# **ENGIN 112**

# **Intro to Electrical and Computer Engineering**

Lecture 14

# **Binary Adders and Subtractors**



#### **Overview**

# ° Addition and subtraction of binary data is fundamental

• Need to determine hardware implementation

# ° Represent inputs and outputs

- Inputs: single bit values, carry in
- Outputs: Sum, Carry

#### ° Hardware features

- Create a single-bit adder and chain together
- Same hardware can be used for addition and subtraction with minor changes

# ° Dealing with overflow

• What happens if numbers are too big?

# Half Adder

# ° Add two binary numbers

- A<sub>0</sub>, B<sub>0</sub> -> single bit inputs
- S<sub>0</sub> -> single bit sum
- C<sub>1</sub> -> carry out



Consider single-bit adder for each bit position.



Each bit position creates a sum and carry

- Full adder includes carry in C<sub>i</sub>
- ° Notice interesting pattern in Karnaugh map.



- Full adder includes carry in C<sub>i</sub>
- <sup>°</sup> Alternative to XOR implementation



Reduce and/or representations into XORs

$$S_{i} = !C_{i} \& !A_{i} \& B_{i} \\ # !C_{i} \& A_{i} \& !B_{i} \\ # C_{i} \& !A_{i} \& !B_{i} \\ # C_{i} \& A_{i} \& B_{i} \end{bmatrix}$$

$$S_{i} = !C_{i} \& (!A_{i} \& B_{i} \# A_{i} \& !B_{i})$$
$$\# C_{i} \& (!A_{i} \& !B_{i} \# A_{i} \& B_{i})$$

 $S_{i} = !C_{i} \& (A_{i} $ B_{i}) \\ \# C_{i} \& !(A_{i} $ B_{i})$ 

 $S_i = C_i \ \$ \ (A_i \ \$ \ B_i)$ 

- Now consider implementation of carry out
- ° Two outputs per full adder bit ( $C_{i+1}$ ,  $S_i$ )



- Now consider implementation of carry out
- ° Minimize circuit for carry out  $C_{i+1}$



#### **Full Adder**

$$C_{i+1} = A_{i} \& B_{i} \\ \# C_{i} !A_{i} \& B_{i} \\ \# C_{i} \& A_{i} \& !B_{i} \\ C_{i+1} = A_{i} \& B_{i} \\ \# C_{i} \& (!A_{i} \& B_{i} \# A_{i} \& !B_{i}) \\ C_{i+1} = A_{i} \& B_{i} \# C_{i} \& (A_{i} $B_{i}) \\ Recall: \\ S_{i} = C_{i} $(A_{i} $B_{i}) \\ C_{i+1} = A_{i} \& B_{i} \# C_{i} \& (A_{i} $B_{i}) \\ C_{i+1} = A_{i} \& B_{i} \# C_{i} \& (A_{i} $B_{i}) \\ \end{array}$$

° Full adder made of several half adders



Hardware repetition simplifies hardware design



# A full adder can be made from two half adders (plus an OR gate).

# **Full Adder**

# <sup>°</sup> Putting it all together

- Single-bit full adder
- Common piece of computer hardware



- ° Chain single-bit adders together.
- What does this do to delay?



## **Negative Numbers – 2's Complement.**

## <sup>°</sup> Subtracting a number is the same as:

- 1. Perform 2's complement
- 2. Perform addition
- ° If we can augment adder with 2's complement hardware?

$$l_{10} = 0l_{16} = 0000001$$
  
 $-l_{10} = FF_{16} = 1111111$ 

$$128_{10} = 80_{16} = 10000000$$
$$-128_{10} = 80_{16} = 10000000$$

#### 4-bit Subtractor: E = 1





#### **Overflow in two's complement addition**

- Definition: When two values of the same signs are added:
  - Result won't fit in the number of bits provided
  - Result has the opposite sign.



# Assumes an N-bit adder, with bit N-1 the MSB

| 00   | 01   | 11   | 10   | 00   | 11   |
|------|------|------|------|------|------|
| 0010 | 0011 | 1110 | 1101 | 0010 | 1110 |
| 0011 | 0110 | 1101 | 1010 | 1100 | 0100 |
|      |      |      |      |      |      |
| 0101 | 1001 | 1011 | 0111 | 1110 | 0010 |
| 2    | 3    | -2   | -3   | 2    | -2   |
| 3    | 6    | -3   | -6   | -4   | 4    |
| 5    | -7   | -5   | 7    | -2   | 2    |
|      | OFL  |      | OFL  |      |      |

 Addition and subtraction are fundamental to computer systems

# <sup>o</sup> Key – create a single bit adder/subtractor

- Chain the single-bit hardware together to create bigger designs
- ° The approach is call *ripple-carry* addition
  - Can be slow for large designs
- ° Overflow is an important issue for computers
  - Processors often have hardware to detect overflow
- ° Next time: encoders/decoder.