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Abstract 

A processing element (PE) can be characterized by its computa- 

tional bandwidth, I /O bandwidth, and the size of its local 
memory. In carrying out a computation, a PE is said to be 
balanced if the computation time equals the I/O time. Consider a 
balanced PE for some computation. Suppose that the computa- 

tional bandwidth of the PE is increased by a factor of a relative to 

its I/O bandwidth. Then when carrying out the same computa- 

tion the PE will be imbalanced: i.e., it will have to wait for I/O. A 

standard method of avoiding this I/O bottleneck is to reduce the 
overall 1/O requirement of the PE by increasing the size of its 
local memory. This paper addresses the question of by how much 
the PE's local memory must be enlarged in order to restore 
balance. 

The following results are shown: For matrix computations such 
as matrix multiplication and Gaussian elimination, the size of the 
local memory must be increased by a factor of a2: For computa- 

tions such as relaxation on a d-dimensional grid, the local memory 
must be enlarged by a factor of aa. For some other computations 

such as fast Fourier transform and sorting, the increase is ex- 
ponential; i.e., the size of the new memory must be the size of the 
original memory to the a-th power. All these results indicate that 
the size of a PE's local memory should be increased much more 
rapidly than the PE's computational bandwidth. This 
phenomenon seems to be common for many computations where 

an output may depend on a large subset of the inputs. 

Implications of these results for some parallel computer architec- 
tures are discussed. One particular result is that to balance an 
array ofp linearly connected PEs for performing matrix computa- 

tions such as matrix multiplication and matrix triangularization, 

• the size of each PE's local memory must grow linearly with p. 
Thus, the larger the array is, the larger each PE's local memory 

must be~ 
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1. Introduction 
With today's technology, the challenge in designing a high- 
performance computer is usually not in providing processing 
elements with the required high computational bandwidths, but 
in making sure that information can flow to and from these 
elements with sufficient speed. For example, very fast processing 
elements can be built using off-the-shelf 16 MHz, 32-bit 
microprocessors[3] and/or floating-point chips capable of 
delivering 10 million or more operations per second [7]. The 
computational bandwidth of such a processing element can be 
further increased by using multiple copies of these chips in 
parallel. H.owever, the.I/O bandwidth with the rest of the system 
(e.g., system memory andinterconnections) cannot be increased 
as easily, and as a result I /O often becomes a bottleneck for the 
performance of the entire system. 

A standard approach to alleviating this I/O problem is to provide 
a local memory at a processing element. This local memory can 
"cache" frequently used data and instructions, so that the re- 
quired I/O bc.ndwidth with the outside world is reduced. It is 
well-known that the size of the local memory must be large if the 
computational bandwidth of the processing element is large, as 
represented by the "Amdahrs rule" [8]. But exactly how large 

should this local memory be? This paper answers the question for 

several important computational taskr~ 

To provide a mathematical framework to study the problem, the 

concept of balanced computer architectures is formally intro- 
duced in Section 2. Section 3 derives results on how much the 
local memory of a processing element must be increased as its 
computational bandwidth increases. Section 4 discusses impfica- 
tions of these results for some parallel computer architectures. 
Summary and concluding remarks are provided in Section 5. 

2. Balanced Computer Architectures 
AS illust~ted in l~gure 2-1, we dmracterize a processing element 

(PE) by: 
I. C: the computational bandwidth, which is. the number of 

operations per second delivered by the PE; 

2. I0: the 1/0 bandwidth, which is the number of words per 
second that the PE can communicate with the external 
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environment: and 

3. M: the size of the PE's local memory, in terms Of number of 
words. 

This simple model is sufficient for the purpose of this paper. For 
an example of a more detailed model of computer systems, see [5, 
Section 2.5]. 

I . I 
xo< I c I 

Figure 2-1: Processing element characterized by its 
computational bandwidth (C), I/O bandwidth (1(9), 

and size of local memory (M). 

