
ECE669: Parallel Computer Architecture
Fall 2004 Handout #4

Homework # 4 Due: Novemeber 3

Scalability and Interconnection Networks

Ex 1: Scalability

Q 1: Using the definition of scalability presented in class, compute the scalability of 1-D,
2-D, 3-D, and hypercube networks for the relaxation phase of a 3-D Jacobi relaxation
algorithm. As discussed in class, assume that a word of data can be transferred between
adjacent nodes of the network in one cycle. Assume that there are no bandwidth con-
straints.

Ex 2: Interconnection Networks

In this exercise we will study interconnection networks. The study of interconnection
networks is important because the overall performance of a multiprocessor is often critically
hinged on the effectiveness of its network. Appendix C will lead you through the mechanics
of running network simulations.

For your first experiment, you will verify the accuracy of the analytical network model
discussed in class.

Q 2: Run a simulation with 64 processors interconnected in a 2 dimensional mesh using a
request rate of 0.04 (messages per second) and a message size of 4 (flits). Run the simula-
tions with 2000 packets. The simulation yields the effective network channel utilization ρ
and the effective message latency T . When certain simulation parameters are not specified
in the problem set, use the default values from Appendix C.

You will now compare these values with the corresponding numbers obtained through an
analytical network model. Since the simulation you just completed does not incorporate
feedback from the network (that is, it does not modify the input request rate depending
on the network latency), you should use the network model in Appendix A to compute the
network latency. Note that, like the simulator, the model assumes unidirectional channels.
(The simulator can handle other situations as well, but you will not need these for your
homework.)

The next experiment is designed to give you a feel for the shape of network latency curves.

Q 3: Obtain the network utilization and message latency through simulations for a 2
dimensional 64 processor network for the following request rates and message sizes.

• Request rates vary from 0.01 to 0.06 in increments of 0.01.

• Message sizes vary from 2 to 10 in increments of 2.

1

You will find the foreach feature of Unix csh very helpful for running these simulations.
Here is an example of its use:

Unix Prompt> foreach i (1 2 3)
? echo $i
? end
1
2
3
Unix Prompt> foreach i (1 2)
? foreach j (this-one that-one)
? echo $i $j
? end
? end
1 this-one
1 that-one
2 this-one
2 that-one

Note that foreach statements may be nested. Use the man page for more information.

Plot latency versus request rate curves to get a better feel for the numbers. Compare
with the predictions of the model (assuming no feedback from the network). Which of
the above combinations of request rates and message sizes are valid given the maximum
allowable channel utilization of 1?

How do you interpret the results from the network simulations when the maximum allow-
able channel utilization is exceeded in the model? Or, how do you expect the network
simulator deals with offered request rates that exceed the maximum achievable limit.
(Hint: think of what will happen at the input queues into the network.)

Q 4: If you are allowed to choose between doubling your message size and doubling your
request rate, given a current request rate of 0.02 and a message size of 4, which would you
prefer? Use the network performance table that you just computed in determining the
answer to this question.

Are there any other considerations that might influence the above choice?

Q 5: Consider a 1-dimensional network with end-around connections (that is, a ring). Let
the channels be unidirectional. Let there be k nodes in this network. If messages from a
given node are sent with equal probability to any other node (including itself), derive the
average number of hops traveled by a message.

Direct networks have the advantage of locality. That is, a message traveling between
physically adjacent nodes uses less network bandwidth and suffers lower latency than
a message that must travel between nodes separated by a larger distance. Let us now
investigate how the exploitation of locality translates to improved performance in mesh

2

networks.

In our simulator the locality parameter adjusts the number of processors that can com-
municate with each other. For example, a locality parameter of 0.5 simulates a workload
in which each processor sends messages only to a subcube consisting of half the total
number of processors in the machine. This subcube has a corner at the source node, and
destination processors for each message are chosen randomly from among this subset of
processors.

