Overview

- Circuits do not respond instantaneously to input changes
- Predictable delay in transferring inputs to outputs
 - Propagation delay
- Sequential circuits require a periodic clock
- Goal: analyze clock circuit to determine maximum clock frequency
 - Requires analysis of paths from flip-flop outputs to flip-flop inputs
- Even after inputs change, output signal of circuit maintains original output for short time
 - Contamination delay
Sequential Circuits

- Sequential circuits can contain both combinational logic and edge-triggered flip flops.
- A **clock** signal determines when data is stored in flip flops.
- **Goal:** How fast can the circuit operate?
 - Minimum clock period: T_{min}
 - Maximum clock frequency: f_{max}
- **Maximum clock frequency** is the inverse of the minimum clock period.
 - $1/T_{\text{min}} = f_{\text{max}}$
Combinational Logic Timing: Inverter

- Combinational logic is made from electronic circuits.
 - An input change takes time to propagate to the output.

- The output remains unchanged for a time period equal to the contamination delay, t_{cd}.

- The new output value is guaranteed to valid after a time period equal to the propagation delay, t_{pd}.
Combinational Logic Timing: XNOR Gate

- The output is guaranteed to be stable with **old** value until the contamination delay.
 - *Unknown values shown in waveforms as Xs*

- The output is guaranteed to be stable with the **new** value after the propagation delay.
Combinational Logic Timing: complex circuits

° **Propagation delays are additive**
 - Locate the **longest** combination of t_{pd}

° **Contamination delays may not be additive**
 - Locate the **shortest** path of t_{cd}

° **Find propagation and contamination delay of new, combined circuit**
Clocked Device: Contamination and Propagation Delay

- **Timing parameters for clocked devices** are specified in relation to the clock input (rising edge).

- Output unchanged for a time period equal to the contamination delay, t_{cd}, after the rising clock edge.

- New output guaranteed valid after time equal to the propagation delay, t_{Clk-Q}.
 - Follows rising clock edge.
Timing parameters for clocked devices are specified in relation to the clock input (rising edge).

- **D input must** be valid at least t_s (setup time) before the rising clock edge.
- **D input must** be held steady t_h (hold time) after rising clock edge.
- Setup and hold are input restrictions.
 - Failure to meet restrictions causes circuit to operate incorrectly.
The logic driving the flip flop must ensure that setup and hold are met.

- Timing values ($t_{cd} \ t_{pd} \ t_{Clk-Q} \ t_{s} \ t_{h}$)
Analyzing Sequential Circuits

- What is the minimum time between rising clock edges?
 \[T_{\text{min}} = T_{\text{CLK-Q (FFA)}} + T_{pd (G)} + T_s (FFB) \]

- Trace propagation delays from FFA to FFB

- Draw the waveforms!

\[F_{\text{max}} = \quad \]
What is the minimum clock period \(T_{\text{min}} \) of this circuit? Hint: evaluate all FF to FF paths.

Maximum clock frequency is \(1/T_{\text{min}} \).
Analyzing Sequential Circuits

Path FFA to FFB
• $T_{\text{Clk-Q}}(\text{FFA}) + T_{\text{pd}}(\text{H}) + T_s(\text{FFB}) = 5\text{ns} + 5\text{ns} + 2\text{ns} = 12\text{ns}$

Path FFB to FFB
• $T_{\text{Clk-Q}}(\text{FFB}) + T_{\text{pd}}(\text{F}) + T_{\text{pd}}(\text{H}) + T_s(\text{FFB}) = 4\text{ns} + 4\text{ns} + 5\text{ns} + 2\text{ns}$

$F_{\text{max}} = ________
One more issue: make sure Y remains stable for hold time (T_h) after rising clock edge

Remember: contamination delay ensures signal doesn’t change

How long before first change arrives at Y?
- $T_{cd}(FFA) + T_{cd}(G) \geq T_h$
- $1\text{ns} + 2\text{ns} > 2\text{ns}$
Analyzing Sequential Circuits: Hold Time Violations

All paths must satisfy requirements

° Path FFA to FFB
 • $T_{cd}(FFA) + T_{cd}(H) > T_h(FFB) = 1\text{ ns} + 2\text{ns} > 2\text{ns}$

° Path FFB to FFB
 • $T_{cd}(FFB) + T_{cd}(F) + T_{cd}(H) > T_h(FFB) = 1\text{ns} + 1\text{ns} + 2\text{ns} > 2\text{ns}$
Summary

- Maximum clock frequency is a fundamental parameter in sequential computer systems.
- Possible to determine clock frequency from propagation delays and setup time.
- The longest path determines the clock frequency.
- All flip-flop to flip-flop paths must be checked.
- Hold time are satisfied by examining contamination delays.
- The shortest contamination delay path determines if hold times are met.
- Check handout for more details and examples.