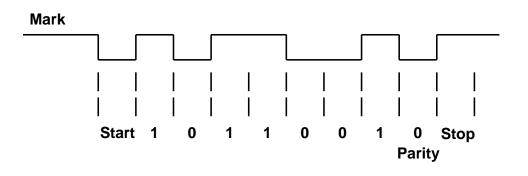
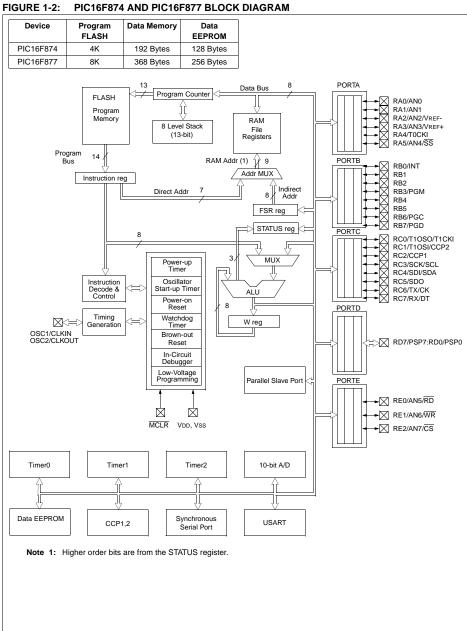

1.

- Learning the architecture of the PIC16F877
- Learning the instruction set of the PIC16F877
- Understanding chip power-up.
- Practice with 16F877 debugging equipment
- Implementation of serial I/O


Figure 2-1 of 16F877 data sheet.

- Two main instances of reset
 - \star Power applied to 16F877
 - $\star \overline{MCLR}$ asserted active low
- goto Start located at instruction memory location 0000h.
- Note that reset vector allocated *four* 14-bit values
- First program instruction could be located at 0005h



- Two bit cable connects computer/terminal (receive/transmit).
- Keystroke sends character to 16F877
- 16F877 character transmission sends a value to terminal screen

Serial Data Transmission

- Inactive *mark* indicates no activity
- Start bit indicates beginning of data transfer
- Seven bit character transmitted
- Even parity indicates even number of ones.
- Single stop bit indicates completion of transfer.

^{© 1999} Microchip Technology Inc.

Serial Data Transmission

			b_6b	$_{5}b_{4}$		
	•••	3	4	5	6	•••
$b_3 b_2 b_1 b_0$	•••	011	100	101	110	•••
0000	•••	0	0	Р	,	•••
0001	•••	1	\mathbf{A}	\mathbf{Q}	a	•••
0010	•••	2	В	\mathbf{R}	\mathbf{b}	•••
0011	•••	3	\mathbf{C}	\mathbf{S}	С	•••
0100	•••	4	\mathbf{D}	\mathbf{T}	\mathbf{d}	•••
0101	•••	5	\mathbf{E}	\mathbf{U}	e	•••

- UART receives eight bit value (D0-D7)
- UART serializes data and adds control/parity bits
- UART outputs 0 to 5V signal.
- RS-232 driver/receiver converts output to $\pm 10 V$

16F877 UART Implementation

- Operates as parallel/serial transmitter
- Operates as serial/parallel receiver
- Accessed via special-purpose registers
 - \star Each accessed with a separate address
 - * Control/status registers (RCSTA, TXSTA)
 - * Baud rate generator (SPBRG)
 - * Data registers (TXREG, RCREG)
 - * Interrupt registers (PIR1, PIE1)

16F877 Data Memory and Register Files

PIC16F87X

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	100h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	02h	STATUS	83h	STATUS	102h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h	TOR	105h	TOK	185
PORTB	06h	TRISA	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISE	87h	TORTB	107h	INIOD	187
PORTD (1)	08h	TRISC ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE (1)	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE1 PIE2	8Dh	EEADR	10Dh	EECON2	180
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh	1001	8Fh	EEADRH	10Eh	Reserved ⁽²⁾	18F
T1CON	10h		90h	22/18/11	110h	Received	190
TMR2	11h	SSPCON2	91h		111h		191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h	00101/1	95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah	or bitte	9Ah	,	11Ah	,	19A
CCPR2L	1Bh		9Bh		11Bh		19E
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		19[
ADRESH	1Eh	ADRESL	9Eh		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
	20h		A0h		120h		1A(
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EF
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1FC
Bank 0		Bank 1		Bank 2		Bank 3	
_		ta memory location	ns, read				

© 1999 Microchip Technology Inc.