For example, let us consider an N -processor torus in which nodes are represented by their
x and y coordinates. Given a locality fraction l, destination nodes for messages originating
from source node (i, j) are randomly chosen from the set of nodes with coordinates (x| i ≤
x ≤ i +

√
lN − 1, y| j ≤ y ≤ j +

√
lN − 1).

Q 6: Measure network latency for the locality parameter varying from 0.2 through 1.0 in
increments of 0.2. Use a request rate of 0.001 and message size 4 for your simulations.

Next, measure network latency with the same range in the locality parameter, but with a
much higher request rate of 0.04.

You will notice that the effect of communication locality is more pronounced at the higher
load. Can you come up with some insight explaining this behavior?

Q 7: How might you modify the analytical model for k-ary n-cubes to account for commu-
nication locality? Hint: the distance in a dimension parameter kd is related to the locality
parameter l.

The next experiment involves making a set of tradeoffs that commonly arise when designing
networks for real systems.

Q 8: Design a k-ary n-cube interconnection network with the highest performance (lowest
latency) given the following constraint: each network node must fit on a chip with a
maximum of 64 pins allocated to the wires between nodes. Neglect the wires between the
network chip and the processor. You are free to use either the simulator or the model in
this analysis. (Ignore issues of wire length.)

Note that the simulator does not simulate past four dimensional networks, so you might
consider using the model for this part, or argue that simulating past four is unnecessary.
Also note that when the simulator cannot determine an integer dimension value from the
specified values of N and k, it increases N so that an integer value for the dimension can
be found.

An example chip might look as follows:

3

Switch

16

16

16 16

Assume the following workload parameters:

• The number of processors N is 64.

• The request rate m is 0.04.

• The message size is 160 bits. (Note that the message length used by the simulator
is specified in flits. For example, for 160-bit messages, B = 10 when the channel
widths are chosen to be 16 as in the above figure.

• The locality parameter l is 0.5.

Q 9: In this exercise you will study network performance when the processor cannot
support unlimited outstanding requests. Appendix B presents a network model in which
the processor is allowed a single outstanding request.

The network latency using the model with feedback and the model without feedback are
plotted in the following figure.

 Without feedback
 With feedback

|
0

|
20

|
40

|
60

|
80

|
100

|0

|20

|40

|60

|80

|100

|120

|140

|160

 k

 L
at

en
cy

The curve for the model appears largely linear as k increases when the request rate is
controlled by network feedback. Using the model, show that when the network becomes

4

very large, (k >> 1), network latency is linearly related to kd. How does processor
utilization relate to kd?

A Modeling the Performance of k-ary n-cube Interconnec-
tion Networks

The network latency can be derived by plugging the network request and message size
into the following network model (more details in class). The model shown here assumes
unidirectional channels.

We will use the following notation:

T network latency
m message rate
B message size
ρ network channel utilization
k network radix
kd distance traveled in a dimension (k−1

2)
n network dimension
M memory latency (assume M = 0)
N number of processors
U processor utilization

For a k-ary n-cube the network latency can be derived as shown below. (Assume M = 0
in all your computations.)

Channel Utilization ρ = mBkd

Network latency T ≈
[
1 +

ρB

(1 − ρ)
(kd − 1)

k2
d

(
1 +

1
n

)]
nkd + M + B

The above expression is fairly accurate for values of kd > 2. For smaller values of kd, the
following expression is more accurate.

Network latency T ≈
[
1 +

ρB

(1 − ρ)
(kd − 1

2)
(kd + 1

2)2

(
1 +

1
n

)]
nkd + M + B

B Computing Processor Utilization

The network latency computation in Appendix A assumed that the processor issued re-
quests at the rate m, irrespective of network latency. This model is valid when the proces-
sor can do other computation while waiting for the network to satisfy a request. For such

5

processor architectures, the processor utilization is usually close to one, that is U = 1.
The processor utilization can be thought of as the probability the processor is doing useful
work in any given cycle. Clearly, 0 ≤ U ≤ 1.