In carrying out a computation such as fast Fourier transform 
(FFT) or matrix multiplication, a PE is said to be balanced if the 
I /0  time equals the computation l~ne. When a PE is balanced 
for a given computation, we know that its computation, I /0  and 
memory subsystems are not over- or under-designed for that 
computation. A challenge for computer architects is to keep a PE 
balanced, while taking advantage of technological opportunities 
such as large increases in computational bandwidth.' Since it is 
usually difficult or expensive to increase the I / 0  bandwidth, we 
ask the following question: 

Consider a balanced PE for some given computa- 
tion. Suppose now that the computational 
bandwidth of the PE is increased by a factor of a 
relative to its I/O bandwidth. That is, C/IO is 
increased by a factor of a. To rebalanee the PE for 
the same computation (without increasing IO), by 
how much must Mbe increased? 

The following symbols and equalities are useful in deriving 
answers to the question. For carrying out a given computation on 
a PE, let C¢o~ ("cost for computation") denote the total number 
of operations that the PE must perform for the computation, and 
Clo ("cost for I/O") the total number of words that the PE must 
exchange with the outside world. Then the required computation 
and I/O times are Ca~,w/C and C~o/IO, respectively. Therefore, 
the PE is balanced for the given computation ff and only if 

or 

C Cm,~ 
- - =  (1) 
10 Go" 

Now suppose that C/lO is increased by a factor of a .  Then by (1) 
the PE is rebalaneed (/'and only If the ratio C~IC~ is increased 
by a factor ofa. This provides a method of rebalancing a PE. For 
many computations, this can be accomplished by increasing the 
size of the PE's local memory. 

To be precise, let Mol d be the size of the original local memory, 
and Mnew the minimum size of the new memory necessary to 
rebalance the PE. in the r~st of the paper, we study by how much 

(expre~ed in terms of a) Mnew must be larger than Mot ~. 

3. Results for Some Computations 
Consider a PE that is balanced for a given computation. Now 
suppose that ClIO is increased by a factor of a. This section 
derives answers to the question proposed in the preceding section 
for several computations. The following is a summary of the 
results: 

• Matrix computation such as matrix multiplication and tti- 
angularization: M,~  = a2Mold; 

• Grid computation: 

o 2-dimensional: Mne w = a2Mo14; 

o d-dimensional: Mnew = adMot4; 

• FFT: Mnew=(Motd)a; 

• Sorting: Mnew = (Mold)a; 

• I/O bound computations such as matrix-vector multiplica- 
tion and solution of triangular linear systems: Impossible; 
i.e., PE cannot be rebalanced by merely enlarging its local 
memory, Without increasing its I/O bandwidth. 

Throughout this section, we will assume that for all the computa- 
tions the problem size N is arbitrarily large, and that N is much 
larger than M, the size of the PE's local memory. 

3.1. Matrix Multiplication 
Consider the problem of multiplying two N x N  matrices, assum- 
ing a local memory of size M. In the following, we use a 
decomposition scheme that uses no more than Mwords of storage 
at any given time of the computation. 

The product matrix is computed in (N IVr  M - )2 steps, each being 
the computation of a ~ x ~ subrnatrix of the product 
matrix. Every step is a multiplication of a ~ x N  submatrix 
of the first input matrix with an NxVrM"  submatrix ofthe 
second. This can be carried out in Cco,~= O(N.b0 arithmetic 
operations 1, and C~ = 6 (N. ~ )  I/O operation~2 Thus, 

c~'~= o(V'~). (2) 
Assume that for this computation, the PE is balanced. Now 
suppose that the computational, bandwidth is increased by a 
factor of a relative to the I/O bandwidth. Then by (1), for 
rebalancing the PE, we must increase C ~ / C l o  by a factor of a. 
From (2), we see that this can be done only ff M is increased by a 
factor of a 2, That is, for this matrix multiplication computation, 

• e have 

15(~) = G~(~) )  m e a n s / ( ~ :  e .s(~)  + lower order terms in N, where c 
is some positive constant. 

2Throughout the paper, we assume that one I/O operation transfe~ one 
word between the PE a~d the outside world. 
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Mnew = a 2 Mold 

The decomposition scheme we use here for matrix multiplication 
is just one of many possible ones. It has been shown [4] that for 
matrix multiplication, any decomposition scheme yields: 

c,o = h(M). 

where the function h(M) cannot exceed ~ in order of mag- 

nitude. This implies: that the result of (3) is the best possible 
among all decomposition schemes, as far as minimizing M~. w is 
concerned. 