TXSTA: Trans. Status and Control Register

PIC16F87X

10.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, serial EEPROMs etc.

Г

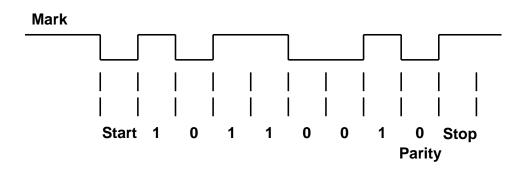
The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

R/W-0 CSRC	R/W-0 TX9	R/W-0 TXEN	R/W-0 SYNC	U-0	R/W-0 BRGH	R-1 TRMT	R/W-0 TX9D	R = Readable bit
bit7	17.9	TALIN	51110		BROTT		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	CSRC: Clo Asynchron Don't care Synchrono 1 = Master 0 = Slave r	ous mode us mode mode (Clo	ock generat			G)		
bit 6:	TX9 : 9-bit ¹ 1 = Selects 0 = Selects	s 9-bit trans	smission					
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SRE	nit enabled nit disabled		(EN in SY	NC mode.			
bit 4:	SYNC: US 1 = Synchr 0 = Asynch	onous mo	de					
bit 3:	Unimplem	ented: Re	ad as '0'					
bit 2:	BRGH: Hig Asynchron 1 = High sp	ous mode	ate Select b	it				
	0 = Low sp Synchrono Unused in	us mode						
bit 1:	TRMT : Tra 1 = TSR er 0 = TSR fu	mpty	Register S	tatus bit				
bit 0:	TX9D: 9th							


REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

^{© 1999} Microchip Technology Inc.

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	R = Readable bit
bit7			-			-	bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	SPEN: Ser 1 = Serial p 0 = Serial p	ort enable	d (Configu	ires RC7/R	X/DT and	RC6/TX/CI	K pins as s	erial port pins)
bit 6:	RX9 : 9-bit I 1 = Selects 0 = Selects	9-bit rece	otion					
bit 5:	SREN: Sing Asynchrono Don't care Synchrono 1 = Enable 0 = Disable This bit is c Synchrono Unused in t	us mode - us mode - s single red s single red leared afte us mode - s	master ceive ceive r reception		te.			
bit 4:	CREN : Cor Asynchrono 1 = Enable 0 = Disable Synchrono 1 = Enable 0 = Disable	ous mode s continuou es continuo us mode s continuou	us receive us receive us receive	until enable	e bit CREN	l is cleared	(CREN ov	rerrides SREN)
bit 3:		ous mode s s address o	9-bit (RX9 detection,	= 1) enable inte				ffer when RSR<8> is set used as parity bit
bit 2:	FERR: Fran 1 = Framing 0 = No fran	g error (Ca		ted by read	ling RCRE	G register	and receive	e next valid byte)
bit 1:	OERR : Ove 1 = Overrue 0 = No ove	n error (Ca		ed by clear	ing bit CR	EN)		
bit 0:	RX9D: 9th	hit of recei) etch hav	Can be nar	ity bit)			

Baud Rate Generator

- Clock rate for 16F877 is 4MHz
- Transmit/receive rate may vary (9600 bps, 19200 bps, etc)
- Need to scale system clock

Table 10-1 of 16F877 data sheet.

- -X is 8 bit SPBRG value
 - \star located at addres 99h
- BRGH value located in TXSTA

TABLE	E 10-3:	BAUI	ORATES	FOR A	SYNCH	IRONOU	S MOD	E (BRG	H = 0)	
DAUD	F	osc = 20 N	IHz	F	osc = 16 N	1Hz	Fosc = 10 MHz			
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	-	-	-	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129	
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64	
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15	
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7	
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4	
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4	
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2	
HIGH	1.221	-	255	0.977	-	255	0.610	-	255	
LOW	312.500	-	0	250.000	-	0	156.250	-	0	

