
Overview Lab Assignment 2

— Learning how to use interrupts.

— Interfacing to an external bus.

— State machines in a PLD.

— Data handshaking.

— Moving towards a full system.

1

Tasks to be Completed Lab Assignment 2

— Improve on Lab 1

� Efficient printing of character strings

� Program Timer 0.

— Interface 7032 PLDs to 16F877.

— one switch attached to PLD input

— four LEDs attached to PLD output.

— 16F877 reads switch inputs, write LEDs

— Four bit counter created inside PLD.

— Value echoed to terminal if switch value changes.

2

Dealing with Interrupts PIC 16F877

— Need to set interrupt vector.

— Need to return from interrupt.

org H’000’ ; Reset vector

goto Mainline ; Location of start of program

org H’004’ ; Interrupt vector

goto IntServ ; Start of int service routine

Mainline

....

org H’100’ ; put service routing at 0x100

IntServ ; first inst. of service routine

....

....

retfie ; return from interrupt instr.

3 Peatman - chapter 5

What Happens During an Interrupt?

1. Interrupts enabled (INTCON, PIE1)

2. Interrupt stimulus (timer/counter overflows)

3. Interrupts disabled (bit 7 - INTCON)

4. Jump to interrupt vector (address 0x4).

5. Jump to interrupt service routine.

6. Complete interrupt service routine.

7. Re-enable interrupts (RETFIE).

4 16F877 Data Sheet - page 131

INTCON Register PIC 16F877

PIC16F87X

DS30292B-page 20  1999 Microchip Technology Inc.

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable regis-
ter, which contains various enable and flag bits for the
TMR0 register overflow, RB Port change and External
RB0/INT pin interrupts.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

Note: Interrupt flag bits get set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON<7>). User soft-
ware should ensure the appropriate inter-
rupt flag bits are clear prior to enabling an
interrupt.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x

GIE PEIE T0IE INTE RBIE T0IF INTF RBIF R = Readable bit
W = Writable bit
U = Unimplemented bit,

read as ‘0’
- n= Value at POR reset

bit7 bit0

bit 7: GIE: Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts

bit 6: PEIE: Peripheral Interrupt Enable bit
1 = Enables all un-masked peripheral interrupts
0 = Disables all peripheral interrupts

bit 5: T0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 interrupt
0 = Disables the TMR0 interrupt

bit 4: INTE: RB0/INT External Interrupt Enable bit
1 = Enables the RB0/INT external interrupt
0 = Disables the RB0/INT external interrupt

bit 3: RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 2: T0IF: TMR0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed (must be cleared in software)
0 = TMR0 register did not overflow

bit 1: INTF: RB0/INT External Interrupt Flag bit
1 = The RB0/INT external interrupt occurred (must be cleared in software)
0 = The RB0/INT external interrupt did not occur

bit 0: RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

5 16F877 Data Sheet - page 20

PIE1 PIC 16F877

 1999 Microchip Technology Inc. DS30292B-page 21

PIC16F87X

2.2.2.4 PIE1 REGISTER

The PIE1 register contains the individual enable bits for
the peripheral interrupts.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

Note: Bit PEIE (INTCON<6>) must be set to
enable any peripheral interrupt.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE R = Readable bit
W = Writable bit
U = Unimplemented bit,

read as ‘0’
- n= Value at POR reset

bit7 bit0

bit 7: PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6: ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D converter interrupt
0 = Disables the A/D converter interrupt

bit 5: RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt

bit 4: TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt

bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt

bit 2: CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1: TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit 0: TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.

6 16F877 Data Sheet - page 21

RETFIE Instruction PIC 16F877

 1999 Microchip Technology Inc. DS30292B-page 143

PIC16F87X

RETFIE Return from Interrupt

Syntax: [label] RETFIE

Operands: None

Operation: TOS → PC,
1 → GIE

Status Affected: None

RETLW Return with Literal in W

Syntax: [label] RETLW k

Operands: 0 ≤ k ≤ 255

Operation: k → (W);
TOS → PC

Status Affected: None

Description: The W register is loaded with the
eight bit literal ’k’. The program
counter is loaded from the top of
the stack (the return address).
This is a two cycle instruction.

RETURN Return from Subroutine

Syntax: [label] RETURN

Operands: None

Operation: TOS → PC

Status Affected: None

Description: Return from subroutine. The stack
is POPed and the top of the stack
(TOS) is loaded into the program
counter. This is a two cycle
instruction.

RLF Rotate Left f through Carry

Syntax: [label] RLF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: See description below

Status Affected: C

Description: The contents of register ’f’ are
rotated one bit to the left through
the Carry Flag. If ’d’ is 0, the
result is placed in the W register.
If ’d’ is 1, the result is stored back
in register ’f’.

