Lecture 30

Random Access Memory (RAM)
Overview

- **Memory** is a collection of storage cells with associated input and output circuitry
 - Possible to read and write cells

- **Random access memory (RAM)** contains words of information

- Data accessed using a sequence of signals
 - Leads to timing waveforms

- Decoders are an important part of memories
 - Selects specific data in the RAM

- Static RAM loses values when circuit power is removed.
Preliminaries

- RAMs contain a collection of data bytes
 - A collection of bytes is called a word
 - A sixteen bit word contains two bytes
 - Capacity of RAM device is usually described in bytes (e.g. 16 MB)

- Write operations write data to specific words
- Read operations read data from specific words
- Note: new notation for OR gate

![Conventional symbol](a) Conventional symbol ![Array logic symbol](b) Array logic symbol

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate
RAM Interface Signals

- Data input and output lines carry **data**
- Memory contains 2^k words
 - k address lines select one word out of 2^k
- **Read asserted** when data to be transferred to output
- **Write asserted** when data input to be stored

![Block Diagram of a Memory Unit](Image)

Fig. 7-2 Block Diagram of a Memory Unit
Let's consider a simple RAM chip

- 8 words of 2 bytes each (each word is 16 bits)
- How many address bits do we need?

<table>
<thead>
<tr>
<th>Pick one of 8 locations</th>
<th>Dec</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>

16 Data and Input signals

____ address signals

Each bit stored in a binary cell
RAM Size

- If memory has 2^k words, k address bits are needed
 - 2^3 words, 3 address bits
- Address locations are labelled 0 to 2^k-1
- Common subscripts:
 - Kilo – 2^{10}
 - Mega – 2^{20}
 - Giga - 2^{30}

<table>
<thead>
<tr>
<th>Memory address</th>
<th>Binary</th>
<th>decimal</th>
<th>Memory contest</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000</td>
<td>00</td>
<td>0</td>
<td>1011010101011101</td>
</tr>
<tr>
<td>0000000001</td>
<td>01</td>
<td>1</td>
<td>1010101110001001</td>
</tr>
<tr>
<td>0000000010</td>
<td>10</td>
<td>2</td>
<td>0000110101000110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1111111101</td>
<td>1021</td>
<td></td>
<td>1001110100010100</td>
</tr>
<tr>
<td>1111111110</td>
<td>1022</td>
<td></td>
<td>0000110100011110</td>
</tr>
<tr>
<td>1111111111</td>
<td>1023</td>
<td></td>
<td>1101111000100101</td>
</tr>
</tbody>
</table>

Fig. 7-3 Content of a 1024 × 16 Memory
Write Operation

1. **Apply binary address of word to address lines**

2. **Apply data bits to data input lines**

3. **Activate write input**

Data output lines unused

Read input signal should be inactive

Delay associated with write

Fig. 7-2 Block Diagram of a Memory Unit
Read Operation

1. **Apply binary address of word to address lines**

2. **Activate read input**

 - Data input lines unused
 - Write input signal should be inactive
 - Delay associated with read
 - Memory enable used to allow read and writes
Memory Timing – write operation

- **Memory does not use a clock**
 - Control signals may be generated on clock edges

- **Cycle time** – time needed to write to memory

- **If cycle time is 50 ns, 3 clock edges required** (T1, T2, T3)

(a) Write cycle
Timing Waveforms – read operation

- **Access time** indicates time to read
- **Address** indicates location
- **Data valid on Data Output following access time**

Multiple clock signals needed for data read in this example
* Note ordering of signals (address, mem enable)
Comments about Memory Access and Timing

- **Most computers have a central processing unit (CPU)**
 - Processor generates control signals, address, and data
 - Values stored and then read from RAM

- **The timing of the system is very important.**
 - Processor provides data for the cycle time on writes
 - Processor waits for the access time for reads
Types of Random Access Memories

° Static random access memory (SRAM)
 • Operates like a collection of latches
 • Once value is written, it is guaranteed to remain in the memory as long as power is applied
 • Generally expensive
 • Used inside processors (like the Pentium)

° Dynamic random access memory (DRAM)
 • Generally, simpler internal design than SRAM
 • Requires data to be rewritten (refreshed), otherwise data is lost
 • Often hold larger amount of data than SRAM
 • Longer access times than SRAM
 • Used as main memory in computer systems
Inside the RAM Device

- Address inputs go into decoder
 - Only one output active
- Word line selects a row of bits (word)
- Data passes through OR gate
- Each binary cell (BC) stores one bit
- Input data stored if Read/Write is 0
- Output data driven if Read/Write is 1

Fig. 7-6 Diagram of a 4 × 4 RAM
Inside the SRAM Device

- Basis of each SRAM cell is an S-R latch
- Note that data goes to both S and R
- Select enables operation
- Read/write enables read or write, but not both

Fig. 7-5 Memory Cell
Inside the SRAM Device

- Note: delay primarily depends on the number of words
- Delay not affected by size of words

- How many address bits would I need for 16 words?

Fig. 7-6 Diagram of a 4 × 4 RAM
Summary

° Memories provide storage for computers

° Memories are organized in words
 • Selected by addresses

° SRAMs store data in latches
 • Accessed by surrounding circuitry

° RAM waveforms indicate the control signals needed for access

° Words in SRAMs are accessed with decoders
 • Only one word selected at a time