ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 15 Magnitude Comparators and Multiplexers

Overview

° Discussion of two digital building blocks

^o Magnitude comparators

- Compare two multi-bit binary numbers
- Create a single bit comparator
- Use repetitive pattern

° Multiplexers

- Select one out of several bits
- Some inputs used for selection
- Also can be used to implement logic

[°] The comparison of two numbers

• outputs: A>B, A=B, A<B

[°] Design Approaches

- the truth table
 - 2²ⁿ entries too cumbersome for large n
- use inherent regularity of the problem
 - reduce design efforts
 - reduce human errors

$$A[3..0] \longrightarrow Magnitude Compare A < B$$
$$B[3..0] \longrightarrow A > B$$

Magnitude Comparator

How can we find A > B?

How many rows would a truth table have?

$$2^8 = 256$$

Find
$$A > B$$

If A = 1001 and B = 0111 is A > B? Why? Because A3 > B3 i.e. A3 . B3' = 1

Therefore, one term in the logic equation for A > B is A3 . B3'

If A = 1010 and B = 1001is A > B? Why?

```
A > B = A3 \cdot B3'
                  + C3 . A2 . B2'
                  + .....
      Because A3 = B3 and
                A2 = B2 and
                A1 > B1
      i.e. C3 = 1 and C2 = 1 and
          A1 B1' = 1
Therefore, the next term in the
logic equation for A > B is
C3 . C2 . A1 . B1'
```

- Algorithm -> logic
 - $A = A_3 A_2 A_1 A_0$; $B = B_3 B_2 B_1 B_0$
 - A=B if $A_3=B_3$, $A_2=B_2$, $A_1=B_1$ and $A_1=B_1$
- [°] Test each bit:
 - equality: x_i= A_iB_i+A_i'B_i'
 - (A=B) = $x_3 x_2 x_1 x_0$
- [°] More difficult to test less than/greater than
 - (A>B) = $A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$
 - $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$
 - Start comparisons from high-order bits
- [°] Implementation
 - $x_i = (A_iB_i'+A_i'B_i)'$

TRU	TH	TABL	.Е

COMPARING INPUTS			CASCADING INPUTS		OUTPUTS				
A _{3,} B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A-B}	O _{A>B}	O _{A < B}	$O_{A=B}$
A ₃ >B ₃	x	х	х	х	×	Х	Ĥ	L	L
A3 < B3	X	X	Х	х	X	X	L	н	L
$A_3 = B_3$	$A_2 > B_2$	X	х	X	×	X	н	L	L
$A_3 = B_3$	A2 <b2< td=""><td>Х</td><td>х</td><td>X</td><td>×</td><td>Х</td><td>L</td><td>н</td><td>L</td></b2<>	Х	х	X	×	Х	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	х	Х	Х	Х	Ĥ	L	L
$A_3 = B_3$	$A_2 = B_2$	A1 < B1	х	X	×	X	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	X	×	X	н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	A0 < B0	×	×	х	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	н	L	L	н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	н	L	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	X	×	н	L	L	н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	н	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	н	н	L	L	L	L

 $\begin{array}{l} \mathsf{H} = \mathsf{HIGH} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \; \mathsf{Voltage} \; \mathsf{Level} \end{array}$

X = Immaterial

° Real-world application

• Thermostat controller

- Select an input value with one or more select bits
- Use for transmitting data
- Allows for conditional transfer of data
- Sometimes called a mux

Quadruple 2-to-1-Line Multiplexer

Multiplexer as combinational modules

- Connect input variables to select inputs of multiplexer (n-1 for n variables)
- Set data inputs to multiplexer equal to values of function for corresponding assignment of select variables
- Using a variable at data inputs reduces size of the multiplexer

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

Implementing a Four- Input Function with a Multiplexer

Typical multiplexer uses

Figure 9.21: Multiplexer example of use.

Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)
- If the select input (E) is 0, the three-state gate has no output

Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)
- If the select input is low, the three-state gate has no output

Summary

^o Magnitude comparators allow for data comparison

- Can be built using and-or gates
- ° Greater/less than requires more hardware than equality

^o Multiplexers are fundamental digital components

- Can be used for logic
- Useful for datapaths
- Scalable

° Tristate buffers have three types of outputs

- 0, 1, high-impedence (Z)
- Useful for datapaths