
ECE669: Parallel Computer Architecture
Fall 2004 Handout #3

Homework # 3 Due: October 20

Computational Models, Balance, Cost-Effectiveness

Ex 1: Physical Transparency

As defined in class, physical transparency is the property of an architecture that allows
machines of different sizes to be built simply by replicating the same basic node. Physical
transparency also requires that if an application with some problem size runs on a machine
with a given number of nodes, then the same application with the same problem size must
also run on a machine with the same architecture, but with any other number of nodes.
Bear in mind that physical transparency does not force any sort of performance guarantee.

Suppose that a N point Jacobi relaxation runs on a 1000-processor machine. If you are
designing a machine to support physical transparency, what issues must you consider.
Consider, for example, supporting the ability to run the same application with the same
problem size on the machine with a single processing node. You may assume that you
have a disk large enough to hold the entire problem.

Ex 2: Balance in Parallel Computer Architecture

A parallel computer is said to be balanced for a given algorithm with a problem of a given
size if its processing, communication, and memory resources are each utilized to their
fullest, without suffering any idle time (or unused space in the memory). (Notice this
definition is slightly different from the one used by Kung.)

The notion of a balanced architecture is useful because it allows us to assess the efficiency
of an architecture. In other words, if a resource r is not utilized to its fullest, then the
architect is better off apportioning some of the money (and design effort) spent on r to
some other resource, thereby achieving additional performance.

The notion of balance is useful in choosing the grain size of a node in a parallel computer.
At the present time, a crisp definition of the grain size of a node does not exist, and
architects are prone to using indiscriminately terms such as fine grain, medium grain, or
coarse grain. There is, however, the vague notion that machines that require “lots” of
memory per node are coarse grain, while those that require “little” memory per node are
fine grain.

Let us take a stab at defining precisely the notion of grain size. First, let us characterize
a node using three parameters: (c, m, p), where p is the processing power of the node
in terms of the number of operations the processor can accomplish in a second, c is the
number of words of data it can accept or send per second, and m is the number of words
of memory per node (see Figure 1).

Note that, for now, we are ignoring physical constraints on how the words are com-

1

Memory

Proc

Comm

c

m

p

words/sec

words

operations/sec

Figure 1: Characterization of a node in terms of its communication, processing, and
memory.

municated with other nodes; just that, in any second, c words can be exchanged with
“other” nodes. Furthermore, we assume that the memory system of the node is designed
with enough bandwidth such that each “operation” by the processor can read up to two
operands from memory and write one operand back into memory, and that the communi-
cation system can add or remove words from memory at the peak transfer rate c.

Practically speaking, clever design methods can achieve the above bandwidth requirements
on the memory system by building memory hierarchies consisting of registers and caches for
the processor, and buffers for the communication channels. Alternatively, if a processor
needs to load two registers from memory and store a register’s contents to memory to
accomplish the above “operation,” then each operation can actually take four processor
cycles.

As defined earlier, a node is balanced for a given algorithm and a given problem size if
the processing, communication, and memory requirements of the algorithm are exactly
matched by the corresponding node parameters (c, m, p).

Based on the above definition of balance, we can come up with a crisp notion of the
relative grain sizes of various nodes. Intuitively, a node that requires a larger problem size
to achieve balance will have a relatively coarser grain than a node that can achieve balance
with a smaller problem size. Put another way, a node that requires more memory for the
same processing power has a coarser grain than a node that needs a smaller amount of
memory for the same processing power.

As you will see in the ensuing exercises, the amount of memory required per node to
achieve balance is related to the ratio of processing speed p to communication speed c.
Accordingly, I propose that a node be classified as fine-grain if p/c is about 0.1 or less (in

2

units of operations per word), medium-grain if p/c is about 1, and coarse-grain if p/c is
about 5 or more.

Thus, for example, a machine using a 40 MHz processor capable of about 10 million
operations per second, with about 10M words per second of communication bandwidth
would be classified as a medium grain machine.

It is not an oversight that the amount of memory per node m has been left as a free
variable in the determination of whether a machine is fine grain or coarse grain. The
assumption is that, for any given algorithm, m is uniquely determined by the problem size
required to achieve balance. This problem size is in turn related to the values of p and
c. (Suggestions on other proposals for a definition of fine grain, medium grain and coarse
grain are invited.)

In the following exercises assume that computations can be overlapped completely with
communication. In other words, if Tp is the time required to accomplish a given set of
computations, and Tc is the time required to satisfy the corresponding communication
needs, assume that the time for completion is

max(Tc, Tp)

Note that if we did not allow overlap of communication and computation, as in a ensuing
exercise, then the time for completion would be (Tc + Tp). As stated earlier, we are
assuming that the time for memory accessing is folded into the time for computation Tp.

(1) Suppose that for a given algorithm with a given problem size, the memory required
per processing node is Sm. Identify the relationships between Tc, Tp, Sm, and m for
architectural balance (for that algorithm). (Since the rest of the exercises are based on
these relationships, the answers to this question are given at the end of this homework!)

