# **ENGIN 112**

# **Intro to Electrical and Computer Engineering**

#### Lecture 5

# **Boolean Algebra**

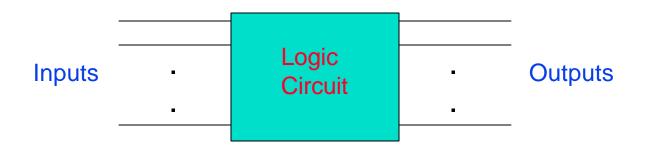


#### **Overview**

# ° Logic functions with 1's and 0's

- Building digital circuitry
- ° Truth tables
- ° Logic symbols and waveforms
- ° Boolean algebra
- ° Properties of Boolean Algebra
  - Reducing functions
  - Transforming functions

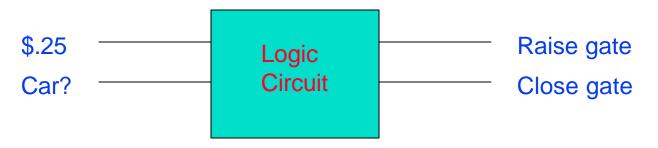
° Analysis problem:



- Determine binary outputs for each combination of inputs
- Design problem: given a task, develop a circuit that accomplishes the task
  - Many possible implementation
  - Try to develop "best" circuit based on some criterion (size, power, performance, etc.)

## **Toll Booth Controller**

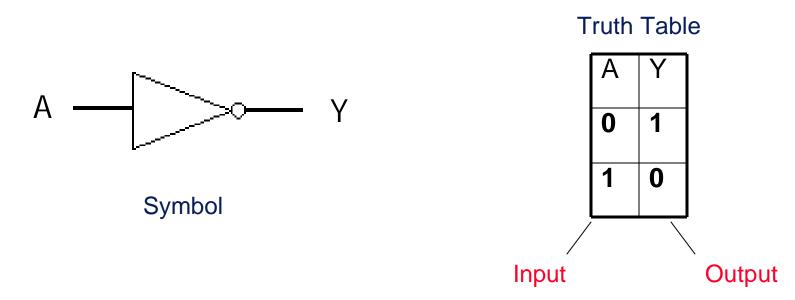
- ° Consider the design of a toll booth controller
- <sup>°</sup> Inputs: quarter, car sensor
- ° Outputs: gate lift signal, gate close signal



- <sup>°</sup> If driver pitches in quarter, raise gate.
- ° When car has cleared gate, close gate.



## **Describing Circuit Functionality: Inverter**



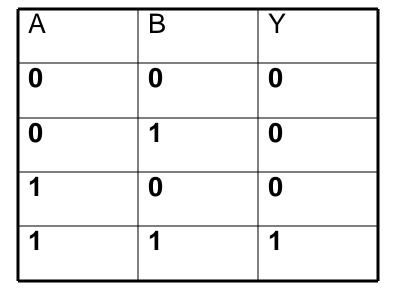
- Basic logic functions have symbols.
- The same functionality can be represented with truth tables.
  - Truth table completely specifies outputs for all input combinations.
- The above circuit is an inverter.
  - An input of 0 is inverted to a 1.
  - An input of 1 is inverted to a 0.

#### The AND Gate

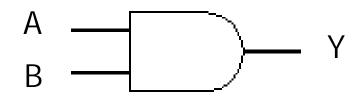


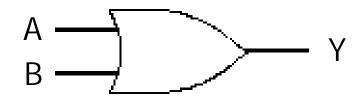
So, if the two inputs signals are asserted (high) the output will also be asserted.
Otherwise, the output will be deasserted (low).





September 12, 2003





- <sup>°</sup> This is an OR gate.
- So, if either of the two input signals are asserted, or both of them are, the output will be asserted.

| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

## **Describing Circuit Functionality: Waveforms**

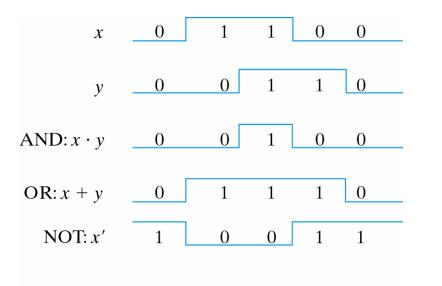


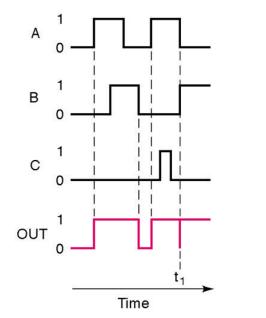
Fig. 1-5 Input-output signals for gates

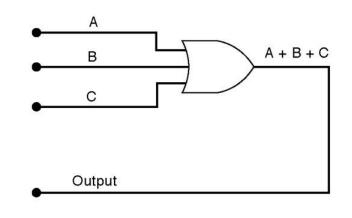
| A | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

