ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 17 Encoders and Decoders

Overview

° Binary decoders

- Converts an n-bit code to a single active output
- Can be developed using AND/OR gates
- Can be used to implement logic circuits.

° Binary encoders

- Converts one of 2ⁿ inputs to an n-bit output
- Useful for compressing data
- Can be developed using AND/OR gates

Both encoders and decoders are extensively used in digital systems

- ° Black box with n input lines and 2ⁿ output lines
- ° Only one output is a 1 for any given input

2-to-4 Binary Decoder

Truth Table:

X	Y	F ₀	$\mathbf{F_1}$	\mathbf{F}_2	F ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- From truth table, circuit for 2x4 decoder is:
- Note: Each output is a 2variable minterm (X'Y', X'Y, XY' or XY)

Truth Table:

- ^o Any n-variable logic function can be implemented using a single n-to-2ⁿ decoder to generate the minterms
 - OR gate forms the sum.
 - The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.
- Any combinational circuit with *n* inputs and *m* outputs can be implemented with an n-to-2ⁿ decoder with *m* OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Standard MSI Binary Decoders Example

74138 (3-to-8 decoder)

(a)

- (a) Logic circuit.
- (b) Package pin configuration.
- (c) Function table.

Inputs						Outputs								
Enable Select														
GI	<u>G</u> 2*	C	B	A	10	YI	7.5	13	14	15	1.6	17		
н	L	L	L	L	L	н	н	н	н	Н	Н	н		
Н	L	L	L	н	н	L	н	Н	н	н	Н	н		
Н	L	L	н	L	н	н	L	н	н	н	н	Н		
н	L	L	н	н	H	н	Н	L	н	Н	Н	н		
Н	L	Н	L	L	н	н	н	н	L	Н	Н	н		
Н	L	Н	L	н	Н	H	н	H	н	L	Н	н		
Н	L	H	н	L	н	н	н	н	н	н	L	H -		
H	L	Н	H	н	H	Н	Н	н	н	H	Н	L		
×	н	×	×	×	Н	н	Н	н	Н	н	H	н		
L	×	×	×	×	H	Н	н	н	н	н	н	H		
				G2	* = (G2A	+ G	2B						
						(c)								

Building a Binary Decoder with NAND Gates

° Start with a 2-bit decoder

Note: use of NANDs

Add an enable signal (E)

only one 0 active!

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Use two 3 to 8 decoders to make 4 to 16 decoder

- ° Enable can also be active high
- In this example, only one decoder can be active at a time.
- ° x, y, z effectively select output line for w

Fig. 4-20 4×16 Decoder Constructed with Two 3 \times 8 Decoders

- If the a decoder's output code has fewer bits than the input code, the device is usually called an encoder.
 e.g. 2ⁿ-to-n
- ° The simplest encoder is a 2ⁿ-to-n binary encoder
 - One of 2ⁿ inputs = 1
 - Output is an n-bit binary number

8-to-3 Binary Encoder

At any one time, only one input line has a value of 1		Inputs								Outputs		
one input inte has a value of 1.	I ₀	I 1	I ₂	I 3	I 4	I 5	I 6	I 7	y ₂	y ₁	y ₀	
	1	0	0	0	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	0	0	1	
	0	0	1	0	0	0	0	0	0	1	0	
	0	0	0	1	0	0	0	0	0	1	1	
	0	0	0	0	1	0	0	0	1	0	0	
	0	0	0	0	0	1	0	0	1	0	1	
	0	0	0	0	0	0	1	0	1	1	0	
	0	0	0	0	0	0	0	1	1	1	1	
I ₀												
	\equiv	\rightarrow	$-\mathbf{y}_2$	= I ₄	+ L ₅ ·	+ I ₆ -	⊦ I 7					
I_2 —			• _	•	U	Ū						
	=		— V.	– I.	+ I .	+ T	⊢ T_					
	=		J1	– 1 ₂	1 13	6	∎7					
I_5												
I_6	<u> </u>			•	Ŧ		Ŧ					
	\equiv	ノ	$-\mathbf{y}_0$	$= \mathbf{I}_1$	+ I ₃	+ I ₅ -	⊦ I 7					

8-to-3 Priority Encoder

- What if more than one input line has a value of 1?
- Ignore "lower priority" inputs.
- Idle indicates that no input is a 1.
- Note that polarity of Idle is opposite from Table 4-8 in Mano

Inputs								ts			
I ₀	I 1	I ₂	I 3	I 4	I 5	I 6	I 7	y ₂	y ₁	y ₀	Idle
0	0.	0	0.	0	0	0	0	X	X	X	1
1	0	0	0	0	0	0	0	0	0	0	0
Х	1	0	0	0	0	0	0	0	0	1	0
Х	Х	1	0	0	0	0	0	0	1	0	0
Х	Х	Х	1	0	0	0	0	0	1	1	0
Х	Х	Х	Х	1	0	0	0	1	0	0	0
Х	Х	Х	Х	Х	1	0	0	1	0	1	0
Х	Х	Х	Х	Х	Х	1	0	1	1	0	0
Χ	Χ	Х	Х	Х	Х	Х	1	1	1	1	0

Priority Encoder (8 to 3 encoder)

- Assign priorities to the inputs
- When more than one input are asserted, the output generates the code of the input with the highest priority

Encoder Application (Monitoring Unit)

- [°] Encoder identifies the requester and encodes the value
- ° Controller accepts digital inputs.

Summary

- Decoder allows for generation of a single binary output from an input binary code
 - For an **n**-input binary decoder there are **2**ⁿ outputs
- Decoders are widely used in storage devices (e.g. memories)
 - We will discuss these in a few weeks
- ° Encoders all for data compression
- Priority encoders rank inputs and encode the highest priority input
- ° Next time: storage elements!