped cycles is subtracted from the
latency of remote transactions in order to adjust the
cost of remote transactions. For all of the simulations
summarized in the table, the total cost multiplied by
the number of application cycles is within 5% of the

actual number of cycles needed to execute the appli-

cation.

The analysis shows that remote transactions con-

tribute a large percentage of the cost of running an

application. This conclusion agrees with the premise

that communication between processors signi�cantly
a�ects the speed of a multiprocessor. The multi-

threaded architecture realizes higher speed-up than
the standard con�guration, because it reduces the

cost of remote transactions. Because communication

latency grows with the number of processors in a

system, the relative cost of remote transactions in-

creases. This trend indicates that the e�ect of mul-
tithreading becomes more signi�cant as system size

increases.

5.4 Comparison to Weak Ordering

In order to evaluate the contribution of multithread-

ing, we compare the performance of our multi-
threaded system to the performance of a system with

weak ordering [1, 8, 10]. Weak ordering is an alter-

nate method of tolerating remote memory access la-

tency by allowing multiple outstanding transactions

per processor. When using a weakly ordered mem-

ory system, if a programmer obeys certain synchro-

nization semantics, then the system will appear to

enforce sequential consistency, a convenient model of

shared memory. In return, the memory system per-

mits individual threads to overlap the latency of cer-

tain types of remote transactions with useful compu-

tation. In contrast, Alewife's memory system guar-

antees sequential consistency without placing restric-

tions on the synchronization semantics of programs,
and overlaps remote transaction latency with multi-
ple threads of computation.

To compare these two methods for masking re-
mote memory latency, we instrumented the simulator
to estimate the performance of a system with weak
ordering. The simulator collects statistics about a

weakly ordered memory system while simulating a
single-context processor with a memory system that
provides sequential consistency. For the purposes of
our analysis, we modeled a weakly ordered system
that allows all write transactions to be overlapped
with computation, until the program encounters a

synchronization point. At synchronization points,
the system must wait for all write transactions to
complete.

The approximation method records the latency

of the memory transactions that may be overlapped

with execution, namely write misses and attempts to
write to read-only cache blocks. At any point in the
simulation, the algorithm can determine the latest

time that overlapped transactions will be completed

for each processor. When a thread that is running
on a processor performs a synchronization, the sys-

tem knows how long to stall the processor to ensure
that all of the outstanding memory transactions are

complete. The simulator calculates the performance

of weak ordering for each processor by subtracting
overlapped cycles from the normal execution time

and adding the extra wait time at synchronization
points. The performance of weak ordering for the

entire system is calculated by averaging the execu-

tion time over all processors.

Our simulations indicate that multithreaded ar-

8

SIMPLE Weather

Transaction Type 1 Thread 2 Threads 1 Thread 2 Threads

Application 1.00 1.00 1.00 1.00

Synchronization 1.17 1.08 0.76 0.45

Local Cache Miss 0.41 0.36 0.34 0.36

Remote 3.98 2.83 1.25 0.94

Total 6.56 5.27 3.35 2.75

Table 4: Memory access costs, normalized to application transactions.

Sequentially Consistent Weak

Application 1 Thread 2 Threads Ordering

SIMPLE 18.2 21.8 20.4

Weather 24.4 29.8 28.6

Table 5: Speed-up achieved by tolerating latency.

chitectures with two contexts compare favorably with

weakly ordered systems. Table 5 shows the speed-
up values that are measured for one thread (con-
ventional), two thread, and weakly ordered systems.
With the addition of a single extra thread, the mul-
tithreaded system achieves approximately the same

speed up as the weakly ordered system. Both multi-
threading and weak ordering increase hardware and
software complexity in order to provide latency toler-
ance. Both techniques use a similar approach to the
latency problem, and both strategies result in com-

parable performance gains for our two applications.

