ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 27

Counters

Overview

[°] Counters are important components in computers

• The increment or decrement by one in response to input

° Two main types of counters

- Ripple (asynchronous) counters
- Synchronous counters

° Ripple counters

• Flip flop output serves as a source for triggering other flip flops

° Synchronous counters

• All flip flops triggered by a clock signal

Synchronous counters are more widely used in industry.

 Counter: A register that goes through a prescribed series of states

° Binary counter

- Counter that follows a binary sequence
- N bit binary counter counts in binary from n to 2ⁿ⁻¹
- ° Ripple counters triggered by initial Count signal

[°] Applications:

- Watches
- Clocks
- Alarms
- Web browser refresh

Binary Ripple Counter

- Reset signal sets all outputs to 0
- Count signal toggles output of low-order flip flop
- Low-order flip flop provides trigger for adjacent flip flop
- Not all flops change value simultaneously
 - Lower-order flops change first
- Focus on D flip flop implementation

(a) With T flip-flops

 A_0

 A_1

 A_2

 A_3

Fig. 6-8 4-Bit Binary Ripple Counter

Another Asynchronous Ripple Counter

Similar to T flop example on previous slide

ENGIN112 L27: Counters

November 5, 2003

- Each FF output drives the CLK input of the next FF.
- FFs do not change states in exact synchronism with the applied clock pulses.
- There is delay between the responses of successive FFs.
- *Ripple counter* due to the way the FFs respond one after another in a kind of rippling effect.

A ₃	A_2	\mathbf{A}_{1}	A ₀
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
1	0	0	0
1	0	0	1

Synchronous counters

- Synchronous(parallel) counters
 - All of the FFs are triggered simultaneously by the clock input pulses.
 - All FFs change at same time
- ° Remember
 - If J=K=0, flop maintains value
 - If J=K=1, flop toggles
- Most counters are synchronous in computer systems.
- Can also be made from D flops
- Value increments on positive edge

Fig. 6-12 4-Bit Synchronous Binary Counter

November 5, 2003

Synchronous counters

- Same counter as previous slide except Count enable replaced by J=K=1
- Note that clock signal is a square wave
- Clock fans out to all clock inputs

Circuit operation

- [°] Count value increments on each negative edge
- Note that low-order bit (A) toggles on each clock cycle

Synchronous UP/Down counters

- [°] Up/Down Counter can either count up or down on each clock cycle
- ^o Up counter counts from 0000 to 1111 and then changes back to 0000
- Down counter counts from 1111 to 0000 and then back to 1111
- Counter counts up or down each clock cycle
- Output changes occur on clock rising edge

Fig. 6-13 4-Bit Up-Down Binary Counter November 5, 2003

- Counters with parallel load can have a preset value
- ° Load signal indicates that data $(I_3...I_0)$ should be loaded into the counter
- Clear resets counter to all zeros
- Carry output could be used for higher-order bits

Fig. 6-14 4-Bit Binary Counter with Parallel Load

Counters with Parallel Load

Function

Count

Function Table

- If Clear is asserted (0), the counter is cleared ο
- 0 If Load is asserted data inputs are loaded
- ο If Count asserted counter value is incremented

Fig. 6-14 4-Bit Binary Counter with Parallel Load

Binary Counter with Parallel Load and Preset

• Presettable parallel counter with asynchronous preset.

Binary Counter with Parallel Load and Preset

Commercial version of binary counter

Summary

- ° Binary counters can be ripple or synchronous
- ° Ripple counters use flip flop outputs as flop triggers
 - Some delay before all flops settle on a final value
 - Do no require a clock signal
- ° Synchronous counters are controlled by a clock
 - All flip flops change at the same time
- ^o Up/Down counters can either increment or decrement a stored binary value
 - Control signal determines if counter counts up or down
- ° Counters with parallel load can be set to a known value before counting begins.