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Abstract

Many standardized hardware communication interfaces offer run-
time flexibility and configurability at the cost of efficiency. An
alternate approach is the use of a highly-efficient, minimal commu-
nication element, with as much communication decision-making as
possible done at compile time. NuMesh is a packaging and inter-
connect technology supporting high-bandwidth systolic communi-
cations on a 3D nearest-neighbor lattice; our goal is to combine
Lego-like modularity with supercomputer performance. To date,
the primary focus of the project has been the class of applications
whose static communication patterns can be precompiled into inde-
pendent and carefully choreographed finite state machines running
on each node. Several extensions of the NuMesh to more general
communication paradigms have been implemented, and the issues
involved are under active exploration.

This paper presents an overview of our approach, as well as an
introduction to our current-generation prototype. We also discuss
our software environment and simulation technology, and enumer-
ate some of the applications and programming models we have
developed to make full use of the capabilities of the NuMesh.

Keywords: systolic array, multiprocessor, interconnect, network,
reconfigurable architectures.

1 Introduction

Over the past two decades, the backplane bus has dominated com-
puter architectures as the mechanism for intermodule communi-
cations. The reasons for this dominance are simple and remain
compelling: a well-designed bus provides a simple, extensible

communications substrate that allows modules performing a va-
riety of computational tasks to be assembled into coherent systems.
It induces a Tinkertoy modularity at the system configuration level,
allowing system designers to construct systems without redesign-
ing every component. However, despite the wide acceptance of
buses, their technical limitations are well known and restrict their
applicability in high-performance systems. Since they serialize all
system-level communications, buses constitute a non-scalablecom-
munication bottleneck. Moreover, the achievable bus bandwidth is
constrainedbothby the electrical length of the bus andby arbitration
and other overheads.

The approach to this problem that we are exploring is a com-
munications substrate that affords both modularity and high-per-
formance communication. Our approach involves standardizing
the mechanical, electrical, and logical interconnect among modules
that are arranged in a three-dimensional mesh whose lowest-level
communications follow largely precompiled systolic patterns. The
attractiveness of this schemederives from the separation of commu-
nication and processing components, and the standardization of the
interface between them. By making the communications hardware
as streamlined and minimal as possible, and requiring the com-
piler to do almost all the work for routing data within the mesh,
we can maintain high-bandwidth, low-latency communications be-
tween the processing nodes distributed throughout the NuMesh.

Dependence oncompile-time decisions regarding routing,dead-
lock avoidance, and resource allocation distinguishes the NuMesh
communication substrate from more general dynamic networks
such as those of Seitz [8, 25] or Dally [7]. One potential advantage
of precompiled communication patterns is hardware simplicity, as-
suming run-time routing decisions can be eliminated altogether or
handled infrequently with little dedicated hardware. More signif-
icant, however, is the amenability of such patterns to very high
bandwidths because of their predictability. Every decision based
on run-time data (such as port availability or message destination)
constrains the minimum time of a flit through a network node.
Elimination of such dependencies enables control circuitry to be



pipelined to arbitrary depth, allowing the data paths of the network
to be switched at their maximal speed. Further, run-time collisions
can be avoided by precompiling message schedules, allowing a
higher level of communications traffic before saturation, as shown
by Shukla and Agrawal [26].

Our goal is to develop hardware modules and supporting soft-
ware that allow high-performance, special-purposemultiprocessors
to be configured for particular applications by simply plugging
together the appropriate NuMesh-based modules. Such modules
replace the individually tuned communication paths of contempo-
rary supercomputers by a regular mesh of replicated near-neighbor
links whose mechanical and electrical characteristics are rigidly
constrained and highly optimized. These constraints allow per-
formance parameters for non-local communications that compete
favorably with those of a specialized interconnect.

The interdependence of communication and computation func-
tions in most modern parallel architectures both limits the evolu-
tion of each technology and discouragescommunication coherence
within heterogeneousnetworks. We view the couplingof communi-
cation substrates with processor hardware to be roughly analogous
to the processor-specific backplane buses that proliferated prior to
the late 1970s, when the conceptual unbundling of communication
from processing resources was evidencedby the emergence and ac-
ceptance of processor-independent buses. The NuMesh is a step in
a similar revolution, providing a generic communication interface
physically and logically separate from the processing elements it
connects. Independent manufacturers could, for example, package
and bond chips directly into an industry-standard preconstructed
NuMesh package.