Alternatively, a processor can wait for the completion of a request before proceeding.
When a processor does not allow computation while a network request is outstanding, we
must compute processor utilization and network latency slightly differently.

Essentially, because the processor cannot issue requests while it is waiting for the network,
the probability of a request on a given cycle (or request rate) is reduced. Note that m
is the probability of a network request only during a cycle that the processor is busy.
Consequently, the effective request rate into the network must be reduced by the fraction
of processor idle time. The set of equations computing processor utilization can now be
corrected as follows to reflect the modified request rate of mU :

Channel Utilization ρ = UmBkd

Network latency T =

[
1 +

ρB

(1 − ρ)
(kd − 1)

k2
d

(
1 +

1
n

)]
nkd + M + B

Processor utilization U =
1

1 + mT

However, we now have a problem. There is a cyclic dependency in the set of equations
above. Such a set of equations arise in feedback systems. Notice that the network exerts
backpressure on the processor causing it to reduce its effective request rate.

The above system of equations with the two unknowns, T and U , can be solved in various
ways. For example, standard iterative numerical techniques can be used to solve the
above set of equations. These methods essentially assume some initial value for U and
compute ρ, then compute T , and then the resulting U . The resulting U is fed back and
the computation continued in a similar fashion till there is no appreciable change in the
value of U from iteration to iteration. This value of U is called the fixed point of the set
of equations.

The above set of equations is simple enough that we can solve it directly. We first substitute
for U (using U = 1

1+mT) in the equation for ρ. We then substitute this expression for ρ in
the equation for T , which results in one equation with only one unknown T . We can then
knead the above equation into the form of a standard quadratic, and solve for its roots,
which gives us T . Finally, substitute in U = 1

1+mT to obtain the value of U .

The above set of equations yield the following effective network latency:

T =
T0

2
+

Bkd

4
− 1

2m
+

1
2

√(
T0 − Bkd

2
+

1
m

)2

+ 2B2(kd − 1)(n + 1)

where T0 = nkd + M + B is the unloaded network latency. The corresponding utilization
is computed as:

6

Processor utilization U =
1

1 + mT

C Using the Network Simulator

The network simulator is called netwrap. It can simulate various k-ary n-cube networks.
Its current configuration limits the dimension n to a maximum of 4. The simulator accepts
the network parameters such as radix k, number of processors N (the number of dimensions
n is calculated using n = logkN), and workload parameters such as message rate, message
size, and locality. It outputs network statistics such as network channel utilization and
average latency. The network simulator assumes infinite buffering at the switching nodes.
It assumes unidirectional channels, and the network edges are connected to form a torus.
For example, a network switch in a 2-D torus would look like:

Switch� �

�

�

�
�

���

�
�

��

�

To Proc

The corresponding network might look like:

7

The simulator is run as follows. The arguments and their typical values are described in
the following table. Statistics such as network channel utilization and average latency are
sent to standard output.

prompt% netwrap procs pkts steps req-rt msg-size rad-k det-file loc > stat-file

argument description typical value
procs number of processors 64
pkts TOTAL number of packets to simulate 1000
steps number of time steps to simulate 9999999
req-rt message probability from a node 0.05
msg-size average message size 6
rad-k network radix k 8
det-file file for detailed statistics /dev/null
loc locality parameter 1.0

(fraction of procs communicated with)
stat-file statistics file netwrap.out

The simulator performs a cycle-by-cycle simulation of the network till the specified number
of packers are generated. Each cycle every node generates a packet with probability req-rt
of constant size (equal to msg-size). The message destinations are randomly chosen from
among all the nodes in the machine. However, when the locality parameter loc is less
than one, the simulator generates a randomly chosen destination from among a smaller
subcube of nodes centered at the source node. The number of processors in this subcube
is smaller than the total number of processors by the fraction loc.

To fire up a simulation with the typical arguments shown in the above table (corresponding
to a 2 dimensional torus with 64 processors) type:

prompt% netwrap 64 1000 9999999 0.05 6 8 /dev/null 1.0 > netwrap.out

8