3.2. Matrix Triangularization 
Given an NxN matrix A, the triangularization problem is to 
determine an NxN"multiplier matrix" 0 and an" upper triangular 
matrix ?.)'such that 

QA=U. 
By triangularization, many problems in matrix computation can 
be reduced to the simpler problem of solving triangular linear 
systems. For example, this is the major step inall direct methods 
for solving linear systems. When Q is restricted to be an or- 
thogonal matrix, it is also the key step in computing least squares 
solutions and singular value decomposition, and in the QR algo- 

rithm for computing eigenvalues. Gaussian elimination and 
Givens rotation are standard algorithms for triangularization. 

The trlangularization problem cap. be solved in N I ~ f - M  - steps, 
where each step annihilates those portions of V ~ "  consecutive 
columns which are in the lower triangular part, and updates the 
rest ofthe matrix to prepare it for the next step. The first step can 
be carded out in Cco~ = O(N 2" ~ ) arithmetic operations, 
and C/o = O (N 2) UO operations, assuming a local memory of size 
M. Thus, 

c~'=e(V~) 
c~ 

It is easy to check that the same ratio is maintained for all the 
other steps. Therefore, as in the case of matrix multiplication, we 
have 

M,w~ = a2 M ~  . 

3.3. Grid Computation 
Consider a 2-dinmns~onal grid cmnputation. Given an NxNgdd, 
the task is to perform a large number of iterations on the grid. 
where each iteration involves updating every grid point by some 

weighted average of points in a surrounding window oi ~ fixed size. 
For some applications, on the order of N iterations may be 
performed. In. scientific computing and image processing, this 
computation is usually called relaxation. 

Assmne that the computation is performed by an array of PEs. 
Each PE. with a local memory of size M, is responsible for the 
storing and updating of all the grid points in a V ~ "  xVeM - 
subgrid` For every iteration, each PE performs C¢ow= O(~/"M- 
x~/~l~ arithmetic operations, and C~o = O(V~) I/O opera- 

lions Thus, for the 2-dimensi0nal grid computation, we have 

Mne w = a 2 Mol d . 

It is straightforward to show that for a d-dimensional grid com- 
putation, we have 

M.e w = ad Mold. 

3A. Fast Fourier Transform 
Consider the problem of computing an Nopoint discrete Fourier 
transform by the FF]" algorithm, assuming a local memory of size 
M. 

Decomposition for FFT is not as straightforward as that for 
matrix multiplication and other computations considered ~bove. 
Figure 3-1 depicts an N-point FFr computation and a decom- 
position scheme for N= 16 and M=4. Results of subcomputation 
blocks are shuffled before they are used as inputs of other 
subcomputation blocks. Note that each subcomputation block is 
sufficiently small that it can be entirely carried out inside a PE 
with M words of local memory 
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Figure 3-1: (a) 16-point Fb'T; (b) decomposition 
of the ~ computation. 

Each subcomputation performs Cco~ = O(M'Iog2M) arithmetic 
operations, and C~ = O (M) I/O operations. Thus, 

C~w' (4) c ,  = e0o%M). 

This implies that to increase the ratio C~v/C ~ by a factor of a, 
we must increase M to ~. Therefore for FFT, we have 

M__ = (M~) a. 
It has been shown [4] that for FFr, any decomposition scheme 
yields: 

