ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 30

Random Access Memory (RAM)

- ^o Memory is a collection of storage cells with associated input and output circuitry
 - Possible to read and write cells
- ^o Random access memory (RAM) contains words of information
- ° Data accessed using a sequence of signals
 - Leads to timing waveforms
- ^o Decoders are an important part of memories
 - Selects specific data in the RAM
- Static RAM loses values when circuit power is removed.

Preliminaries

° RAMs contain a collection of data bytes

- A collection of bytes is called a word
- A sixteen bit word contains two bytes
- Capacity of RAM device is usually described in bytes (e.g. 16 MB)
- ^o Write operations write data to specific words
- ^o Read operations read data from specific words
- ° Note: new notation for OR gate

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

- Data input and output lines carry data
- ^o Memory contains 2^k words
 - k address lines select one word out of 2^k
- Read asserted when data to be transferred to output
- Write asserted when data input to be stored

Fig. 7-2 Block Diagram of a Memory Unit

Random Access Memory Fundamentals

^o Lets consider a simple RAM chip

- 8 words of 2 bytes each (each word is 16 bits)
- How many address bits do we need?

RAM Size

0	lf	memo	ry has	5 2 ^k '	words,	k
	a	ddress	bits a	re r	needed	

- [°] 2³ words, 3 address
 bits
- Address locations are labelled 0 to 2^k-1
- ° Common subscripts:
 - ° Kilo 2¹⁰
 - ° Mega 2²⁰
 - ° Giga 2³⁰

Memory ad	dress	
Binary	decimal	Memory contest
000000000	0	1011010101011101
0000000001	1	1010101110001001
000000010	2	0000110101000110
	• • •	
111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Fig. 7-3 Content of a 1024×16 Memory

- 1. Apply binary address of word to address lines
- 2. Apply data bits to data input lines
- 3. Activate write input

Data output lines unused

Read input signal should be inactive

Delay associated with write

Fig. 7-2 Block Diagram of a Memory Unit

- 1. Apply binary address of word to address lines
- 2. Activate read input

Data input lines unused Write input signal should be inactive

Delay associated with read

Memory enable used to allow read and writes

Fig. 7-2 Block Diagram of a Memory Unit

Memory Timing – write operation

- Memory does not use a clock
 - Control signals may be generated on clock edges
- ° Cycle time time needed to write to memory
- If cycle time is 50 ns, 3 clock edges required (T1, T2, T3)

Timing Waveforms – read operation

- Access time indicates time to read
- Address indicates location
- Data valid on Data Output following access time

Multiple clock signals needed for data read in this example * Note ordering of signals (address, mem enable)

Comments about Memory Access and Timing

- Most computers have a central processing unit (CPU)
 - Processor generates control signals, address, and data
 - Values stored and then read from RAM
- The timing of the system is very important.
 - Processor provides data for the cycle time on writes
 - Processor waits for the access time for reads

Types of Random Access Memories

Static random access memory (SRAM)

- Operates like a collection of latches
- Once value is written, it is guaranteed to remain in the memory as long as power is applied
- Generally expensive
- Used inside processors (like the Pentium)

^o Dynamic random access memory (DRAM)

- Generally, simpler internal design than SRAM
- Requires data to be rewritten (refreshed), otherwise data is lost
- Often hold larger amount of data than SRAM
- Longer access times than SRAM
- Used as main memory in computer systems

Inside the RAM Device

Fig. 7-6 Diagram of a 4×4 RAM

- ^o Basis of each SRAM cell is an S-R latch
- ° Note that data goes to both S and R
- ° Select enables operation
- ° Read/write enables read or write, but not both

Inside the SRAM Device

- [°] Memories provide storage for computers
- ^o Memories are organized in words
 - Selected by addresses
- ° SRAMs store data in latches
 - Accessed by surrounding circuitry
- RAM waveforms indicate the control signals needed for access
- ° Words in SRAMs are accessed with decoders
 - Only one word selected at a time