In the following sections we present our work: Section 2 gives
our idealized system model, and our current prototype is explained
in Section 3. The NuMesh software tools are discussed in Sec-
tion 4, and applications and programming models are discussed in
Section 5. Finally, Section 6 provides an overview of some related
work.

2 System Model

The major thrust of the NuMesh project is to define a highly-
efficient, generalized communication and interconnect substrate
for modules of arbitrarily complex digital systems. Abstractly,
a NuMesh consists of modules, ornodes, that may be connected to-
gether to populate a three-dimensional mesh. For example, Figure 1
shows a simplified view of a small mesh of our current prototype
nodes. This figure depicts each module as a unit whose peripheral
connectors provide signal and power contacts to four immediate
neighbors.

Each node in the mesh constitutes a digital subsystem that com-
municates directly with each of its neighbors through dedicated
signal lines. During each period of the globally-synchronousclock,
one datum may be transferred between each pair of adjacent mod-
ules. Currently, our prototype runs at just over 1.2 Gbits/second per
port; next-generation moduleswill be clockedfaster, and we believe
that our minimal hardware design will make it possible to achieve
extremely high clock rates in future revisions of the hardware.

Although the NuMesh model features a rigid partition of 3-

Figure 1: Simplified View of a Small NuMesh

space into fixed-sized cells, it accommodates a number of varia-
tions within this discipline. A given mesh may be partially popu-
lated; one and two-dimensional configurations are specifically an-
ticipated. Many node types may be deployed within a system,
including nodes whose principal function is to provide power and
cooling conduits while maintaining communication and structural
integrity. Nodesmay also occupyseveral adjacentcells; while inter-
nal communications within such nodes may follow formats foreign
to NuMesh standards, NuMesh conventions are expected at their
external boundaries.

2.1 Modules

An idealized NuMesh module is a roughly rectangular solid with
edge dimension on the order of two inches. A node is logically
partitioned into two parts: alocal processor that implements the
node’s particular functionality, and acommunications finite state
machine (CFSM), replicated in each node, that controls low-level
communications and interface functions. A node’s local processor
may consist of a CPU, I/O interface, memory system, or any of
the other subsystemsout of which traditionally-architected systems
are constructed. A node’s CFSM consists of a finite state machine,
data paths for inter-node communication, and aninternal interface
to the local processor. A typical module is depicted schematically
in Figure 2.

Local Processor

Internal Interface

To
Neighboring
Nodes

CFSM
                To
Neighboring
          Nodes

Figure 2: Abstract NuMesh Node



2.1.1 CFSM Structure

The core of the CFSM control path is a programmable finite state
machine. The transition table, held in RAM, is programmed to
control all aspects of routing data to other nodes and interfacing
with the local processor. A small amount of additional hardware
reduces the required number of states by providing special-purpose
functionality such as looping counters.

The CFSM data path consists of a number of ports connected
through a switching network allowing data from one port to be
routed to another. Most of the ports are for communication to
other CFSMs; however, one port supports CFSM-local processor
transfers and allows the CFSM to move data between the processor
and the mesh. This port may be wider than the network ports, and
provide out-of-band signals in addition to the ordinary data path.
Optimally, any combination of ports may be read or written on
each clock cycle, but this flexibility may be constrained in a given
implementation.

Each CFSM also contains an oscillator to generate the node’s
clock (the local processor has the option of an independent clock),
and circuitry to control the phase of the oscillator. The clocks
can be kept globally synchronized by any of a number of methods
(see Section 3.1). The clock cycle time is constrained by the time
necessary to transfer a data word between adjacent nodes, which
can be made quite short because of the prescribed limited distances
between nodes, the point-to-point nature of the links, and the use of
synchronous communications.

2.1.2 CFSM Programming

The transition table of the CFSM is typically programmed to read
inputs from various neighbors or the local processor into port regis-
ters and send outputs from various port registers to other neighbors
or the local processor on each clock cycle. It may be thought of
as a programmable pipelined switch. We consider a range of pro-
gramming styles that support different communication models in
Section 5.