6 Conclusions

This paper evaluated the potential for using a mul-
tithreaded architecture to tolerate remote memory

access latencies in a shared memory multiproces-

sor. Simulations of a 64 processor system demon-

strate performance gains with two contexts per pro-

cessor and an 11 cycle context switch overhead. The
higher performance of the multithreaded system in-

dicates that the bene�t of overlapping useful com-
putation with communication latency outweighs the

overhead of implementing multiple contexts per pro-
cessor. For the applications that we studied, mul-

tithreaded processors realize a 20% performance in-

crease over single-thread processors on a 64 processor
Alewife machine.

Simulations of the Alewife system show that mul-

tithreading mitigates the negative impact of commu-
nication latency in multiprocessors. Because commu-

nication latency grows with the number of processors

in a system, we expect the e�ect of multithreading

to become even more signi�cant as system size in-

creases. Like any other technique that allows mul-

tiple outstanding memory requests, multithreading

provides performance gains as long as the intercon-

nection network has spare bandwidth.

Multithreading, a technique for tolerating remote

access latency, should be viewed within the context

of a layered approach to automatic management of
communication locality in scalable multiprocessors.
In a complete system, processor caches and com-

piler techniques decrease the proportion of memory
accesses that require interprocessor communication.
Run-time software can also attempt to minimize the
average latency of remote accesses by e�ciently allo-
cating threads to the grid of processors. Multithread-

ing provides the last line of defense when all of the
attempts to exploit communication locality fail. The
fundamental challenge in our research lies in under-
standing the interaction between the various mech-
anisms for implementing an e�cient shared-memory
system.

7 Acknowledgments

We are grateful the the other members of the Alewife
development team, who have participated at every
stage of the research reported in this paper. In par-

ticular, John Kubiatowicz is responsible for the de-

sign of the Alewife processing node, Beng-Hong Lim
implemented the bulk of the run-time system that

manages multithreading, and Gino Maa wrote the
network simulator.

The serial version of the SIMPLE application

was originally from Lawrence Livermore Labora-
tory. It was parallelized by Boris D. Lubachevsky

while at NYU to run under WASHCLOTH, an

instruction-level simulator of the NYU Ultracom-

puter, written by Allan Gottlieb. Pat Teller modi�ed

Lubachevsky's code to run under EPEX/FORTRAN
at NYU. Weather was originally developed at the

9

NASA Space Flight Center. David Korn and Norman

Rush�eld parallelized the code to run under WASH-

CLOTH, and Pat Teller modi�ed the code to run

under EPEX/FORTRAN. Pat Teller and Allan Got-
tleib provided the sources for the programs. Harold

Stone and Kimming So helped us obtain the traces

from IBM. The static post-mortem scheduling pro-

cess was developed by Mathews Cherian and Kim-

ming So at IBM.

Machines used for simulations were donated by

Sun Microsystems, Digital Equipment Corporation,

and Encore Computer Corporation. The Sparcle im-

plementation e�ort is a collaboration with LSI Logic

Corporation and Sun Microsystems. The research re-

ported in this paper is funded by DARPA contract

N00014-87-K-0825, and by grants from the Sloan

Foundation and IBM.

References

[1] Sarita V. Adve and Mark D. Hill. Weak Or-

dering - A New De�nition. In Proceedings 17th

Annual International Symposium on Computer

Architecture, June 1990.

[2] Anant Agarwal. Performance Tradeo�s in Mul-

tithreaded Processors. IEEE Transactions on

Parallel and Distributed Systems, 1991. To ap-
pear.

[3] Anant Agarwal, Beng-Hong Lim, David A.
Kranz, and John Kubiatowicz. APRIL: A Pro-
cessor Architecture for Multiprocessing. In Pro-

ceedings 17th Annual International Symposium

on Computer Architecture, pages 104{114, June
1990.

[4] Anant Agarwal, Richard Simoni, John Hen-

nessy, and Mark Horowitz. An Evaluation of
Directory Schemes for Cache Coherence. In Pro-

ceedings of the 15th International Symposium on

Computer Architecture, IEEE, New York, June

1988.

