
Securing the Data Path of Next-Generation

Router Systems

Tilman Wolf, Russell Tessier, and Gayatri Prabhu

Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA USA

Abstract

As the technology used to implement computer network infrastructure advances,
networking resources are becoming more vulnerable to attack. Recent router designs
are based on general-purpose programmable processors, which increase their poten-
tial vulnerability. To address this issue, a Secure Packet Processing platform has
been developed that can flexibly protect emerging router systems. Both instruction-
level operation of embedded processors and I/O operations of router ports are mon-
itored to detect anomalous behavior. If such behavior is detected, a recovery system
is invoked to restore the system into an operational state. Experimental results show
that processor-based attacks can generally be determined by a processing monitor
within a single instruction. I/O anomalies, including unexpected packet broadcast
or delay, can be detected by an I/O monitor with limited overhead. Overall, the
system overhead for secure monitoring is limited to a fraction of the overall system
space, memory, and power budget.

Key words: network security, router design, embedded processor, processor
monitor

Corresponding Author: Tilman Wolf, wolf@ecs.umass.edu, ECE Department,
Knowles 211C, University of Massachusetts, Amherst, MA 01003 USA, +1-
413-545-0757 (voice), +1-413-545-1993 (fax).

1 Introduction

Computer networks, in particular the Internet, are an essential part of the
global communication infrastructure. As our society relies increasingly on data

Email address: {wolf,tessier,gprabhu}@ecs.umass.edu (Tilman Wolf,
Russell Tessier, and Gayatri Prabhu).

Preprint submitted to Elsevier 20 February 2010

networks for business and personal communication, the value of this infrastruc-
ture increases and makes it more attractive to potential attackers. Networks
have been used for several decades to launch attacks against computer sys-
tems (e.g., remote end-system intrusion). More recently, the network itself has
become a target for attacks, in which Distributed Denial-of-service (DDoS)
attacks have been used to overwhelm Internet access links of target systems
(e.g., for the purpose of extortion).

Separately, novel functions are being introduced into networks: ubiquitous net-
work access to personal mobile devices, new network applications and business
models, and new protocols for high-performance and secure communication.
To support these features, the computer networking community is currently in
the process of redesigning the fundamental architecture of the next-generation
Internet [1] (with an intended deployment in the coming decade). The redesign
of the Internet architecture encompasses many aspects ranging from all-optical
transmission to sensor networks, and distributed protocols and applications.
Routers, which represent the fundamental building blocks of any network, are
the focus of our work.

Routers need to perform packet processing to implement protocols correctly.
Traditionally, this processing has been implemented in application-specific in-
tegrated circuits (ASICs) for performance reasons. As networks have become
more diverse and new protocols have been developed, the fixed functionality of
ASICs has been replaced by software-programmable packet processing systems
using general-purpose processors. This type of data path programmability is
already available in some Internet routers and is expected to be present in a
majority of network routers in the near future [2]. These router designs provide
more functionality in the network core and thus increase the area of attack.

The vulnerability of network devices is inherent in their functionality. Routers
connect links in a network and are thus remotely reachable. For attackers, this
reachability translates into an easy path for targeting remote exploits onto an
important infrastructure component. Current router systems do not provide
security mechanisms at the hardware level and thus are at significant risk for
attack. A recent study on network devices in today’s Internet shows that 2.46%
of enterprise-class devices and 41.6% of consumer-class devices exhibit vulner-
abilities [3]. As the network’s attack value increases and expanded amounts of
network functionality expose the attack surface, it is only a question of time
until computer network infrastructure becomes a prime target of attack.

In this paper, we present a router design that provides fundamental security
capabilities for the data path of next-generation network systems to protect
crucial networking infrastructure. Our main idea is to expand packet process-
ing systems – which are the central components in router systems – to in-
clude monitoring subsystems that can verify correct operation. In particular,

2

a monitor can determine when a packet processor deviates from the sequence
of operations that is considered correct by monitoring the instruction flow.
Our specific contributions in this paper are:

• The design of a Secure Packet Processing Platform (SPPP), which uses
hardware monitors to detect deviation from normal processing behavior at
the instruction level.

• The design of a recovery system for the SPPP that can recover a router
system if problems with packet processing are detected.

• The evaluation of the effectiveness of the system as well as an estimation of
the resource overhead for the SPPP.

The remainder of the paper is structured as follows. Section 2 discusses related
work. The overall SPPP architecture is introduced in Section 3. Performance
estimates are presented in Section 4. Section 5 summarizes and concludes this
paper.