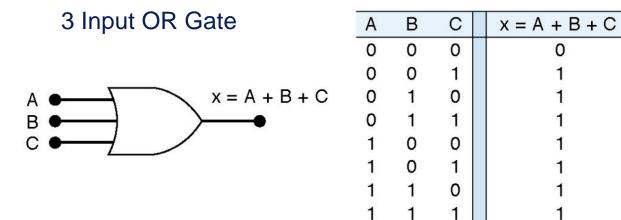
AND Gate

- Waveforms provide another approach for representing functionality.
- Values are either high (logic 1) or low (logic 0).
- ° Can you create a truth table from the waveforms?

## **Consider three-input gates**

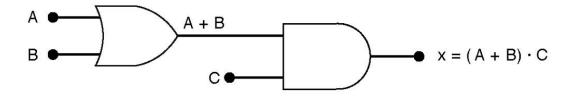






ENGIN112 L5: B

- <sup>°</sup> How to interpret A•B+C?
  - Is it A•B ORed with C?
  - Is it A ANDed with B+C ?
- Order of precedence for Boolean algebra: AND before OR.
- <sup>o</sup> Note that parentheses are needed here :



- A Boolean algebra is defined as a closed algebraic system containing a set K or two or more elements and the two operators, . and +.
- Useful for identifying and *minimizing* circuit functionality
- ° Identity elements
  - a + 0 = a
  - a . 1 = a
- ° 0 is the identity element for the + operation.
- ° 1 is the identity element for the . operation.

**Commutativity and Associativity of the Operators** 

° **The** Commutative Property:

#### For every a and b in K,

- a + b = b + a
- a.b=b.a
- ° **The** Associative Property:

# For every a, b, and c in K,

- a + (b + c) = (a + b) + c
- a.(b.c) = (a.b).c

**Distributivity of the Operators and Complements** 

• **The** Distributive Property:

For every a, b, and c in K,

- a+(b.c)=(a+b).(a+c)
- a.(b+c)=(a.b)+(a.c)
- The Existence of the Complement:

# For every a in K there exists a unique element called a' (*complement of a*) such that,

- a + a' = 1
- a.a'=0
- To simplify notation, the . operator is frequently omitted. When two elements are written next to each other, the AND (.) operator is implied...
  - a+b.c=(a+b).(a+c)
  - a + bc = ( a + b )( a + c )

- <sup>o</sup> The principle of *duality* is an important concept. This says that if an expression is valid in Boolean algebra, the dual of that expression is also valid.
- To form the dual of an expression, replace all + operators with . operators, all . operators with + operators, all ones with zeros, and all zeros with ones.
- ° Form the dual of the expression

a + (bc) = (a + b)(a + c)

° Following the replacement rules...

a(b + c) = ab + ac

# <sup>o</sup> Take care not to alter the location of the parentheses if they are present.

<sup>°</sup> This theorem states:

a'' = a

- $^{\circ}$  Remember that aa' = 0 and a+a'=1.
  - Therefore, a' is the complement of a and a is also the complement of a'.
  - As the complement of a' is unique, it follows that a''=a.
- Taking the double inverse of a value will give the initial value.

- This theorem states: a + ab = a a(a+b) = a
- To prove the first half of this theorem:

 $a + ab = a \cdot 1 + ab$ = a (1 + b)= a (b + 1)= a (1)

a + ab = a

**DeMorgan's Theorem** 

- ° A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: (a + b)' = a'b' (ab)' = a' + b'
- Complement the expression
  a(b + z(x + a')) and simplify.

$$(a(b+z(x + a')))' = a' + (b + z(x + a'))'$$
  
= a' + b'(z(x + a'))'  
= a' + b'(z' + (x + a')')  
= a' + b'(z' + x'a'')  
= a' + b'(z' + x'a)

- Basic logic functions can be made from AND, OR, and NOT (invert) functions
- The behavior of digital circuits can be represented with waveforms, truth tables, or symbols
- Primitive gates can be combined to form larger circuits
- Boolean algebra defines how binary variables can be combined
- Rules for associativity, commutativity, and distribution are similar to algebra
- **DeMorgan's rules are important.** 
  - Will allow us to reduce circuit sizes.