ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 26

Shift Registers

- Multiple flip flops can be combined to form a data register
- Shift registers allow data to be transported one bit at a time
- ° Registers also allow for parallel transfer
 - Many bits transferred at the same time
- Shift registers can be used with adders to build arithmetic units
- ^o Remember: most digital hardware can be built from combinational logic (and, or, invert) and flip flops
 - Basic components of most computers

- ° Register: Group of Flip-Flops
- ° Ex: D Flip-Flops
- ° Holds a Word (Nibble) of Data
- ^o Loads in Parallel on Clock Transition
- ° Asynchronous Clear (Reset)

Load Control = 1

 New data loaded on next positive clock edge

° Load Control = 0

 Old data reloaded on next positive clock edge

Fig. 6-2 4-Bit Register with Parallel Load

- ° Cascade chain of Flip-Flops
- ° Bits travel on Clock edges
- ° Serial in Serial out, can also have parallel load / read

Parallel Data Transfer

- ° All data transfers on rising clock edge
- [°] Data clocked into register Y

° Serial communications is defined as

• Provides a binary number as a sequence of binary digits, one after another, through one data line.

- ° Parallel communications
 - Provides a binary number through multiple data lines at the same time.

° Parallel-to-serial conversion for serial transmission

Serial Transfer

° Data transfer one bit at a time

° Data loopback for register A

Time	Reg A	Reg B	
T0	1011	0011	
T1	1101	1001	
T2	1110	1100	
T3	0111	0110	
T4	1011	1011	

Fig. 6-4 Serial Transfer from Register A to register B

Transfer from register X to register Y (negative clock edges for this example)

ENGIN112 L26: Shift Registers

November 3, 2003

Pattern recognizer

° Combinational function of input samples

 in this case, recognizing the pattern 1001 on the single input signal

- Slower than parallel
- Low cost
- Share fast hardware on slow data
- Good for multiplexed data

- ° Only one full adder
- Reused for each bit
- Start with loworder bit addition
- Note that carry
 (Q) is saved
- Add multiple values.
 - New values placed in shift register B

Fig. 6-5 Serial Adder

- Shift control used to stop addition
- Generally not a good idea to gate the clock
- Shift register can be arbitrary length
- FA can be built from combin. logic

Fig. 6-5 Serial Adder

Universal Shift Register

- new value at next clock
 cycle:
- Note slightly different than Mano version (Clear)

Input[N]

Q[N-1]

(left)

November 3, 2003

control mux

Q[N+1]

(right)

- Shift registers can be combined together to allow for data transfer
- Serial transfer used in modems and computer peripherals (e.g. mouse)
- ° D flip flops allow for a simple design
 - Data clocked in during clock transition (rising or falling edge)
- ° Serial addition takes less chip area but is slow
- ° Universal shift register allows for many operations
 - The register is programmable.
 - It allows for different operations at different times
- ° Next time: counters (circuits that count!)