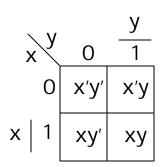

ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 8

Minimization with Karnaugh Maps


Overview

- K-maps: an alternate approach to representing Boolean functions
- K-map representation can be used to minimize Boolean functions
- ° Easy conversion from truth table to K-map to minimized SOP representation.
- ° Simple rules (steps) used to perform minimization
- Leads to minimized SOP representation.
 - Much faster and more more efficient than previous minimization techniques with Boolean algebra.

Karnaugh maps

- Alternate way of representing Boolean function
 - All rows of truth table represented with a square
 - Each square represents a minterm
- Easy to convert between truth table, K-map, and SOP
 - Unoptimized form: number of 1's in K-map equals number of minterms (products) in SOP
 - Optimized form: reduced number of minterms

 $F = S(m_0, m_1) = x'y + x'y'$

Х	У	F
0	0	1
0	1	1
1	0	0
1	1	0

Karnaugh Maps

- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

$$A = \begin{bmatrix} B & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 $F = AB' + A'B$

$$A = \begin{bmatrix} B & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$F=AB+A'B+AB'$$

° Three variable maps.

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

Rules for K-Maps

- We can reduce functions by circling 1's in the K-map
- Each circle represents minterm reduction
- Following circling, we can deduce minimized and-or form.

Rules to consider

- **₹** Every cell containing a 1 must be included at least once.
- The largest possible "power of 2 rectangle" must be enclosed.
- The 1's must be enclosed in the smallest possible number of rectangles.

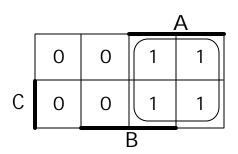
Example

Karnaugh Maps

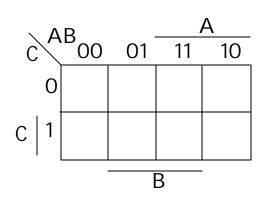
- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

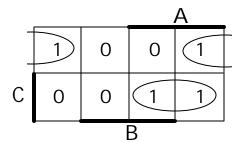
$$A = \begin{bmatrix} B & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 $F = AB' + A'B'$

$$A = \begin{bmatrix} B & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $F = AB + A'B + AB'$
 $1 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ $F = A + B$


° Three variable maps.

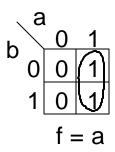
$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

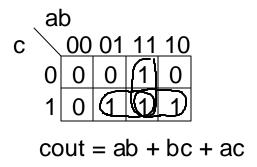

Karnaugh maps

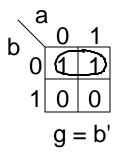

Numbering scheme based on Gray–code

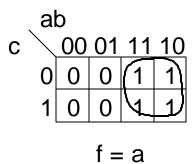
- e.g., 00, 01, 11, 10
- Only a single bit changes in code for adjacent map cells
- This is necessary to observe the variable transitions

$$G(A,B,C) = A$$

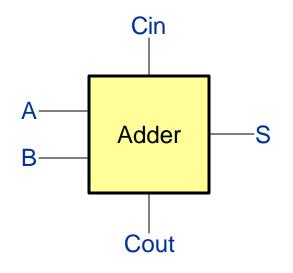


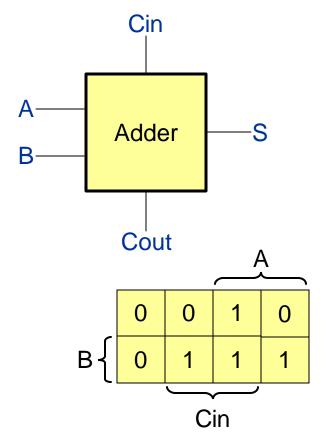



$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

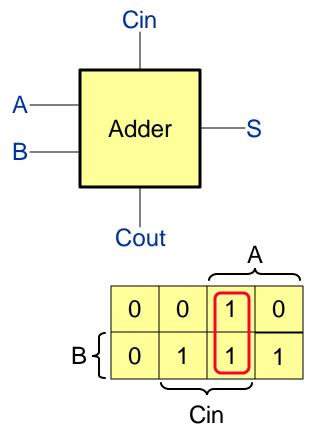

More Karnaugh Map Examples

° Examples

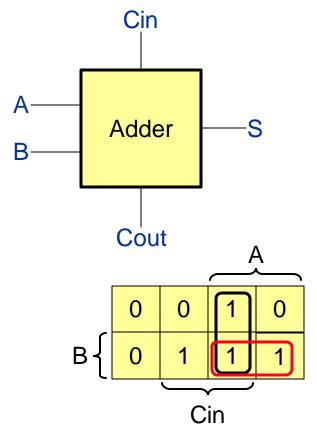



- 1. Circle the largest groups possible.
- 2. Group dimensions must be a power of 2.
- 3. Remember what circling means!