RRF Rotate Right f through Carry

Syntax: [label] RRF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: See description below

Status Affected: C

Description: The contents of register ’f’ are
rotated one bit to the right through
the Carry Flag. If ’d’ is 0, the result
is placed in the W register. If ’d’ is
1, the result is placed back in reg-
ister ’f’.

SLEEP

Syntax: [label
]

SLEEP

Operands: None

Operation: 00h → WDT,
0 → WDT prescaler,
1 → TO,
0 → PD

Status Affected: TO, PD

Description: The power-down status bit, PD is
cleared. Time-out status bit, TO
is set. Watchdog Timer and its
prescaler are cleared.
The processor is put into SLEEP
mode with the oscillator stopped.

Register fC

Register fC

7 16F877 Data Sheet - page 143

Timer0 Interrupt PIC 16F877

 1999 Microchip Technology Inc. DS30292B-page 47

PIC16F87X

5.0 TIMER0 MODULE
The Timer0 module timer/counter has the following fea-
tures:

• 8-bit timer/counter
• Readable and writable

• 8-bit software programmable prescaler
• Internal or external clock select
• Interrupt on overflow from FFh to 00h

• Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and
the prescaler shared with the WDT.

Additional information on the Timer0 module is available
in the PICmicro™ Mid-Range MCU Family Reference
Manual (DS33023).

Timer mode is selected by clearing bit T0CS
(OPTION_REG<5>). In timer mode, the Timer0 mod-
ule will increment every instruction cycle (without pres-
caler). If the TMR0 register is written, the increment is
inhibited for the following two instruction cycles. The
user can work around this by writing an adjusted value
to the TMR0 register.

Counter mode is selected by setting bit T0CS
(OPTION_REG<5>). In counter mode, Timer0 will
increment either on every rising or falling edge of pin
RA4/T0CKI. The incrementing edge is determined by
the Timer0 Source Edge Select bit T0SE
(OPTION_REG<4>). Clearing bit T0SE selects the ris-
ing edge. Restrictions on the external clock input are
discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between
the Timer0 module and the watchdog timer. The pres-
caler is not readable or writable. Section 5.3 details the
operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 reg-
ister overflows from FFh to 00h. This overflow sets bit
T0IF (INTCON<2>). The interrupt can be masked by
clearing bit T0IE (INTCON<5>). Bit T0IF must be
cleared in software by the Timer0 module interrupt ser-
vice routine before re-enabling this interrupt. The
TMR0 interrupt cannot awaken the processor from
SLEEP since the timer is shut off during SLEEP.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

RA4/T0CKI

T0SE

Pin

M
U
X

CLKOUT (= FOSC/4)

SYNC
2

Cycles
TMR0 reg

8-bit Prescaler

8 - to - 1MUX

M
U
X

M U X

Watchdog
Timer

PSA

0 1

0

1

WDT
Time-out

PS2:PS0

8

Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).

PSA

WDT Enable bit

M
U
X

0

1 0

1

Data Bus

Set Flag Bit T0IF
on Overflow

8

PSA
T0CS

PRESCALER

8 16F877 Data Sheet - page 47-49

Using Timer0 Interrupt PIC 16F877

— Initialize timer 0 to overflow about every

.0327 seconds.

� See example on page 100 of Peatman.

— Force interrupt when counter overflows.

— When interrupt occurs, toggle Port C, bit 2.

— Be sure to initialize appropriate registers.

9 Peatman - pages 100-103

Data Exchange with a PLD PIC 16F877

— Goal: Use ports A, B, C, D to exchange data with

PLD.

— Port A - four bit address value.

— Port B - four bit data input.

— Port C - up to six control signals.

— Port D - four bit data output.

— Create a four-bit write and read transaction.

— Transfer should be robust.

10

Data Exchange with a PLD PIC 16F877

— Valid signals indicate when data transfer occurs.

— Four bit address followed by data.

— For a PIC write, PIC must wait for acknowledge.

— For a PIC read, PLD must wait for data

acknowledge.

— Use 4MHz clock for both PIC and PLD.

— Show handshaking signals on logic analyzer.

11 Altera data book

Example: Control Signals Port C

— Configure port C data direction register.

— PIC data valid/EPLD data accept (PICSTROBE)

Port C output.

— PIC data accept/EPLD data valid (PLDSTROBE)

Port C input.

— PIC Read/Write signal (R/W)

Port C output.

— Could use other encodings.

12

Inside/Outside the EPLD

— Interface 12 address/data + control signals to PIC.

— One switch input into PLD.

— Four LED outputs from PLD.

— Four bit internal register.

— Address and R/W used to select

destination.

