ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 2

Number Systems

Russell Tessier

KEB 309 G

tessier@ecs.umass.edu

Overview

- The design of computers
 - It all starts with numbers
 - Building circuits
 - Building computing machines
- ° Digital systems
- Understanding decimal numbers
- ° Binary and octal numbers
 - The basis of computers!
- ° Conversion between different number systems

Digital Computer Systems

- ° Digital systems consider discrete amounts of data.
- ° Examples
 - 26 letters in the alphabet
 - 10 decimal digits
- ° Larger quantities can be built from discrete values:
 - Words made of letters
 - Numbers made of decimal digits (e.g. 239875.32)
- ° Computers operate on binary values (0 and 1)
- Easy to represent binary values electrically
 - Voltages and currents.
 - Can be implemented using circuits
 - Create the building blocks of modern computers

Understanding Decimal Numbers

- Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
- ° But how many items does a decimal number represent?
 - $8653 = 8x10^3 + 6x10^2 + 5x10^1 + 3x10^0$
- ° What about fractions?
 - $97654.35 = 9x10^4 + 7x10^3 + 6x10^2 + 5x10^1 + 4x10^0 + 3x10^{-1} + 5x10^{-2}$
 - In formal notation -> (97654.35)₁₀
- ° Why do we use 10 digits, anyway?

Understanding Octal Numbers

- Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)
- ° How many items does an octal number represent?
 - $(4536)_8 = 4x8^3 + 5x8^2 + 3x8^1 + 6x8^0 = (1362)_{10}$
- What about fractions?
 - $(465.27)_8 = 4x8^2 + 6x8^1 + 5x8^0 + 2x8^{-1} + 7x8^{-2}$
- Octal numbers don't use digits 8 or 9
- Who would use octal number, anyway?

Understanding Binary Numbers

- Binary numbers are made of <u>binary digits</u> (bits):
 - 0 and 1
- Output Property of the second of the seco
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- ° What about fractions?
 - $(110.10)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2}$
- Groups of eight bits are called a byte
 - (11001001)₂
- Groups of four bits are called a nibble.
 - (1101) ₂

Why Use Binary Numbers?

Fig. 1-3 Example of binary signals

- Easy to represent 0 and 1 using electrical values.
- Possible to tolerate noise.
- Easy to transmit data
- Easy to build binary circuits.

Conversion Between Number Bases

- Already demonstrated how to convert from binary to decimal.
- Hexadecimal described in next lecture.

Convert an Integer from Decimal to Another Base

For each digit position:

- 1. Divide decimal number by the base (e.g. 2)
- 2. The remainder is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for $(13)_{10}$:

	Integer Quotier		Remainder	Coefficient
13/2 =	6	+	1/2	$a_0 = 1$
6/2 =	3	+	0	$a_1 = 0$
3/2 =	1	+	1/2	$a_{2} = 1$
1/2 =	0	+	1/2	$a_{3}^{-} = 1$

Answer
$$(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$$

Convert an Fraction from Decimal to Another Base

For each digit position:

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The *integer* is the highest-order digit

Intoacr

3. Repeat first two steps until fraction becomes zero.

Example for $(0.625)_{10}$:

	meger	Г	Taction		Coemcient
0.625 x	2 =	1	+	0.25	a ₋₁ = 1
0.250 x	2 =	0	+	0.50	$a_{-2} = 0$
0.500 x	2 =	1	+	0	$a_{-3}^{-} = 1$

Eraction

Answer
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

Coofficient

The Growth of Binary Numbers

n	2 ⁿ
0	20=1
1	21=2
2	2 ² =4
3	2 ³ =8
4	24=16
5	2 ⁵ =32
6	2 ⁶ =64
7	2 ⁷ =128

n	2 ⁿ
8	28=256
9	2 ⁹ =512
10	2 ¹⁰ =1024
11	211=2048
12	212=4096
20	2 ²⁰ =1M
30	2 ³⁰ =1G
40	2 ⁴⁰ =1T

Mega

Giga

Tera

Binary Addition

- ° Binary addition is very simple.
- ° This is best shown in an example of adding two binary numbers...

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract (10111)₂ from (1001101)₂...

Binary Multiplication

 Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Convert an Integer from Decimal to Octal

For each digit position:

- 1. Divide decimal number by the base (8)
- 2. The remainder is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for (175)_{10:}

	Integer Quotie		Remainder	Coefficient
175/8 =	21	+	7/8	$a_0 = 7$
21/8 =	2	+	5/8	$a_1 = 5$
2/8 =	0	+	2/8	$a_{2} = 2$

Answer
$$(175)_{10} = (a_2 a_1 a_0)_2 = (257)_8$$

Convert an Fraction from Decimal to Octal

For each digit position:

- 1. Multiply decimal number by the base (e.g. 8)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for $(0.3125)_{10}$:

Intege	r F	ractio	on	Coefficient	
0.3125 x 8 =	2	+	5	a ₋₁ = 2	
$0.5000 \times 8 =$	4	+	0	$a_{-2} = 4$	

Answer
$$(0.3125)_{10} = (0.24)_{8}$$

Summary

- Binary numbers are made of binary digits (bits)
- Binary and octal number systems
- Conversion between number systems
- Addition, subtraction, and multiplication in binary