The CFSMs in a mesh, operating synchronously at the fre-
quency of the communication clock, follow a compiler-generated
preprogrammed, systolic communication pattern. Eventually, we
plan on extending our compiler technology to suggest selection,
function, and mesh positions of the modules themselves. The ag-
gregate CFSM circuitry constitutes a distributed switching network
that is customized for each application; its programmability allows
this customization to be highly optimized.

2.2 Statically Programmed Communication

In applications amenable to rigidly systolic communication pat-
terns, each CFSM follows a periodic sequence of transactions with
its immediate neighbors. For example, for module A to transfer a
word to its neighbor B on cycle ci of each period, A’s CFSM is
programmed to drive its lines to B on that cycle, while B is pro-
grammed to load data from A. By appropriate design of transition
tables, arbitrary systolic communication patterns may be imple-
mented. In some cases, words loaded by a module are destined to
be read by that node’s local processor. In other situations, they are

routed (typically on the next cycle) to a neighboring node without
local processor involvement.

Figure 3: Communications Snapshot

Figure 3 shows a snapshot of communications within a two-
dimensional NuMesh at a typical clock cycle. Heavy arrows depict
local communications that complete during the current cycle; gray
lines represent nonlocal transfers, formed by a sequence of local
communication steps, that complete after some number of cycles.
Although this pattern is static in the sense that it is compile-time
determined, it is dynamic in that entirely different communication
patterns may be used in each clock cycle, limited only by the amount
of state memory available to each CFSM.

Certain algorithms may benefit from flow control, data-depen-
dent CFSM execution, and other synchronization measures in their
underlying communications. These may be superimposed on the
data-independent primitives by software convention, allowing cer-
tain data words to contain control information. Additionally, full–
empty status bits may be provided in each direction at each port
(as is done in our current prototype); this allows a limited range
of communication dynamics by indicating whether a word is avail-
able to be read or written during that cycle. The possible range of
programming models can be seen as a continuum from fully static
to fully dynamic; flow-control information allows us to use a more
general regular-expression model to control the CFSM state.

2.3 Dynamic Communication

It is widely believed that efficient support for general models of
computation (as opposed to the restricted class of systolic algo-
rithms) requires the ability to route traffic dynamically. While we
view the extent of this requirement to be an open research question,1

we accept the value of some provision for dynamic routing if the
NuMesh is to support general computation. However, we approach
this need with a high-level bias toward replacing hardware func-
tionality with compile-time analysis whenever possible.

Rather than a fully general dynamic routing mechanism capa-
ble of directing each communication to an arbitrary destination, we

1Intuitive counterarguments include the observation that printed circuit traces,
point-to-point wiring, and backplane buses all represent rigidly static communication
substrates that are commonly used to support general models of computation.



optimize for a communication mix in which destinations are largely
compile-time predictable and whose unpredictable aspects (requir-
ing run-time routing decisions) have low branching factors or occur
infrequently. Our goal for the NuMesh communication architec-
ture is to augment the static communication substrate with simple
data-dependent branching that allows certain routing decisions to
be based on run-time data. This will allow us to optimize applica-
tions with limited dynamic communications for the common case
of packets whose path can be predicted at compile-time, using extra
mechanism for dynamic routing only when necessary. A CFSM
can be programmed, for example, to expect the header word for
a dynamically-routed message to appear at its North port during
clock number ci; its value dictates the output port for the message,
the body of which appears on subsequent clocks.

Interesting approaches to the support of such limited commu-
nication dynamics (1) compromise neither the simplicity nor the
efficiency of static communications, (2) assume the number of bits
of run-time decision per node to be small, and (3) avoid taking a po-
sition on issues that constitute controversial policy. Our approach
is to resolve the majority of communication decisions—such as
routing, arbitration, and deadlock avoidance—at compile time, and
provide minimal run-time hooks to support those few cases that
remain. Dynamic routing support will be provided off the critical
path and only accessed explicitly by the CFSM, so that there is no
slowdown for the static routing case.

Integrating dynamic routing and static routing is a difficult issue
that is being studied actively by the group. A naı̈ve way to combine
the two is to allocate dynamic routing phases that are a fixed number
of cycles in length, for which we can guarantee that packets injected
at the beginning of the phase will reach their destination by the end.
Such phases can then be intermixed as necessary with static rout-
ing. One way to implement such general dynamic communications
is to have the local processor parse a header word associated with
a message, returning to the CFSM the desired output port for the
message (and optionally a new header word). The returned values
would then be cached within the CFSM itself, allowing future mes-
sages with the same header to be routed without the intervention of
the local processor. This would allow arbitrarily powerful dynamic
routing models, particularly since the header words need only be
recognizable by CFSMs along its path, not by every CFSM in the
mesh.