2 Related Work

Extensions to the feature set of the original Internet architecture [4] have been
proposed in many forms. Many proposed architectures include software pro-
cessing in the data path of routers, spanning active networks [5], programmable
routers [2], and configurable protocol stacks [6]. In next-generation networks,
where deviations from the current Internet architecture [1] can be considered,
a variety of protocol features and data path services can be implemented in
routers [7, 8]. These services could be implemented on a variety of platforms
ranging from workstation routers [9] to programmable routers [10] and virtual-
ized router platforms [11]. Most high-performance processing platform use an
embedded multi-processor system-on-chip (MPSoC) at their core, for example
a network processor (Intel IXP2400 [12], EZchip NP-3 [13], or LSI APP [14]).
Several router designs that use such embedded packet processing platforms
have been demonstrated [15, 16].

Although our work focuses on packet processing platforms, their vulnerability
is certainly not the only security concern in networks: end-system vulnera-
bilities have led to large-scale “bot nets” [17], various types of DoS attacks
have been deployed [18], timing attacks can affect protocol behavior [19], and
protocol vulnerabilities can be exploited [20]. However, as programmability is
increased, the protection of packet processing becomes an increasingly impor-
tant concern. So far, this topic has received little attention. Some aspects of
this problem tie into embedded system security due to the embedded nature
of packet processing platforms.

3

A wide range of approaches can be used to attack embedded systems [21]. Ravi
et al. describe mechanisms to achieve physical security by employing tamper
resistant designs [22]. Wood et al. consider a networked scenario where systems
are exposed to remote attacks [23]. Embedded systems are also susceptible to
side-channel attacks (e.g., differential power analysis [24]), although we do not
consider this issue in our work. Gogniat et al. [25] have developed a general,
hardware-based architecture to protect embedded systems against a range of
attacks, although the proposed monitors are not described.

To address general security concerns in packet processing systems, constrained
programming environments have been proposed [26]. However, next-generation
networks require a fully functional general-purpose programming environment.
In our work, we achieve security by monitoring processors. Monitoring has
been used in the system by Arora et al. [27] and the IMPRES system [28],
but we use a finer granularity of monitoring. The SAFE-OPS system by Zam-
breno et al. [29] uses information that is collected across multiple executed
instructions to determine valid operation. This system can detect errors and
attacks at the end of such a sequence, whereas our monitor may immediately
detect the first instruction that deviates [30].

Abadi et al. [31] also use a control flow graph for monitoring program execu-
tion. Nakka et al. [32] introduce integrity checks into the micro-architecture
and use special check instructions. Ragel et al. [33] introduce microinstructions
to monitor for fault detection, return address checks, and memory boundary
checks. This differs from our approach in that these approaches require changes
in the machine code to implement the necessary checks.

A completely different approach to ensuring secure execution of programs is
the tagging of non-instruction memory pages with NX (No eXecute) or XD
(eXecute Disable) bits. This approach prevents a control flow change to a
piece of code that belongs to data memory. This mechanism is useful for the
prevention of buffer overflow attacks. It does not consider a scenario where
an attacker overwrites instruction memory. Another approach to defending
against buffer overflow attacks is described by Shao et al. in [34], where bound
checks are used and function pointers are protected by XORing them with a
secret key.

The use of model comparison to perform anomaly and intrusion detection has
been used in selected networking domains (e.g., mobile ad-hoc networks [35]).
In our case, the problem is simpler since our model is derived from a protocol
description or the actual binary of the protocol implementation. Thus, there
is no guess-work on the accuracy of the model; it is exactly the same as the
actual packet processing application.

The majority of previous efforts related to network router recovery have fo-

4

cused on recovery from hardware faults rather than network attacks. In Zhou
et al. [36], whole packets are copied from the network router to an attached
host processor memory. If a fault is detected, the router is restarted with the
saved packets. Router state for this system is periodically checkpointed to fa-
cilitate router restart. In Huang et al. [37], a fault tolerant router structure
is presented. Much of the hardware in the router is replicated to provide an
alternate routing path if a single hardware failure occurs. In Luo and Fan [38],
unused processors in a multicore network processor are used to provide redun-
dancy. If a specific core fails, processing is moved to an idle core. Although
effective, none of these approaches address monitoring and recovery from net-
work attacks that we describe below.

This manuscript provides an extension of our previous work in secure router
design [39]. An I/O monitor has been designed and implemented in an FPGA-
based platform to verify functionality. As described in Section 3.3, the imple-
mentation is flexible enough to address a number of router weaknesses. Results
presented in Section 4 illustrate the limited overheads needed to provide this
security.