[5] Lucien M. Censier and Paul Feautrier. A New

Solution to Coherence Problems in Multicache
Systems. IEEE Transactions on Computers, C-

27(12):1112{1118, December 1978.

[6] David Chaiken, Craig Fields, Kiyoshi Kuri-

hara, and Anant Agarwal. Directory-Based

Cache-Coherence in Large-Scale Multiproces-
sors. IEEE Computer, June 1990.

[7] David Chaiken, John Kubiatowicz, and Anant

Agarwal. LimitLESS Directories: A Scalable

Cache Coherence Scheme. In Fourth Interna-

tional Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS IV), ACM, April 1991. To appear.

[8] Michel Dubois, Christoph Scheurich, and

Faye A. Briggs. Synchronization, coherence, and

event ordering in multiprocessors. IEEE Com-

puter, 9{21, February 1988.

[9] D. A. George. EPEX - Environment for Parallel

Execution. Technical Report RC 13158 (58851),

IBM T. J. Watson Research Center, Yorktown

Heights, September 1987.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-

bons, A. Gupta, and J. Hennessy. Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In Proceedings 17th

Annual International Symposium on Computer

Architecture, June 1990.

[11] R.H. Halstead and T. Fujita. MASA: A Mul-

tithreaded Processor Architecture for Parallel
Symbolic Computing. In Proceedings of the 15th

Annual International Symposium on Computer

Architecture, pages 443{451, IEEE, New York,
June 1988.

[12] W. J. Kaminsky and E. S. Davidson. Developing
a Multiple-Instruction-Stream Single-Chip Pro-
cessor. IEEE Computer, 66{78, December 1979.

[13] Manoj Kumar and Kimming So. Trace Driven
Simulation for Studying MIMD Parallel Com-

puters. In International Conference on Parallel

Computing, pages I{68 { I{72, 1989.

[14] Leslie Lamport. How to Make a Multiproces-

sor Computer That Correctly Executes Multi-
process Programs. IEEE Transactions on Com-

puters, C-28(9), September 1979.

[15] G. M. Papadopoulos and D.E. Culler. Monsoon:
An Explicit Token-Store Architecture. In Pro-

ceedings 17th Annual International Symposium

on Computer Architecture, June 1990.

[16] B.J. Smith. A Pipelined, Shared Resource

MIMD Computer. In Proceedings of the 1978

International Conference on Parallel Processing,

pages 6{8, 1978.

10

[17] B.J. Smith. Architecture and Applications of the

HEP Multiprocessor Computer System. SPIE,

298:241{248, 1981.

[18] K. So, F. Darema-Rogers, D. A. George, V. A.

Norton, and G. F. P�ster. PSIMUL - A Sys-

tem for Parallel Simulation of Parallel Systems.

Technical Report RC 11674 (58502), IBM T.

J. Watson Research Center, Yorktown Heights,

November 1987.

[19] SPARC Architecture Manual. 1988. SUN Mi-

crosystems, Mountain View, California.

[20] J.M. Stone, F. Darema-Rogers, V.A. Norton,

and G.F. P�ster. Introduction to the VM/EPEX

FORTRAN Preprocessor. Technical Report RC

11407 (#51329), IBM T. J. Watson Research

Center, Yorktown Height, NY, September 1985.

[21] H. Sullivan and T. R. Bashkow. A Large Scale,
Homogeneous, Fully Distributed Parallel Ma-
chine. In Proceedings of the 4th Annual Sympo-

sium on Computer Architecture, pages 105{117,
March 1977.

[22] C. K. Tang. Cache Design in the Tightly Cou-
pled Multiprocessor System. In AFIPS Con-

ference Proceedings, National Computer Confer-

ence, NY, NY, pages 749{753, June 1976.

[23] Wolf-Dietrich Weber and Anoop Gupta. Ex-

ploring the Bene�ts of Multiple Hardware Con-
texts in a Multiprocessor Architecture: Prelimi-
nary Results. In Proceedings 16th Annual Inter-

national Symposium on Computer Architecture,
IEEE, New York, June 1989.

11