C ~ _  

c~, - l ( ~ ,  

where the function I(M) cannot exceed log2M in order of mag- 
nitude. This implies that the result of (4) is the best possible 
among all decomPosition schemes, as fat as minimizing M~ is 

concerned` 

3.5. Sorting 
Consider the problem of sorting N keys by a~nparisons only. We 
will perform the sorting in two phases. Phase i sorts the N / M  

subsets of M keys each to produce N/M sorted lists. Phase 2 

merges the sorted lists using an M-way merge algorithm. In 

phase 1, for each subset we perform Cco, np = O(M-lo~M) com- 
perisons, and C~ = e(M)IIO operations, and this can be carried 

out in a local memory of size M. In phase 2, for each M-way 
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merge we maintain a heap of M elements which are the first 

elements of the current M ~rted lists. -The heap can be imple- 

mented in a memory of size O (M), and for each I/O operation to 
the heap there are O(Iog2M) comparisons to be performed. 
Therefore for both phases, we have 

c ~  = o (log 2 u)  
c~ 

Like the IFI"  case, this implies that for sorting, 

M,~ = (Mota) a. (5) 
Using an information-theoretic argument, it is easy to show 
[9] that the result of (5) is the best' possible among all sorting 
methods, as far as minimizingMn~is concerned. 

3.6. I / 0  Bound Computations 
All the computations considered so far have been computation 
bound, in the sense that computation takes more operations than 
I/O in order of magnitude. Computations that are not computa- 
tion bound are called//O bound. Matrix-vector multiplication 
and solution of triangular linear systems are examples of l/O 
bound computations. For I/O bound computations, after an 
increase of ClIO for a PE, there is no way to rehalance the PE by 
merely enlarging its local memory without increasing 10. The 
reason is that for these computations, inputs and intermediate 
results are not used more than a constant number of times on the 
average, so having a local memory to buffer data will not reduce 
the overall I/O requirement of the PE after the size of the 
memory exceeds certain constant. 

4, Classifying Computations by their 
Memory Requirements 

The results summarized in the beginning of Section 3 sugsests a 
classification of computations in terms of their memory require- 
ments in achieving balanced architectures. 

Consider, for instance, scientific computing. It typically involves 
matrix triangularization, matrix multiplication, grid computations 
of various dimensionalities, and also sparse matrix operations that 
have relatively high I/O requirements. Therefore in view of the 
results of Section 3, it is reasonable to classify scientific comput- 

ing as a set of computations with the property: 

M ~ >  a2Mdd. (6) 
Thus for scientific computing, if the computational bandwidth of 
a PE is increased by a factor of a relative to its I/O bandwidth, 
then the size of the PE's local memory must be increased by s 
factor of at least a 2. When properties like (6) are explicitly stated 

for targeted computations, we will be able to evaluate architec- 
turea analytically as shown in the next section. 

5. Implications for Some Parallel Computer 
Architectures 

In this ,section, we consider designing mesh-connected parallel 
computers for computations for which (6) holds. 

On a parallel computer, a computation that is usually performed 

by one PE in a conventional serial machine is carried out by a 
collection of, say, p PEs. We can view this collection ofp PEs as a 
new processing element that has p times as much computational 
bandwidth as the old PE. With this viewpoint, parallel processing 
is just a particular method of increasing the computational 
bandwidth of a PE. Therefore our methodology of rebalancing a 
PE by increasing the size of its local memory applies directly to 
parallel architectures. This is shown in the following subsections. 

5.1.1 -dimensional Processor Array 
We want to use p linearly connected PESto perform computa- 
tions that were formerly done by a single PE, as depicted in 
Figure 5-1. 

Before:  1 PE Now: p PES 

Figure 5-1: Using p PEs to perform computation formerly 
done by one PE 

The collection of p PEs can be viewed as a "new processing 
element" that has p times .as much computational b~ndwidth as 
the original PE. The I/O bandwidth of this "new processing 
element" is the same as that of the original PE, as only the two 
boundary PEs in the PE collection can communicate with the 
outside world. Therefore with respect to this "new processing 
element", the ClIO is increased by a factor of a =p. This implies 
from (6) that the "new processing element" should have a total of 
at least/~ times as much local memory as the original PE. That is, 
in the parallel arrangement, each PE should have at least p lhnes 
as much local memory as the original PE. This translates to the 
following result: 

When using an array of linearly connected PEs for 
computations for which (6) holds, the size of each 
PE's local memory should grow at least linearly with 
the number of PEs in the array, to keep the array 
balance~ 

5.2.2-dimensional Processor Array 
We want to use pxp 2-dimensioually connected PEs to perform 
computations that were formerly done by a single PE, as il- 
lustrated in Figure 5-2. 