3 System Architecture

The goal of our work is to design a secure packet processing platform (SPPP)
for next-generation Internet routers. This SPPP can be embedded on router
ports as illustrated in Figure 1. Before detailing the SPPP architecture, we
briefly discuss the security model for our work.

3.1 Security Model

For our work, we define a security model that is representative of the current
Internet and what we expect from the next-generation Internet. Attacks on
network routers are motivated by a number of different goals. The following
list illustrates this point but is not meant to be a complete enumeration of all
possible scenarios:

• Denial of service attack (e.g., disabling links or an entire device, generating
overwhelming traffic, configuring routing loops);

• Modification of stored or monitored data (e.g., tampering with log files);
• Extraction of secret information (e.g., reading of cryptographic key mate-
rial); and

• Hijacking of a hardware platform (e.g., reprogramming of processors to send
unsolicited emails).

5

Fig. 1. Secure Packet Processing Platform (SPPP) in Next-Generation Virtualized
Network Architecture.

To illustrate the types of attacks we consider in our work, we present two
specific attack examples. Note that our system design can defend against a
broader range of attacks than these two, but the vulnerabilities shown are
symptomatic of those encountered in router systems.

3.1.1 Attack Examples

Two illustrative attack scenarios are

• Processing Attack: In this scenario, an attacker uses the transmission of a
data packet that causes the packet processing program to misbehave. The
attack could be based on a buffer overflow, where certain data fields can
smash the processor stack. In many cases, changes to the stack cause the
program to crash. However, it is also possible for an attacker to change
the control flow such that malicious code (e.g., contained in the packet) is
executed. This type of attack has been used successfully to gain access to
end-systems through widely deployed and vulnerable software. One of the
most famous examples is the Code Red worm that exploited a vulnerability
in a service of the Windows operating system and used it to spread itself
around the globe [40,41]. As routers provide more functionality, it becomes
more difficult to formally validate the correct operation of all protocol fea-
tures in all virtual slices. Thus, it becomes feasible for this type of attack
to be widely used by attackers.

• Denial-of-Service Attack: In this scenario, we consider a situation where pro-
cessing is performed correctly, but the overall router system still behaves

6

incorrectly. One example is the use of a multicast function to (intention-
ally or accidentally) launch a denial of service attack. It can be envisioned
that multicast can be implemented through a loop that iterates over the
interfaces to which a packet needs to be forwarded. If this loop does not
terminate (e.g., due to an incorrect parameter in the packet or multicast
data structure) and continues to duplicate packets, the outgoing links can
easily be saturated while the router cannot forward any other packets. Such
a problem is particularly damaging in router systems as they are located
inside the network and are typically connected via high-bandwidth links.
Unlike end-systems, which have very limited uplink connections, a router
could easily generate a denial of service attack with many Gigabits per
second of traffic.

In our system, the monitoring subsystem is able to detect these attacks and
initiate an immediate recovery process that foils the attempt. It is also possible
to use I/O monitoring to detect an imbalance of incoming and outgoing packets
caused by such an attack.

3.1.2 Security Requirements

The above attack scenarios rely on the ability of an attacker to gain remote
access to the system and change its behavior (i.e., change in instruction mem-
ory) or its data (i.e., change in data memory). It is important to note that
in most attack scenarios a modification of behavior is necessary even when
modification of or access to data is the ultimate goal of the attack. This leads
to two main security requirements, which ensure that the router continues to
perform correct protocol processing:

• Benign packets should be processed according to protocol specifications
without interference from possible attacks;

• Malicious traffic should be identified as quickly as possible (packets that
belong to a connection that causes malicious processing on the SPPP may
be discarded).

In addition to these functional requirements, there are several performance
requirements: fast detection, accuracy, low overhead, and quick recovery.

3.1.3 Attacker Capabilities

The capabilities of an attacker that define the potential attack space include
the following:

• An attacker can send arbitrary data and control packets;
• An attacker can modify instruction and data memory through exploits. We

7

do not specify which exploits can be used, but target a solution that can
deal with the effects of any such attack;

• An attacker cannot modify the source code or binary of the protocol im-
plementation before it is installed on the router. Thus, the basis of what
we define as correct operation cannot be tampered with. However, once the
binary is installed on the router, the attacker may change the binary as
stated above;

• An attacker cannot physically access the router. Thus, attacks are limited
to remote exploits.