Mixing static and dynamic routing in the same cycle is a harder
problem. A simple initial solution is for the compiler to pre-allocate
static timeslots per-link in which dynamic routing can occur. This
has the obvious disadvantage of wasted bandwidth on slots that are
idle on a given cycle, but more sophisticated compiler technology
may be able to reclaim that bandwidth, at least partially. One
simple method of producing such data-dependent routing is to pass
a CFSM state pointer in the data stream, which the CFSM will be
programmed to expect, and which it will use to vector to a new
state that handles routing the following message. Thus a message
destined for one of two possible destinations might be routed purely
statically up to the node where the paths to the destinations diverge;
that node would then examine the header word to determine which
way to send the message.

2.4 Topology Considerations

Although a six-neighbor Cartesian mesh is intuitively appealing,
other topologies may provide equivalent performance at lower cost.
In the interest of post-manufacture scalability we restrict our atten-
tion to regular communication meshes whose per-node hardware
requirements (i.e., number of ports) are constant. One particularly
interesting topology is the four-neighbor diamond lattice. Figure 1
showed a partially populated three-dimensional mesh whose con-
nectivity is isomorphic to the structure of the diamond lattice.

The diamond interconnect has a number of useful properties,
including low switch complexity, good latency and throughput per-
formance, isotropy, and excellent mechanical and thermal proper-
ties. The number of links crossing the bisection of the diamond is
less than for the equivalent Cartesian mesh; however, if we assume
that nodes are pin-limited, the bisection bandwidth of the diamond
is as good or better than the Cartesian mesh as a result of the 50%
wider links made possible by the reduced number of ports. Further
details on the diamond interconnect will be available shortly [24].

3 Prototype NuMesh

Early NuMesh prototypes with conservative performance param-
eters have been constructed using off-the-shelf TTL and CMOS
chips. They plug together in a two-dimensional four-neighbor
Cartesian mesh using standard 96-pin DIN connectors, or, with
different placement of the connectors, in a three-dimensional four-
neighbor diamond lattice. The nodes feature either 40 MHz SPARC
processing elements or 40 MHz DSPs (Texas Instruments TMS320-
C30). These prototypes are designed as an early exploration of the
NuMesh communication scheme and as a development platform
for prototype software. Their internal architecture compromises
the goals described earlier (see Section 2.1.1) in a variety of ways;
many of these compromises are lifted in next-generation prototypes
currently under development.

East Port

North Port

West Port

South Port

FIFO

FIFO

Local
Processor

NS transceiver

X transceiver

EW transceiver

Figure 4: Prototype CFSM data paths



3.1 CFSM Architecture

Data paths for the prototype CFSMs consist of bidirectional reg-
istered transceivers that serve to isolate local buses of adjacent
nodes [20]. The CFSM at each node contains North-South and
East-West bus segments as shown in Figure 4, the two segments
being linked by an interbus transceiver (called the X transceiver).
Each node has a transceiver at the North and East ends of its respec-
tive bus segments; the opposite end of each segment connects to a
similar transceiver of an adjacent node. Transitions between CFSM
states are labeled with control bits that specify the actions taken by
the components that make up the CFSM. The current state pointer
(effectively the instruction pointer) may itself be loaded from a dedi-
cated register on the East-West bus; additionally, the node can drive
its state, augmented with its node ID and with a user-specifiable
constant value, onto the North-South bus. The connection between
data paths and CFSM state provides means for limited dynamic
routing, as discussed in Section 2.3.

The CFSM data paths aggregate as shown in Figure5, which
depicts a 5-by-3 configuration. The asymmetric placement of
transceivers with respect to node boundaries allows data paths of
adjacent CFSMs to be separated by a single registered transceiver
and hence a single clock delay. 2 Data propagates along either or-
thogonal axis at a maximum rate of one node per CFSM clock cycle.
A change in direction, e.g. routing a datum from the North port of
a node to its East port, suffers an additional 1-clock latency due to
the delay through the X transceiver.