BAUD		Fosc = 4 M	Hz	Fosc = 3.6864 MHz				
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)		
0.3	0.300	0	207	0.301	0.33	185		
1.2	1.202	0.17	51	1.216	1.33	46		
2.4	2.404	0.17	25	2.432	1.33	22		
9.6	8.929	6.99	6	9.322	2.90	5		
19.2	20.833	8.51	2	18.643	2.90	2		
28.8	31.250	8.51	1	-	-	-		
33.6	-	-	-	-	-	-		
57.6	62.500	8.51	0	55.930	2.90	0		
HIGH	0.244	-	255	0.218	-	255		
LOW	62.500	-	0	55.930	-	0		

TABLE 10-4	. DAUD KAILS	TOR ASTNCIRONOUS	WODE (BROIT = T)
		FOR ASYNCHRONOUS	

II (DEE	- 10 4.	BACOB	101120				MODE (,
BAUD	F	osc = 20 M	Hz	Fo	osc = 16 M	Hz	F	osc = 10 M	Hz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000		0	1000.000		0	625.000		0
DAUD	F	osc = 4 MI	Hz	Fos	c = 3.6864	MHz			
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)			
0.3	-	-	-	-	-	-			
1.2	1.202	0.17	207	1.203	0.25	185			
2.4	2.404	0.17	103	2.406	0.25	92			
9.6	9.615	0.16	25	9.727	1.32	22			
19.2	19.231	0.16	12	18.643	2.90	11			
19.2 28.8	19.231 27.798	0.16 3.55	12 8	18.643 27.965	2.90 2.90	11 7			
28.8	27.798	3.55	8	27.965	2.90	7			
28.8 33.6	27.798 35.714	3.55 6.29	8 6	27.965 31.960	2.90 4.88	7 6			

DS30292B-page 98

© 1999 Microchip Technology Inc.

PIR1 REGISTER 2.2.2.5

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit				
bit7							bit0	W = Writable bit - n= Value at POR reset				
bit 7:	PSPIF ⁽¹⁾ :	Parallel Sla	ve Port Re	ad/Write Int	errupt Flag b	it						
	1 = A read	or a write	operation h	nas taken pla	ace (must be		oftware)					
			has occurre									
bit 6:			Interrupt F n complete	0								
			on is not co									
bit 5:	RCIF: USA	ART Receiv	/e Interrupt	Flag bit								
			ive buffer is									
			ive buffer is									
bit 4:			nit Interrupt smit buffer i									
			smit buffer i									
bit 7:				(SSP) Inter								
				has occurre will set this		be cleared in	software be	fore returning from the interrupt ser-				
	SPI	e. The con	ditions that	will set this	bit are:							
	A transmis	sion/recep	tion has tal	ken place.								
	I ² C Slave	aion/racan	tion has tal									
	I ² C Master		แบท กลร เล	ten place.								
			tion has tal									
					by the SSP n							
					by the SSP m d by the SSP							
							ule.					
	The initiated acknowledge condition was completed by the SSP module. A start condition occurred while the SSP module was idle (Multimaster system). A stop condition occurred while the SSP module was idle (Multimaster system).											
				the SSP mo has occurred		e (iviuitimaste	er system).					
bit 2:		•	upt Flag bi									
	Capture M	ode										
					t be cleared i	in software)						
	Compare I		r capture o	ccurrea								
			compare m	atch occurr	ed (must be	cleared in so	ftware)					
			r compare	match occu	rred							
	PWM Mod Unused in											
			R2 Match Ir	terrupt Flag	bit							
	1 = TMR2	to PR2 ma	tch occurre	ed (must be	cleared in sc	oftware)						
			match occ									
bit 0:			flow Interru		rad in active	(10)						
			d not overfl		red in softwa	iie)						
	PSPIF is r											

DS30292B-page 22

© 1999 Microchip Technology Inc.

Figure 10-1 of 16F877 data sheet.

- Initialize baud rate generator
- Configure TXSTA (mode, # bits, etc)
- Check bit 4 in PIR1 to see if transmit buffer is empty
- When buffer empty, send value to TXREG address (19h)

Figure 10-4 of 16F877 data sheet.

- Initialize baud rate generator
- Configure RCSTA (port enable, # bits, etc)
- Check bit 5 in PIR1 to see if receive buffer is full
- When buffer full, get value from RCREG address (1Ah)

Figure 11-7 in Peatman book.

