ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 9

More Karnaugh Maps and Don't Cares



Overview

- Karnaugh maps with four inputs
 - Same basic rules as three input K-maps
- ° Understanding prime implicants
 - Related to minterms
- ° Covering all implicants
- Our Cares to simplify functions
 - Don't care outputs are undefined
- Summarizing Karnaugh maps

Karnaugh Maps for Four Input Functions

- Represent functions of 4 inputs with 16 minterms
- Use same rules developed for 3-input functions
- Note bracketed sections shown in example.

						\	<i>y</i> ~			
					ı	vx\	0 0	0 1	11	10
					1	00	w'r'v'7'	w'x'y'z	w'r'v7	w'r'v7'
	m_0	m_1	m_3	m_2		00	W X y Z,	W X Y Z	W X YZ,	W X YZ
						01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
	m_4	m_5	m_7	m_6		ſ				
						11	wxy'z'	wxy'z	wxyz	wxyz'
	m_{12}	m_{13}	m_{15}	m_{14}	w ·					
						10	wx'y'z'	wx'y'z	wx'yz	wx'yz'
	m_8	m_9	m_{11}	m_{10}	,					,
(2)				<i>z</i> (b)						
(a)				(0)						

Fig. 3-8 Four-variable Map

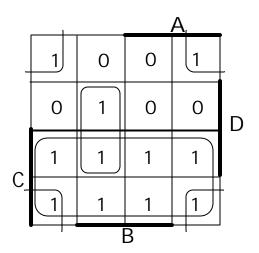
 \boldsymbol{x}

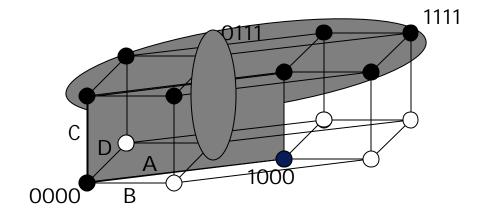
Karnaugh map: 4-variable example

°
$$F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$$

F =

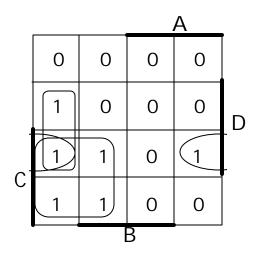
$$C + A'BD + B'D'$$



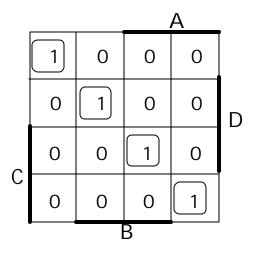


Solution set can be considered as a coordinate System!

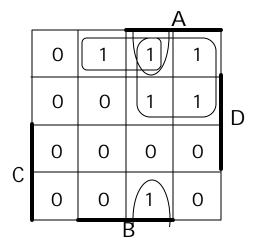
Design examples



K-map for LT



K-map for EQ



K-map for GT

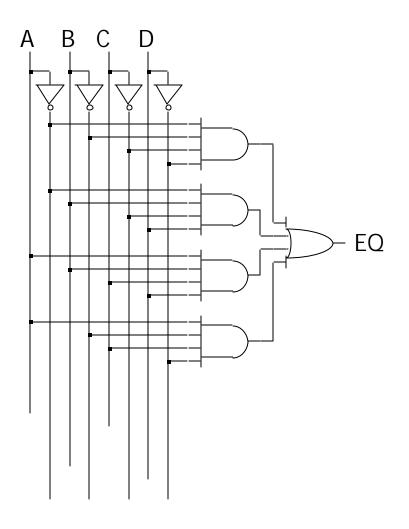
$$LT = A'B'D + A'C + B'CD$$

$$EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD'$$

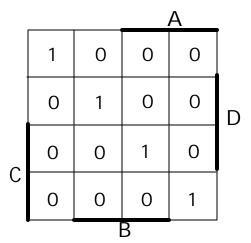
$$GT = BC'D' + AC' + ABD'$$

Can you draw the truth table for these examples?