Communication between a prototype CFSM and its local pro-
cessor is through a pair of asynchronous FIFOs arranged so that
CFSM-to-local processor data is sent from the North-South bus,
and local processor-to-CFSM data is received onto the East-West
bus. The attraction of FIFOs stems primarily from their inherent
synchronization barrier, which allows the CFSMs and their node-
specific logic to be clocked at independent frequencies. The current
prototypes use processors clocked at 40 MHz and CFSMs clocked
at 38 MHz. The FIFOs also make possible some simplifications in
the compiler, since, for example, data does not have to be consumed
on the exact cycle it is produced.

A scalable clock-synchronization technique, using only local
communication between nodes, is used in the current prototypes.
This synchronization technique has been proven to work for net-
work connected as two-dimensional grids; extensive simulation has
verified this result and suggests its effectiveness for grids of higher
dimensions. For more information, see [23].

3.2 Host Interface and Bootstrap

A prototype NuMesh can connect either to a SPARCstation, via
an SBus card connected to a prototype node’s FIFO, or to a Mac-
intosh, via a DMA NuBus card connected to a node’s NuMesh
port. The two interfaces support bidirectional transfers at back-
plane bus speeds—considerably slower than NuMesh communi-
cation bandwidths—and allow diagnosis, program loading, and
application-dependent communication between the NuMesh and
host.

2This may be thought of as a pipelined version of the data paths in the Gated
Connection Network by Li and Stout as described in [18].

Host Interface

Typical Node

Audio I/O

Figure 6: Typical Prototype NuMesh Configuration.

The CFSMs are designed to allow the communication substrate
to be loaded and tested independently of the local processor. A mesh
is initialized via a global reset, forcing each CFSM into an initial
state from which it interprets incoming data from any direction as
a new state transition table to be loaded. The host may explore
the connected configuration by loading each successive node with
CFSM code that probes its neighbors and provides a bridge connec-
tion to each responding neighbor. As a side effect of the exploration
process, the host organizes the nodes into a spanning tree that gov-
erns the loading order for local processors. While it is possible
to reconfigure CFSM static routing tables at run-time, applications
that use this feature are still under development.

The preliminary NuMesh software interface allows the NuMesh
to be used, largely transparently, as a backend processor for work-
station application code. The user may naı̈vely launch what appears
to be a conventional application, invoking an interface program that
(1) reads a configuration file associated with the selected appli-
cation, (2) explores the NuMesh hardware to determine whether
the actual configuration is adequate to support the application, (3)
loads each CFSM and local processor with code as specified in
the configuration file, and (4) invokes a workstation program that
communicates with both the NuMesh and the user to provide the
illusion of a workstation-resident application.

4 Software Tools

The rapid prototyping and efficient deployment of ad-hoc multi-
processors depends on automating the design task: design of the
network topology, allocation of computational tasks to processors,
specification of timing and connectivity details for each module,and
programming the local processor. While the first several steps are
the most challenging, they are amenable to partial solutions—ones
that involve interaction with the designer, and benefit enormously
from our initial restriction to static algorithms with time- and space-
bounded components.

Code generation requires an accurate, detailed model of local
processor timing, optimally including processor cache latencies.
However, hardware interface provisions (e.g., locally shared mem-
ory with read/write synchronization flags) provide some timing
latitude in processor-CFSM synchronization. Placement and rout-
ing aspects of system design—mapping a graph of time-bounded
computations to a mesh of processors—can benefit from progress
in adjacent domains of algorithm research.

Much of the thrust of the NuMesh project thus centers on com-
piler technology. Our goals include the fully automatic generation
of NuMesh implementations of application-specific high-level pro-



Figure 5: Aggregate prototype data paths, with one node highlighted.

gramming models that can be specified as real-time tasks; candi-
dates include LaRCS [19], Gabriel [5, 17], and CONSORT [27].
For many static NuMesh applications, block diagrams, which are
essentially hierarchical communication graphs, are an appropriate
model; by augmenting diagrams with latency constraints the com-
piler can be made aware of hard real-time performance criteria that
must be met by the resulting NuMesh implementation.

4.1 The NuMesh Simulator

Our general-purpose FSM-based routing simulator uses a simple
register-transfer language to describe the routing actions taken in
each state, and either a simple generic assembly code or compiled
C code to describe the local processor programming. If compiled C
code is used, it is linked with the simulator binary; this allows much
faster execution for compute-bound simulations, but requires some
user effort to specify delays explicitly in the time-critical sections
of the code so the simulator can produce realistic results. We are
currently working on adding a cycle-by-cycle SPARC simulator to
the existing CFSM simulator so as to be able to generate precise
simulations for our SPARC nodes.