13 Altera 7032 data sheet

Example: Write Transaction 16F877

After port A, B, C, D initialization:

1. Send address to Port A.

2. Set R/W signal to read.

3. Assert PICREADY signal.

4. Sample PLDREADY to see if PLD has address.

5. When PLDREADY asserted, deassert

PICREADY.

6. Wait for PLDREADY deasserted.

7. Repeat previous six steps with data on Port D.

14

Example: Read Transaction 16F877

After port A, B, C, D initialization:

— Similar address transaction as write.

— Read value from EPLD to port B.

— Follow sequential rules.

— Data shouldn’t be overwritten.

— Can be simulated with MPSIM

15

PLD State Machine Suggestions 16F877

— Implement using VHDL.

— One state machine to check/fetch addresses.

� check PICREADY.

� assert/deassert PLDREADY

— One state machine for READ transactions:

� Decode address.

� Enable correct location (switches, register)

� Assert data to Port B.

— One state machine for WRITE transactions:

� Decode address.

� Enable correct location (LEDs, register)

� Read data from Port D to correct location.

16

Displaying Character Strings PIC 16F877

— Need to display a string of characters.

— Consider printing string “wow”

call wait ; subroutine which checks PIR bit 4.

movlw ’w’ ; send ASCII w char. to W

movwf TXREG ; send w char. to UART trans. buffer

call wait ; subroutine which checks PIR bit 4.

movlw ’o’ ; send ASCII o char. to W

movwf TXREG ; send o char. to UART trans. buffer

call wait ; subroutine which checks PIR bit 4.

movlw ’w’ ; send ASCII w char. to W

movwf TXREG ; send w char. to UART trans. buffer

— Approach is clumsy, verbose.

17 Peatman - section 8.7

Displaying Character Strings PIC 16F877

— Before introducing the new approach, consider this

code.

ORG 0x0

goto Start ; jump to the start of the program

ORG 0x5

sub1 nop ; start of a subroutine

.

.

return ; return from subroutine

ORG 0x30

Start .

.

.

call sub1 ; call the routine

nop ; first instr. after return

— When call is executed the following happens:

1. PC receives address of sub1

2. top of stack (TOS) receives return addr.

18 Peatman - section 8.7

Displaying Character Strings PIC 16F877

— When return is executed the following happens:

1. PC receives top of stack (TOS), the return

address.

— Consider a new instruction RETLW k

— When retlw is executed the following happens:

1. PC receives top of stack (TOS), the return

address.

2. The constant value k is placed in the

W register

— What if the k value was a character?

19 Peatman - section 8.7

Character String Program PIC 16F877

BANK0RAM EQU H’20’ ; equate a constant to hex 20.

ORG BANK0RAM ; reserve space in DATA MEMORY

cblock ; create a pointer in bank 0 at location 20

POINTER ; name of value

endc

ORG 0x0

goto Start ; jump to the start of the program

ORG 0x5

sub1 movf POINTER, W ; move value in POINTER to W

addwf PCL, F ; add value to PC

retlw A’w’

retlw A’o

retlw A’w’

retlw 0

RETURN ; shouldn’t get here

ORG 0x30

Start clrf POINTER

Loop call sub1

. ; check if return value is 0

btfsc status, z ; branch if not 0

goto Done ; else done

. ; check bit 4 in PIR

movwf TXREG

. ; increment POINTER

goto Loop ; print another character

ORG 0x60

Done nop

goto Done

20 Peatman - page 49

Displaying Character Strings PIC 16F877

— Possible to replace numerous RETLW instructions

with dt directive.

21 Peatman - page 155

Using Macros Lab 2 Hints

Bank0 MACRO ; macro to select bank 0

bcf STATUS, RP0

bcf STATUS, RP1

ENDM

— Make 16F877 macros for read/write transactions.

— Macros are expanded by assembler.

— Later changes can be confined to macro.

22

Demonstration Lab 2

— Rewire lab kit for lab two (PLD, clock)

— Implement using VHDL.

— Demonstrate using logic analyzer.

— Implement serial interface using constant strings.

— Implement timer 0 interrupt and LED toggle.

23

Suggestions Lab 2

— Check write transaction first.

— Look at signals on analyzer.

— Debug read transaction.

— Get interrupts with timer working.

— Get constant string code working.

— Demonstrate working system.

24

Reading Lab 2

— Peatman - chapter 5

— Peatman - pages 100-103

— Peatman - section 8.7 (skim)

— 16F877 data sheet - pages 46-49

— 16F877 data sheet - pages 131-133

— 16F877 data sheet - pages 20-21

— Altera 7032 data sheet

25

Summary Lab 2

— Display constant strings using directive dt.

— Program counter to toggle LED with interrupts.

— Implement bus transaction with PLD.

— VHDL state machines in PLD to handle data

transfer.

— Logic analyzer usage.

26