Physical Implementation



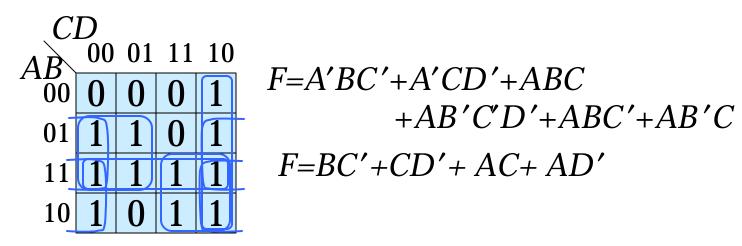
- ° Step 1: Truth table
- ° Step 2: K-map
- Step 3: Minimized sum-ofproducts
- Step 4: Physical implementation with gates



K-map for EQ September 22, 2003

Karnaugh Maps

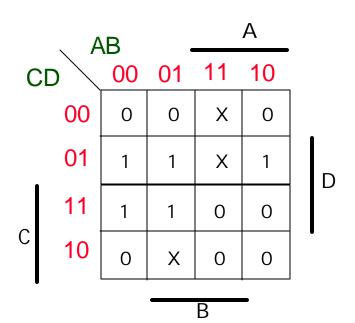
° Four variable maps.



- Need to make sure all 1's are covered
- ° Try to minimize total product terms.
- Design could be implemented using NANDs and NORs

Karnaugh maps: Don't cares

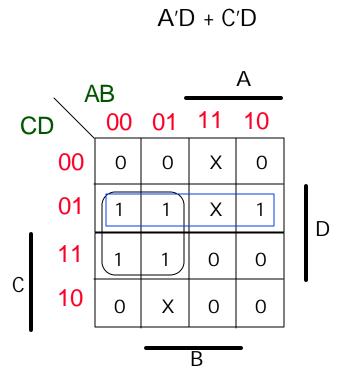
- In some cases, outputs are undefined
- ° We "don't care" if the logic produces a 0 or a 1
- ° This knowledge can be used to simplify functions.



- Treat X's like either 1's or 0's
- Very useful
- OK to leave some X's uncovered

Karnaugh maps: Don't cares

- ° $f(A,B,C,D) = \sum m(1,3,5,7,9) + d(6,12,13)$
 - without don't cares

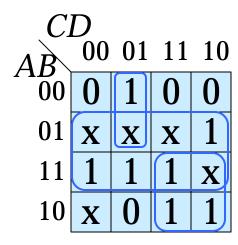


A	В	C	D	f
0	0	0	0	0
	0	0	1	1
0 0 0 0 0	0	1	0	1 0 1 0 1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	X
0	1	1	1	1
1	0	0	0	0
1	0	0	1	
1	0	1	0	1 0
1	0	1	1	0
1	1	0	0	X
1	1	0	1	X
1	1	1	0	0
1	1	1	1	0

Don't Care Conditions

- o In some situations, we don't care about the value of a function for certain combinations of the variables.
 - these combinations may be impossible in certain contexts
 - or the value of the function may not matter in when the combinations occur
- In such situations we say the function is incompletely specified and there are multiple (completely specified) logic functions that can be used in the design.
 - so we can select a function that gives the simplest circuit
- When constructing the terms in the simplification procedure, we can choose to either cover or not cover the don't care conditions.

Map Simplification with Don't Cares



$$F=A'C'D+B+AC$$

° Alternative covering.

$$F=A'B'C'D+ABC'+BC+AC$$

Karnaugh maps: don't cares (cont'd)

$$^{\circ}$$
 f(A,B,C,D) = S m(1,3,5,7,9) + d(6,12,13)

• f =

$$A'D + C'D$$

				Α	
	0	0	X	0	
	1	1	X	1	D
C	1	1	0	0	
С	0	X	0	0	
			3	<u> </u>	

without don't cares with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as
1s or 0s
depending on which is more
advantageous

Definition of terms for two-level simplification

° Implicant

Single product term of the ON-set (terms that create a logic 1)

Prime implicant

 Implicant that can't be combined with another to form an implicant with fewer literals.