The simulator environment allows us to experiment with differ-
ent topologies, ranging from the basic Cartesian 2D and 3D meshes,
to the diamond lattice configurations described in Section 2.4, to
other experimental topologies. Using the simulator also allows ex-
perimentation with different CFSM architectures: for example, we
can compare the code generated under the assumption that a full
permutation of input data to output ports can be performed every
cycle, as opposed to the current hardware where two internal buses
drive the output ports. It can also be convenient to simulate much
larger networks than we can currently build: for example, a multi-

grid [21] computation was tested on the simulator for sizes of over
16,000 nodes with 2,000 states in each CFSM; the processing code
was written both in C and in generic assembler, and the CFSM code
was generated by a dedicated “multigrid routing compiler.”

The simulator has also proven useful when writing complex
parallel code. When running native C code, the user’s program,
linked with the simulator, can be run under dbx or any other native
debugger. The user can alternate between setting breakpoints or
performing other C-language debugging actions and checking node
states or watching data movement at the simulator’s interactive
debugging prompt. Furthermore, extensive task trace information
is available from the simulator. For example, we can derive a
parallelism profile showing when processors are active and when
they are blocked waiting for I/O; Figure 7 shows one run of the
multigrid code. As can be seen, the amount of parallel execution
drops significantly during the coarser relaxation steps when fewer
tasks are available to the nodes.

The simulator has been carefully written to maximize its speed;
on a SPARCstation 2, for example, the multigrid application runs
at about 53 kHz per simulated processor (in units of routing cy-
cles). The simulator itself has also been parallelized for two sep-
arate environments. On an eight-processor Encore Multimax the
same multigrid application runs at around 73 kHz per simulated
processor. Additionally, System V compatible multiprocessors can
take advantage of an implementation using semaphores and shared
memory.
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Figure 7: Multigrid parallelism profile

5 Applications

In order to develop insights into the static communication methodol-
ogy, we have implemented applications using several programming
models. These range from a rigid C-language interface for programs
with purely static communication patterns to task-schedulingmech-
anisms that accommodateapplications with more dynamic features.
We present several different points along this spectrum.

5.1 Fully Static Routing

The most primitive programming model relies on a purely static,
systolic communication scheme that uses no control-flow infor-
mation. The complex scheduling issues that arise from such an
approach demand either very dedicated programmers or a complete
scheduling compiler such as that sketched by Lam [16]. One of our
example programs uses a purely static communication scheme in
implementing the multigrid algorithm for solving partial differential
equations.

In the static multigrid implementation, the communication over-
head is relatively low since, when possible, data is routed from
source processors to their destinations before it is requested. Addi-
tionally, static NuMesh routing is very fast: to cross an 8-by-8 grid
made up of our relatively slow prototype nodes takes less than 0.5
�s from source processor write to destination processorread. For all
data to be routed purely statically, the code execution time must be
derived by examining loop timings, and the FIFO transit time must
be known precisely as well. The CFSMs can then route data exactly
when it is predicted to be ready from the local processors—no time
is spent waiting for flow-control information.

5.2 Flow-Controlled Static Routing

The next most dynamic model relaxes the purely static approach to
allow utilization of flow-control information. In our current pro-
totype, this model imposes a factor of two slowdown over fully
static routing, since the full/empty bits are only available on the
cycle following data being produced or consumed. A constrained
C-language compilation environment has been developed to sup-
port a static message-passing communication paradigm. The pro-
grams written in this environment exhibit a cyclic control pattern
and statically-determinable communication patterns. A scheduler
generates the appropriate CFSM code from a profile of these pat-
terns while local processor machine code is produced by a vendor-
supplied C compiler. From the programmer’s viewpoint, nodes run
individual C programs interconnected by static streams. As a result,
this scheme provides for very natural code organization and transla-
tion for certain applications. Early experiments include audio filters
implemented as periodic computation modules interconnected to
perform various transformations such as spectrogram display, pitch
scaling, and auditory model computation, all of which are capable
of using sampled audio data as inputs in addition to real-time data
streams.