- MAX232 drivers convert between 5/10V.
- -2 wires needed for terminal connection.

- Port A should be configured as data input
- -4 switches attached to lower bits of port A
- Port B should be configured as data output
- 4 LEDs connected to port B (RB1-RB4)
- Observe code on page 29 of data sheet for detailed discussion
- Register ADCON1 described on page 112 of 16F877 data sheet

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

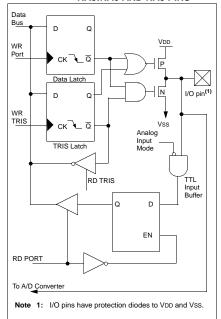
PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

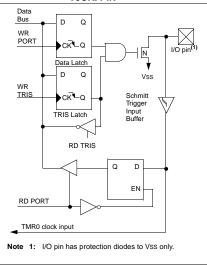
Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA


BCF	STATUS,	RP0	;	
BCF	STATUS,	RP1	; Bank0	
CLRF	PORTA		; Initialize PORTA	by
			; clearing output	
			; data latches	
BSF	STATUS,	RP0	; Select Bank 1	
MOVLW	0x06		; Configure all pi	ns
MOVWF	ADCON1		; as digital input	s
MOVLW	0xCF		; Value used to	
			; initialize data	
			; direction	
MOVWF	TRISA		; Set RA<3:0> as i	nputs
			; RA<5:4> as outpu	its
			; TRISA<7:6> are a	lways
			; read as '0'.	

PIC16F87X

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

© 1999 Microchip Technology Inc.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

J-0 DFM bit7	-	_	-		/W-0 CFG3	R/W-0 PCFG2	R/W PCF	1	PCFG0 bit0	W = W U = Ur	eadable bit ritable bit nimplemented b ad as '0'
1 0 6-4: U	= Left Ju nimpleme	ustified. 6 stified. 6 I ented: Re	most sigr east signi ad as '0'	nificant bi	ts of ADRI s of ADRE n Control b	SL are rea				- n = Va	alue at POR res
PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	Chan / Refs ⁽²⁾
0000	А	А	А	А	Α	А	А	А	Vdd	Vss	8/0
0001	A	А	А	А	VREF+	А	А	А	RA3	Vss	7/1
0010	D	D	D	Α	A	А	А	А	Vdd	Vss	5/0
0011	D	D	D	Α	VREF+	А	А	А	RA3	Vss	4/1
0100	D	D	D	D	A	D	А	A	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	Α	A	А	Α	VREF+	VREF-	А	А	RA3	RA2	6/2
1001	D	D	А	Α	A	А	А	Α	VDD	Vss	6/0
1010	D	D	А	Α	VREF+	Α	Α	А	RA3	Vss	5/1
1011	D	D	А	Α	VREF+	VREF-	Α	А	RA3	RA2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	RA3	RA2	1/2
	I/O These cha				he 28-pin		ilabla aa	A/D innu	to and the	numor of a	analog channels

DS30292B-page 112

© 1999 Microchip Technology Inc.

- Send prompt to terminal
- Wait for affirmative response
- Read 4 bit value from port A
- Write value to port B
- Check if value in switches changed
- If yes, send changed value to terminal.
- If no, keep checking.

Reading

- Data sheet 29-33 port I/O
- Data sheet 112 ADCON1
- Data sheet 95-104 UART
- Peatman, chapter 11 UART
- MAX232 data sheet

- Try assembling a small program first to write a value to the LEDs
- Program 16F877 to read from port A, write to port B
- Program 16F877 to print a message to terminal.
- Try reading in a character and then echoing to the terminal
- Combine the code segments to complete the lab.

- Test code BEFORE coming to Lab
- Make sure switches and LEDS working correctly
- Make good use of lab time
- Take an incremental approach to design and test.
- Report hardware problems to TAs, lab staff
- Write down report of issues problems so you won't forget

- I/TA will ask questions and review hardware/code
- Report should contain the following:
 - \star Introduction
 - * Lab overview
 - * Hardware schematic (including all chips, connections and pin numbers)
 - \star Brief discussion of code
 - \star Full, well-commented code
 - * Discussion of problems encountered (each student)
 - * Full reference list (including data sheets).