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

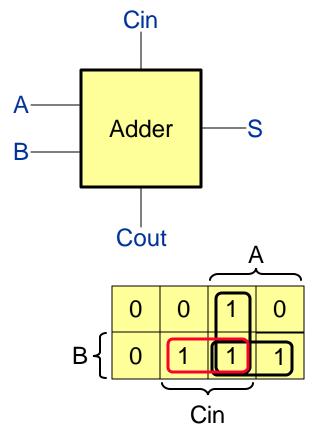

How to use a Karnaugh
Map instead of the
Algebraic simplification?

$$= (A' + A)BCin + (B' + B)ACin + (Cin' + Cin)AB$$


A	B	Cin	S	Cout
0	0	0	0	0 ←
0	0	1	1	0 ←
0	1	0	1	0 ←
0	1	1	0	1 ←
1	0	0	1	0 ←
1	0	1	0	1 ←
1	1	0	0	1 ←
1	1	1	1	1 ←

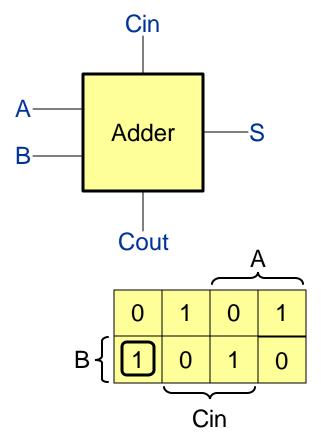
Karnaugh Map for Cout

Karnaugh Map for Cour				
Kallaudii Wad Idi Call	Karnaugh	Man	for	$C_{\Delta \cup 1}$
Talliaugii Map Iol Coa	Namaugn	ινιαμ	101	Coul

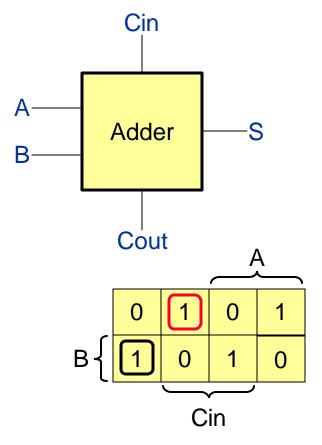

A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Karnaugh Map for Cout			_	_
	Karnaugh	Map	for	Cout

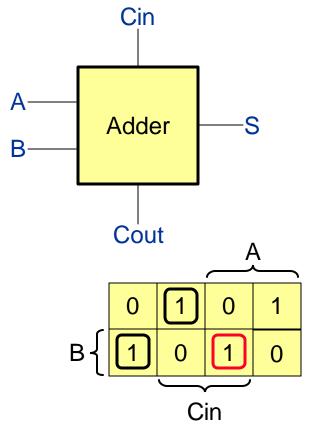
A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1


$$Cout = Acin + AB$$

Karnaugh	Man	for	Cout
raniaagn	ινιαρ	101	Odu

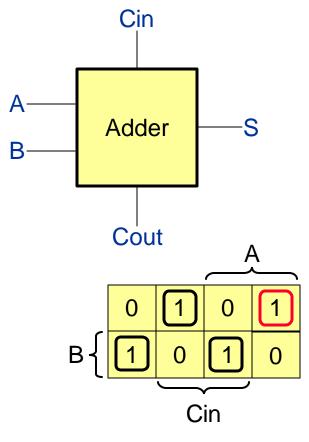

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Cout = ACin + AB + BCin$$


A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = A'BCin'

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1


S = A'BCin' + A'B'Cin

-	4	В	Cin	S	Cout
()	0	0	0	0
()	0	1	1	0
()	1	0	1	0
()	1	1	0	1
1		0	0	1	0
1		0	1	0	1
1		1	0	0	1
1		1	1	1	1

S = A'BCin' + A'B'Cin + ABCin

Can you draw the circuit diagrams?

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = A'BCin' + A'B'Cin + ABCin + AB'Cin'

No Possible Reduction!

Summary

- Karnaugh map allows us to represent functions with new notation
- Representation allows for logic reduction.
 - Implement same function with less logic
- Each square represents one minterm
- Each circle leads to one product term
- Not all functions can be reduced
- Each circle represents an application of:
 - Distributive rule -- x(y + z) = xy + xz
 - Complement rule x + x' = 1