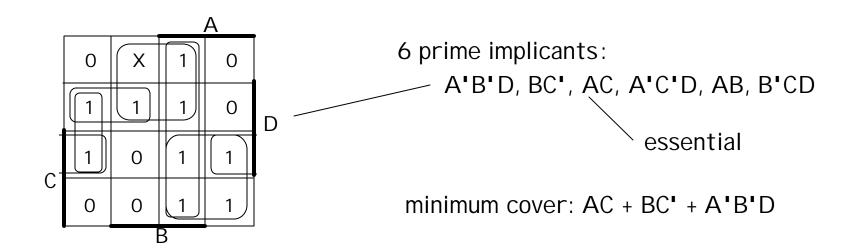
Essential prime implicant

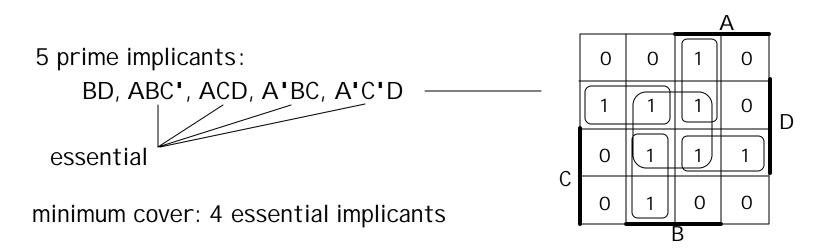
- Prime implicant is essential if it alone covers a minterm in the K-map
- Remember that all squares marked with 1 must be covered

° Objective:

- Grow implicant into prime implicants (minimize literals per term)
- Cover the K-map with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms





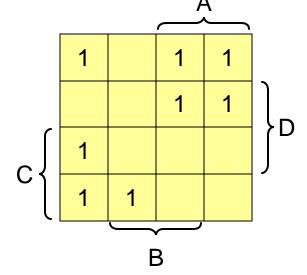
Prime Implicants

Any single 1 or group of 1s in the Karnaugh map of a function F is an implicant of F.

A product term is called a prime implicant of F if it cannot be combined with another term to eliminate a

variable.

Example:



If a function F is represented by this Karnaugh Map. Which of the following terms are implicants of F, and which ones are prime implicants of F?

(a) AC'D'

Implicants:

(b) BD

- (a),(c),(d),(e)
- (c) A'B'C'D'
- (d) AC'

- Prime Implicants:
- (e) B'C'D'

(d),(e)

Essential Prime Implicants

A product term is an essential prime implicant if there is a minterm that is only covered by that prime implicant.

- The minimal sum-of-products form of F must include all the essential prime implicants of F.

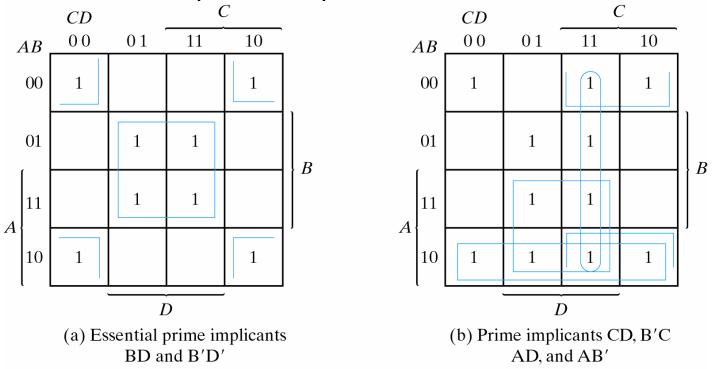


Fig. 3-11 Simplification Using Prime Implicants

September 22, 2003

Summary

- K-maps of four literals considered
 - Larger examples exist
- Don't care conditions help minimize functions
 - Output for don't cares are undefined
- Result of minimization is minimal sum-of-products
- Result contains prime implicants
- Essential prime implicants are required in the implementation