We assume that only the 4p-4 PEs on the boundary of the 
processor array can communicate with the outside world, By 

arguments .similar to those used for the case of 1-dimensional 
processor array above, the computational and I/O bandwidths of 
this 2-dimensional array of PEs are p2 and p times larger than 
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those of the original PE, respectively. "lherefore, C/IO is in- 
creased by a factor of a =p. For computations such as matrix 

multiplication where (6) holds with equality, the parallel arrange- 

ment should have a total ofp 2 times as much local memory as the 

original PE. This is automatically satisfied, since there are p2 pea 

in the parallel setup. Therefore, we have the following result: 

When using a square array of mesh-connected PEs 
for computations for which (6) holds with equality, it 
is possible t o  make the size of each PE's. local 
memory to be independent of the number of PEs in 
the array, while keeping the array balanced. That is, 
the processor array is automatically balancedas more 
PEa with local memories of the same size are .added 
to the array. 

The possibility referred to above depends on whether or not the 
computation can actually be decomposed for the parallel execu- 
tion on the processor array. This is possible, for example, for 
matrix multiplication and triangularization, as demonstrated by 
various 2-dimensional systolic arrays for these computations [2, 6]. 

However, for computations (such as the d-dimensional grid com- 
putation with d> 2)where (6) holds with a strict inequality, an 
automatically rebalanecd, square processor array is never pos- 
sible. For these computations, the size of each PE's local memory 
must be increased as the size of the army increases. 

Be~'ore: 1 PE NOW: p x p PEs 

Figare 5-2: Using p x p  PEs to perform computation formerly 
done by one PF. 

5.3.  Multi .dimensional Processor Array 
Above results generalize in a straightforward way W 
d-dimensional processor arrays with d> 2. For example, one can 
show that for computations with the property that 

M ~,~ = a a M aa , 

s d-dimensional array of mesh-connected PEs is automatically 
balanced as more PEa with local memories of the same size are 
added to the array. 

6 .  Summary and Concluding Remarks 
For most of the computations considered in this paper, to 
rebalance a PE, the size of its local memory must be increased 
much more rapidly than its computational bandwidth, i f  the 1 / 0  

bandwidth is kept constant. For some computations such as. FFF 
and sorting, the local memory size must be increased exponen- 
tially as computational bandwidth increases. In this case, the size 
of the local memory may become unrealisticaUy large, and the 
size of the application may also have to become unrealistically 
large in order to take advantage of the large size of memory. 
Therefore, for these computations one should not expect any 
substantial speedup without a significant increase in the PE's I/O 
bandwidth. Since increasing I/O bandwidth is difficult in prac- 
tice, this partially explains why the performance of computer 
systems in general has not kept up with the rapid improvement in 
the computational bandwidth of processing elements. 

In parallel architectures, a set of PEs are used to perform a given 
computation. For this set of PEa, the total amount of local 
memories and the aggregate I/O bandwidth bandwidth with the 
outside world should be balanced with the total computational 
bandwidth. We have shown configurations where the size of each 
PE's local memory should increase as the number of PEs devoted 
to a given computation increases. 

The Carnegie Mellon Warp machine[i] consists of a 1- 
dimensional systolic array, which is an array of linearly con- 
neeted, programmable PEa. With a local memory of up to 64K 
32-bit words, each PE can perform 10 million 32-bit floating- 
point operations per second, and transfer 20 million words per 
second to and from its neighboring PEa. In particular the array 
(:an communicate with the outside world, via the PEa at the two 
ends, at a rate of 20 million words per second. Having a rather 
large I/O bandwidth and a relatively large local memory for each 
PE of the Warp machine reflects the results of this paper. 

The methodology and analysis techniques of this paper can be 
used for many other computations and architectures in addition 
to those considered here. Further work in characterizing other 
computations, in terms of their memory requirements for achiev- 
ing balanced architectures, and in analyzing the impact of these 
results to various architectures, will certainly provide addilional 
insights to the design of high-performance computerr~ 
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