A similar approach is used to implement real-time video fil-
ters. These represent a set of applications with sufficiently high
bandwidth requirements that they cannot be supported with most
contemporary general-purpose architectures and thus illustrate the
advantage of a low-overhead static communication scheme. Even
with real-time video constraints dictating a sustained communica-
tion bandwidth of over 8 MWord/sec, a prototype 10-node/8-DSP
configuration manages this data rate while executing such filters as
vertical stripe permutation, posterization and edge-detection.

Real-time speech recognition is the goal of another large-scale
NuMesh application, developed in concert with the MIT Labo-
ratory for Computer Science’s Spoken Language Systems (SLS)
group [28]. We have implemented a pipelined NuMesh version of
the Viterbi search used to perform lexical access [9]. The parallel
decomposition of the Viterbi algorithm for the NuMesh partitions
and distributes the lexical network to the processors, each of which
is then able to perform Viterbi searching for its own part of the lex-
ical network. Communication between the processors occurs in the
logical pattern of a binary tree, with data being efficiently merged
and broadcast by the NuMesh.

Our implementation achieves a near-linear speedup on the num-
ber of prototype nodes that have currently been built. For large
dictionaries, nodes with convenient access to large memories are
preferred, such as our SPARC nodes with 8 MB of cached dynamic
memory. However, the other phases of the speech recognition
system (spectral analysis, acoustic segmentation and phonetic clas-
sification) are best performed on DSPs. The ability to support
such heterogeneity is a natural consequence of the definition of the
NuMesh as purely a network substrate with a well-defined interface
to the processing elements.

For vocabularies in the hundreds of words, a NuMesh network
of less than a dozen nodes has currently achieved real-time lexical
access for the speech recognition system. The SLS group typically
runs their system on a SPARCstation 4/490 with an attached DSP
card; a configuration which does not provide full real-time speech



recognition. We are in the process of evaluating the performance
of an implementation of the entire SLS system from microphone
to recognized phrases for the NuMesh, using appropriate processor
types to implement the different phases of the speech recognition
model.

Branch-and-bound techniques to solve search problems such
as traveling salesman (TSP) are also prime candidates for flow-
controlled static routing. In our implementation, we split a given
TSP into an enumerable set of subproblems that can be indepen-
dently solved. The strategy is to distribute these subproblems as
tasks to the individual processors in a NuMesh, collecting and merg-
ing results until a definitive answer is computed. Primary commu-
nication requirements are subtask allocation among processors and
distribution of the current best bound.

One approach forms a Hamiltonian path of active processors
through which a monotonic current subtask number and best bound
are continually forwarded via flow-controlled static routing. By
embedding the dynamic communication paths in static streams of
relatively high capacity, we are able to achieve good scaling perfor-
mance over the modest-sized NuMesh configurations that have been
constructed. A single-processor SPARCstation 2 implementation
takes just over 145 seconds to run a given 14-city tour; the same
tour on a single NuMesh TMS320C30 node runs in 157 seconds,
and scales virtually linearly to about 14.5 seconds on the 12-node
mesh. Although this approach does efficiently provide a correct
solution, its reliance on a precomputed message route implies that
if any processor or CFSM fails, the computation is unable to com-
plete. Furthermore, discovering the best Hamiltonian path among
the active processors requires solving a TSP to begin with—a com-
putationally intensive precompilation step.

5.3 Di�usion Scheduling

An alternative model uses a task allocation mechanism that avoids
these flaws by reallocation of subtasks between adjacent nodes
based on relative sizes of task queues at each node. In an initial
configuration, the entire collection of subtasks is assigned to one
densely loaded node. As the computation progresses subtasks dif-
fuse towards less dense nodes and the system tends to a steady state
in which subtasksare evenly distributed among all processors. Each
processor periodically sends a fixed number of messages, one to
each of its physical neighbors. By controlling the contents of these
messages, the processor can send individual messages to particular
neighbors. This diffusion scheduling [11] approach eliminates the
need for any precomputed communication paths.

Tolerance to processor, router, and link failures is achieved via
redundancy of subtask allocation. Each node keeps a record of
all subtasks it has diffused away, although at a lower priority than
non-diffused subtasks. In the case of perfect hardware operation, no
redundant computation is performed. When nodes do fail, the lower
priority subtasks are eventually executed and the correct answer is
reached, albeit with an increase in total running time. In fact, we
have demonstrated on our prototype that removing a node from the
mesh during execution does not affect the computation beyond an
incremental slowdown.

