
ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 23
Finite State Machine Design Procedure

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Overview

° Design of systems that input flip flops and
combinational logic

° Specifications start with a word description

° Create a state table to indicate next states

° Convert next states and outputs to output and flip flop
input equations

• Reduce logic expressions using truth tables

° Draw resulting circuits.

Lots of opportunities for interesting design

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Concept of the State Machine

Computer Hardware = Datapath + Control

Registers
Combinational Functional

Units (e.g., ALU)
Busses

FSM generating sequences
of control signals

Instructs datapath what to
do next

Qualifiers

Control

Control

Datapath

State

Control
Signal
Outputs

Qualifiers
and
Inputs

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Designing Finite State Machines

° Specify the problem with words

° (e.g. Design a circuit that detects three
consecutive 1 inputs)

° Assign binary values to states

° Develop a state table

° Use K-maps to simplify expressions

° Flip flop input equations and output equations

° Create appropriate logic diagram

° Should include combinational logic and flip
flops

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Example: Detect 3 Consecutive 1 inputs

° State S0 : zero 1s detected

° State S1 : one 1 detected

° State S2 : two 1s detected

° State S3 : three 1s detected

0

° Note that each state has 2 output arrows

° Two bits needed to encode state

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

State Table for Sequence Detector

° Sequence of outputs, inputs,
and flip flop states enumerated
in state table

° Present state indicates current
value of flip flops

° Next state indicates state after
next rising clock edge

° Output is output value on
current clock edge

Present
State

Next
State

A B x A B y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

OutputInput

° S0 = 00

° S1 = 01

° S2 = 10

° S3 = 11

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Finding Expressions for Next State and Output Value

° Create K-map directly from state table (3 columns = 3 K-maps)

° Minimize K-maps to find SOP representations

° Separate circuit for each next state and output value

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Circuit for Consecutive 1s Detector

° Note location of state
flip flops

° Output value (y) is
function of state

° This is a Moore
machine.

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Concept of the State Machine

Example: Odd Parity Checker

Even
[0]

Odd
[1]

Reset

0

0

1 1

Assert output whenever input bit stream has odd # of 1's

State
Diagram

Present State
Even
Even
Odd
Odd

Input
0
1
0
1

Next State
Even
Odd
Odd
Even

Output
0
0
1
1

Symbolic State Transition Table

Output
0
0
1
1

Next State
0
1
1
0

Input
0
1
0
1

Present State
0
0
1
1

Encoded State Transition Table

° Note: Present state and output are the same value

° Moore machine

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Concept of the State Machine

Example: Odd Parity Checker

Next State/Output Functions

NS = PS xor PI; OUT = PS

D

R

Q

Q

Input

CLK PS/Output

\Reset

NS

D FF Implementation

Timing Behavior: Input 1 0 0 1 1 0 1 0 1 1 1 0

Clk

Output

Input 1 0 0 1 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 1 0 1 1 1

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Mealy and Moore Machines

Solution 1: (Mealy)
0/0

Even

Odd

1/11/0

0/1

0
Even

11

0

Reset
[0]

Odd
[1]

Output

InputOutput

Input

Transition
Arc

Output is
dependent only
on current state

O/P is dependent
on current state and
input in Mealy

Solution 2: (Moore)

Mealy Machine: Output is associated with
the state transition
- Appears before the state transition is
completed (by the next clock pulse).

Moore Machine: Output is associated
with the state
-Appears after the state transition
takes place.

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Vending Machine FSM

Step 1. Specify the problemStep 1. Specify the problemStep 1. Specify the problem

Vending
Machine

FSM

N

D

Reset

Clk

Open
Coin

Sensor Gum
Release

Mechanism

qDeliver package of gum after 15 cents deposited

qSingle coin slot for dimes, nickels

qNo change

qDesign the FSM using combinational logic and flip flops

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Vending Machine FSM

State DiagramState DiagramState Diagram

Reset

N

N

N, D

[open]

15¢

0¢

5¢

10¢

D

D

Reuse states
whenever possible

Reuse statesReuse states
whenever possiblewhenever possible

Symbolic State TableSymbolic State Table

Present
State

0¢

5¢

10¢

15¢

D

0
0
1
1
0
0
1
1
0
0
1
1
X

N

0
1
0
1
0
1
0
1
0
1
0
1
X

Inputs Next
State

0¢
5¢

10¢
X
5¢

10¢
15¢
X

10¢
15¢
15¢
X

15¢

Output
Open

0
0
0
X
0
0
0
X
0
0
0
X
1

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Vending Machine FSM

State EncodingState EncodingState Encoding

Next State
D 1 D 0

0 0
0 1
1 0
 X X
0 1
1 0
1 1
X X
1 0
1 1
1 1
X X
1 1
1 1
1 1
X X

Present State
Q 1 Q 0

0 0

0 1

1 0

1 1

D

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

N

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Inputs Output
Open

0
0
0
X
0
0
0
X
0
0
0
X
1
1
1
X

How many flip-flops are needed?

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Vending Machine FSM

Determine F/F implementationDetermine F/F implementationDetermine F/F implementation

K-map for OpenK-map for D0 K-map for D1

Q1 Q0
D N

Q1

Q0

D

N

Q1 Q0
D N

Q1

Q0

D

N

Q1 Q0
D N

Q1

Q0

D

N

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

D Q

QR

D Q

QR

Q0

N

N

Q0

Q1

N

Q1

D

D0

D1 Q1

OPEN

D

0Q

N
CLK

CLK

Vending machine FSM implementation based on D flip-flops(Moore).

0Q

1Q

Q1

Q0

Reset

Reset

Minimized Implementation

ENGIN112 L23: Finite State Machine Design Procedure October 27, 2003

Summary

° Finite state machines form the basis of many digital
systems

° Designs often start from clear specifications

° Develop state diagram and state table

° Optimize using combinational design techniques

° Mealy or Moore implementations possible
• Can model approach using HDL.

