
ENGIN112 L37: Register Transfer Level December 3, 2003

ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 37

Register Transfer Level

ENGIN112 L37: Register Transfer Level December 3, 2003

Overview

° System design must be modular
• Easier to represent designs with system-level blocks

° Register transfer level represents transfers between
clocked system registers

• Shifts, arithmetic, logic, etc.

° Algorithmic state machine
• Alternate approach to representing state machines

° Status signals from datapath used for control path

° Algorithmic state machine chart shows flow of
computation

ENGIN112 L37: Register Transfer Level December 3, 2003

System-level Design

° Difficult to represent a design with just one state
machine

° A series of control and data paths used to build
computer systems

° Helps simplify design and allow for design changes

Processor
Keyboard

Disk

Main
Memory

ENGIN112 L37: Register Transfer Level December 3, 2003

Registers and Data Operations

° Activity and performance in computers defined on
register-to-register paths

° Digital system at register transfer level specified by
three components
• The set of registers in the system
• Operations to be performed on registers
• Control that is applied to registers and sequence of operations

Function

ENGIN112 L37: Register Transfer Level December 3, 2003

Representation of Register Transfer Flow

° Arrow indicates transfer from one register to another
• R2 ? R1

° Conditional statements can help in selection
• If (T1 = 1) then R2 ? R1

° Clock signal is not generally included in register
transfer level statement
• Sequential behavior is implied

° Multiple choices also possible
• If (T1 = 1) then (R2 ? R1, R2 ? R2)

How could these statements be implemented in hardware?

ENGIN112 L37: Register Transfer Level December 3, 2003

Other representative RTL operations

° Addition
• R1 ? R1 + R2

° Increment
• R3 ? R3 + 1

° Shift right
• R4 ? R4

° Clear
• R5 ? 0

° Transfer doesn't change value of data begin moved

How could these statements be implemented in hardware?

ENGIN112 L37: Register Transfer Level December 3, 2003

Algorithmic State Machines (ASM)

° Flowchart specifies a sequence of procedural steps and
decision steps for a state machine

° Translates word description into a series of operations with
conditions for execution

° Allows for detailed description of control and datapath

ENGIN112 L37: Register Transfer Level December 3, 2003

Algorithmic State Machines – State Box

° ASM describes operation of a
sequential circuit

° ASM contains three basic
elements
• State box
• Decision box
• Condition box

° State box indicates an FSM
state
• Box also indicates operation to be

performed

° Binary code and state name
also included

ENGIN112 L37: Register Transfer Level December 3, 2003

Decision Box

° Describes the impact of input on control system

° Contains two exit paths which indicate result of
condition

° More complicated conditions possible

° Implemented in hardware with a magnitude
comparator

ENGIN112 L37: Register Transfer Level December 3, 2003

Conditional Box

° Indicates assignments following a decision box

° Generally indicates data transfer

ENGIN112 L37: Register Transfer Level December 3, 2003

ASM Block

° Paths exist between state boxes

° Each state box equivalent to one state

ENGIN112 L37: Register Transfer Level December 3, 2003

ASM Block

° Equivalent to State Diagram

ENGIN112 L37: Register Transfer Level December 3, 2003

Concept of the State Machine

Example: Odd Parity Checker

Even
[0]

Odd
[1]

Reset

0

0

1 1

Assert output whenever input bit stream has odd # of 1's

State
Diagram

Present State
Even
Even
Odd
Odd

Input
0
1
0
1

Next State
Even
Odd
Odd
Even

Output
0
0
1
1

Symbolic State Transition Table

Output
0
0
1
1

Next State
0
1
1
0

Input
0
1
0
1

Present State
0
0
1
1

Encoded State Transition Table

° Note: Present state and output are the same value

° Moore machine

ENGIN112 L37: Register Transfer Level December 3, 2003

ASM for Odd Parity Checker

Example: Odd Parity Checker

Even
[0]

Odd
[1]

Reset

0

0

1 1

Assert output whenever input bit stream has odd # of 1's

State
Diagram

Odd

Even 0

1

In = 1

In = 1

Out ? 0

Out ? 1

1

0

0

1

ENGIN112 L37: Register Transfer Level December 3, 2003

Verilog Representation for RTL

° Conditional assignment statements
• assign Y = S ? I1 : I0;

° Statement evaluation

always @ (I1 or I2 or S)
if (S) Y = I1;
else Y = I0;

Perform evaluation only when an input changes

always @(posedge clk)
q = d;

Verilog description of a flip flop

ENGIN112 L37: Register Transfer Level December 3, 2003

Typical Design Flow

° It all starts with Verilog description

ENGIN112 L37: Register Transfer Level December 3, 2003

Summary

° Register transfer level provides a simple way to
describe designs

° A series of operations take place between registers

° Algorithmic state machine another way to represent a
state machine

° Direct correspondence between state diagram and
algorithmic state machine

° Possible to implement state machines in Verilog
• Also in VHDL

° Next time: programmable array logic

