ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 19 Sequential Circuits: Latches

- ° Circuits require memory to store intermediate data
- Sequential circuits use a periodic signal to determine when to store values.
 - A clock signal can determine storage times
 - Clock signals are periodic
- ° Single bit storage element is a flip flop
- ° A basic type of flip flop is a latch
- ° Latches are made from logic gates
 - NAND, NOR, AND, OR, Inverter

- Logical operations which respond to combinations of inputs to produce an output.
 - Call these combinational logic circuits.
- [°] For example, can add two numbers. But:
 - No way of adding two numbers, then adding a third (a sequential operation);
 - No way of remembering or storing information after inputs have been removed.
- To handle this, we need sequential logic capable of storing intermediate (and final) results.

Sequential Circuits

• A stable value can be stored at inverter outputs

State 1

State 2

- S-R latch made from cross-coupled NORs
- ° If Q = 1, set state
- If Q = 0, reset state
- Usually S=0 and R=0
- S=1 and R=1 generates unpredictable results

- Latch made from cross-coupled NANDs
- Sometimes called S'-R' latch
- Usually S=1 and R=1
- S=0 and R=0 generates unpredictable results

S	R	Q	Q	
1	0	1	0	Set state
0	0	1	0	Set state
0	1	0	1	
0	0	0	1	Reset state
1	1	0	0	Undefined

(b) Function table

S	R	Q	\overline{Q}	
0	1	1	0	Sat atata
1	1	1	0	Set state
1	0	0	1	
1	1	0	1	Reset state
0	0	1	1	Undefined

(b) Function table

ENGIN112 L19: Sequential Circuits: Latches

October 17, 2003

S-R Latch with control input

Fig. 5-5 SR Latch with Control Input

- ^o Occasionally, desirable to avoid latch changes
- C = 0 disables all latch state changes
- Control signal enables data change when C = 1
- Right side of circuit same as ordinary S-R latch.

Latch is level-sensitive, in regards to C

Only stores data if C' = 0

- Input value D is passed to output Q when C is high
- Input value D is ignored when C is low

- Z only changes when E is high
- [°] If E is high, Z will follow X

- The D latch stores data indefinitely, regardless of input D values, if C = 0
- Forms basic storage element in computers

Symbols for Latches

Fig. 5-7 Graphic Symbols for Latches

- SR latch is based on NOR gates
- ° S'R' latch based on NAND gates
- [°] D latch can be based on either.
- D latch sometimes called transparent latch

- Latches are based on combinational gates (e.g. NAND, NOR)
- Latches store data even after data input has been removed
- S-R latches operate like cross-coupled inverters with control inputs (S = set, R = reset)
- With additional gates, an S-R latch can be converted to a D latch (D stands for data)
- ^o D latch is simple to understand conceptually
 - When C = 1, data input D stored in latch and output as Q
 - When **C** = **0**, data input **D** ignored and previous latch value output at **Q**
- ° Next time: more storage elements!