5.4 Dynamic Routing

The most flexible routing method is the dynamic routing technique
discussed in Section 2.3. The static multigrid simulation mentioned
in Section 5.1 was re-implemented using dynamic routing with
CFSM caching to provide a simple comparison. The simulated FSM
code is reduced to one state (ROUTE and loop), and the processor
is given the responsibility of forming explicit packets with a header
word and (in this case) one data word. For a 9-by-9 multigrid run
the dynamic routing simulation required two to four times as many
cycles as the static version (depending on the assumed cache miss
time), but required a maximum cache size of only 17 header words
to hold all cached routes in the mesh. As the network size grows
and cache requirements increase, the overhead will increase due to
cache replacement.

Primitive exploration of such dynamic routing approachesusing
current prototype hardware involves some combination of processor
interaction and dynamic reprogramming of the CFSMs. This ap-
proach was followed in the implementation of the diffusion schedul-
ing described above.

6 Perspective

The systems approach described here deliberately reflects, and bor-
rows heavily from, several trends increasingly evidenced in archi-
tectural research as well as commercially available computers.

Many contemporary multiprocessors rely primarily upon run
time decision-making for routing general communication traffic [2,
7, 8, 10, 25], whereas systolic architectures [14, 15] and systems
such as the Supercomputer Toolkit [1], use compile-time approaches
to communication scheduling that offer potential cost/performance
advantages in applications where communication patterns are large-
ly predictable and macroscopically static. The NuMesh shares
the bias of these latter systems toward compile-time resolution of
communication choreography, but uses a homogeneous substrate
of communication support to provide a simpler physical model
for spatially-aware compilers as well as the potential for post-
manufacture scalability.

Generalized communications support has been integrated with
processors in a variety of research and commercial projects, includ-
ing iWarp [6], the Transputer [13], and the GDP [3]; such provisions
are beginning to appear in contemporary DSPs, such as the Texas
Instruments TMS320C40. In the early 1980’s, the Warp project [4]
introduced the idea of a reconfigurable systolic communication
framework that, like NuMesh, uses routing information obtained
at compile-time to develop a communication pattern maximizing
computational efficiency. Subsequently, iWarp [22], an enhanced
version of Warp, provided improved compile-time capabilities and
support for message-based communication using dynamic routing.
It was found that although systolic communication was appropriate
for many forms of scientific or business computing, some dynamic
routing capabilities were needed to support general-purpose com-
puting.

Current Transputer systems from Inmos [12] share NuMesh fea-
tures such as run-time reconfigurability and high level programma-
bility. The Transputer uses relatively slow asynchronous com-



munication links, and is targeted primarily at embedded control
applications.

An extreme of reconfigurability in a processor mesh is reached
by the novel Geometry-Defining Processor (GDP) [3], whose pro-
cessors communicate with neighbors using bit-serial optical links,
also at modest speeds. The resulting flexibility supports an approach
to the analysis of physical structures using processor configurations
isomorphic to the emulated object. A typical GDP structure is used
as an attached processor whose host provides a compilation, pre-
and post-processing environment.

7 Conclusion

A major attraction of the NuMesh approach is its early promise of
high performance in the restricted but important class of applications
whose communication structures are amenable to compile-time
analysis. Initial work in such domains as speech, image process-
ing, finite element analysis, and similar static, compute-intensive
applications uses NuMesh for the prototyping of high-performance
application-specific multiprocessor systems.

The NuMesh represents an abstraction for the specification of
digital systems that relies on reprogrammable, minimal hardware
rather than on hard-coding current architectural theories in hard-
ware. Thus, we can implement these theories in software, taking
advantage of technological and architectural enhancements by pro-
viding a highly reconfigurable base.

More ambitious goals of the project address generalized mod-
els of computation, exploring the boundary between run-time and
compile-time decision mechanism. Reconciliation of dynamic
communication patterns with this approach involves exploration
of new ground, and consequently higher technical risk. While
we are optimistic that incremental compilation technologies com-
bined with minimal hardware support for critical run-time routing
decisions will yield attractive engineering alternatives to current
practice, the most challenging of these goals must be viewed as
addressing open research questions.
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