(2) If the problem size for a Jacobi relaxation with the basic iteration step

Ai,j =
Ai+1,j + Ai−1,j + Ai,j+1 + Ai,j−1

4

is N (that is, if we have an
√

N × √
N grid), and the problem is subdivided among P

processing nodes in square blocks, what is the memory requirement per processing node?
What is the processing requirement? How many words of data need to be input or output
from each node? Focus on a single iteration of Jacobi, and ignore the space required to
store values fetched from other nodes during the computation.

(3) For a single relaxation step of the Jacobi relaxation algorithm, given N and P , deter-
mine the relationship between c and p for architectural balance.

(4) Consider a processing node with p = 8 × 106 ops/sec, m = 106 words, c = 4 × 104

words/sec, and P = 104. For what problem size N are all node resources fully utilized?
Alternatively, show that balance cannot be achieved with any problem size.

(5) Now, consider a processing node whose processing power p is increased by a factor α
over the value in the problem above. If c must remain unchanged, what are all the possible
ways to rebalance the node?

3

(6) On the other hand, if c were increased by α, by what factor should the processor
parameter p be changed to regain balance?

(7) Which of the two nodes in problems (5) and (6) would you classify as having a finer
grain size?

(8) Suppose we have a Jacobi problem of size N , what are the relative values of c, m, and
p, that must be chosen as a function of the number of processing nodes P , so that the
nodes remain balanced. Of course, assume 1 ≤ P ≤ N .

Ex 3: Grain Size

Consider the following machines characterized by the three parameters, (c, m, p), specified
below.1

A: (40 × 106, 2 × 106, 10 × 106)

C: (2.5 × 106, 0.5 × 106, 0.016 × 106)

D: (10 × 106, 4 × 106, 10 × 106)

E: (2 × 106, 4 × 106, 10 × 106)

J: (16 × 106, 0.25 × 106, 3 × 106)

M1: (40 × 106, 0.016 × 106, 3 × 106)

M2: (50 × 106, 5 × 106, 10 × 106)

N1: (80 × 106, 0.01 × 106, 10 × 106)

N2: (160 × 106, 8 × 106, 10 × 106)

P: (19.2 × 103, 0.064 × 106, 0.1 × 106)

Also consider these applications:

1. the ubiquitous Jacobi, with problem size N , i.e., with a
√

N ×√
N grid.

2. matrix multiply of two N element matrices, i.e, each is a
√

N × √
N matrix. (For

this focus on the problem of multiplying two sub matrices of the appropriate size.)

Also assume that there are P processors and that the computations are evenly apportioned
to each processing node using the decompositions suggested in the paper by Kung handed
out in class. Assume as before all computations can be overlapped with communications.

(1) Pick any two of your favorite machines from those given above. For each of the
applications, indicate whether there is any problem size that allows the machines to be
balanced. If not, define the degree of imbalance for a given algorithm as the ratio bi/b,
where

1Any similarity with existing machines is, well, intentional.

4

• b is the required ratio of processing to communication for balance when the problem
size is chosen to fully utilize memory, and

• bi is the ratio of processing to communication provided by the machine.

(2) Suggest how to balance the machines in the direction of making the machine more
coarse, and

(3) in the direction of making the machines more fine.

Ex 4: SIMD versus MIMD Computational Styles

Consider the following SIMD application:

The encoding of MPEG video requires a “motion estimation” step, in which portions of
two sequential frames (images) are compared to find the overall difference. With this
information, the MPEG encoder can determine if that portion of the image has changed.

A simple description of this is shown in the following pseudocode,

for all i from 1 to x
{

for all j from 1 to y
{
sum = (A[i,j] - B[i,j]) + sum ;

}
}

where A and B are the same portion of two subsequent frames. Each element of A and B
is a pixel, and the portion being compared is (x, y) pixels in size.

This is a job for SIMD. Say our MPEG encoder has an array of processing elements (PE)
which each contain one ALU. There are x × y PEs.

(1) Since each PE contains only one ALU, how many instructions will it take to compute
the sum in the above pseudocode?

(2) How should A and B be distributed to the PEs so that they may all perform the
subtraction operation in one cycle?

Since there is only one running sum, the PEs would have to access that memory location
one at a time, which would take x × y cycles. In the real MPEG encoder, this problem is
solved in a clever way by accumulating the sum while new data is being shifted into the
PE array. This requires a certain amount of communication between the PEs. The PEs
use a relative address to access data outside of its own location.

(3) Describe, in your own words or with pseudocode, how a PE might be programmed to
use data from its neighbor to the North (above).

5

Answer to question (1) in the exercise on architectural balance: Tc = Tp and Sm = m.
For full utilization the completion time must equal the individual completion times for
communication and computation. Furthermore, the memory of the node must be fully
utilized.

Ex 5: Traveling Salesman Use Little’s Algorithm to locate an initial tour for the six-
node undirected graph shown on page 14 of the Lecture 10 slides. When reducing the
graph, first reduce rows and then columns. What is the total cost of the path?

Ex 6: Culler problem 3.6

Ex 7: Culler problem 3.14, part a

6