While we make constraining assumptions on what the attacker can do, we be-
lieve the defined attacker capabilities are general and representative of typical
network attacks.

3.2 Secure Packet Processing Platform

Any security mechanism for packet processing needs to consider the following
important criteria, which are met by our design:

• Independence: A monitoring subsystem should use independent system re-
sources that overlap as little as possible with the target of a potential attack.
In particular, the use of a single embedded processing system for both proto-
col processing and security-related monitoring is a bad choice. If an intruder
can access the protocol processor, then the monitor may be vulnerable to
attacks.

• Low Overhead: Embedded packet processing systems require a lightweight
security solution that considers the limitations of MPSoCs in terms of ad-
ditional logic and memory for monitoring.

• Fast Detection and Recovery: A monitoring subsystem should be able to
react as quickly as possible to an attack. In particular, attacks that simply
change memory state or extract private data may require only a few in-
structions to cause damage. Therefore, it is important to be able to detect
an attack within a few instructions. To maintain the operation of a network
router, it is also important to quickly recover from an attack.

The SPPP architecture is shown in Figure 2. The two key components are
the monitoring subsystem shown on the right and the recovery subsystem
shown on the left. We discuss each subsystem in more detail below. It is
important to note that computer networks can be logically divided into two
parts: the data plane, where data traffic is handled, and the control plane,
where routers exchange control information (e.g., routing updates). The SPPP
focuses on data plane processing since it is the most crucial functionality of a
router, but the monitoring concept is equally applicable to control processors.

8

����������	���
��	�	��� ��	�����������	���
������
���	
	�
������ �����
 ��������� 	���
����� ������
�	

�����������
�	�������� ������	�������
���
�����
�����
 � �������� �����

���
������������������� 	���
����������

�����
 ����	���������������
������	�	��� ���
���
�������������
��������������������
������������ !��"

#����� $����
 $��������� $�
���	 %#$$$&

�������� ������
�	 ���	���
�������
 �������
 �������
Fig. 2. Architecture of a Secure Packet Processing Platform.

Control processors are typically simple unicore processors with small numbers
of processing tasks and thus they are less challenging than data path network
processors. Therefore, we believe that a good solution for data plane processing
can also be used to protect the control plane.

3.3 Monitoring Subsystem

The monitoring system consists of two components: the processing monitor,
which is based on our prior work on security in embedded single core sys-
tems [30], and the I/O monitor, which is a new component that is designed
specifically for network systems.

3.3.1 Processing Monitor

The main idea behind our processing monitor, which is illustrated in Figure 2,
is to analyze the binary code of a protocol processing implementation and de-
rive an augmented control flow graph. The embedded processor reports on the
progress of application processing at run time by sending a stream of informa-
tion to the monitoring system. The monitoring system compares the stream
to the expected behavior of the program as derived from the executable code.
If the processor deviates from the set of possible execution paths, the pro-
cessor no longer executes instructions that are part of the correct program.
Thus, it is assumed that an attacker has altered the instruction store or pro-
gram counter to alter the behavior of the system. In that case, the recovery

9

subsystem restores the processing state stored before a particular packet was
processed.

Our evaluation of an embedded system benchmark shows that this monitor-
ing technique can detect deviations from expected program behavior within
a single instruction while only requiring a small amount of additional logic
and memory on the order of one tenth of the size of the protocol processing
implementation binary.

It is important to note that this design does not use intrusion detection heuris-
tics, which may be slow and computationally expensive. Instead we use a novel
multi-core monitoring platform that can detect deviations from normal pro-
tocol processing steps within a few instruction cycles. Such rapid detection is
essential for high-speed networks since the processing time for a packet totals
just a few microseconds.

3.3.2 I/O Monitor

The I/O monitor is designed to track the I/O behavior of the router system.
Monitoring takes place at a granularity that is coarser than the per-instruction
monitoring of the processing monitor. The I/O monitor correlates the flow of
outgoing packets to the flow of incoming packets. By tracking such informa-
tion, the monitor can determine when conditions occur that are considered
unusual from a networking perspective. These conditions may not be detected
by the processing monitor since they may be caused by the correct execution
of instructions. Examples of such conditions include the dropping of incoming
packets that is not due to congestion and the transmission of large numbers
of packets that is not triggered by incoming packets (e.g., denial of service
attack, etc.).

The I/O monitor uses information gathered at the I/O interfaces (i.e., not at
the processor cores) to infer the correct operation of the router. Possible types
of information in the design of the I/O logic are:

• Count: The count of outgoing packets is related to the count of incom-
ing packets (over a window) to indicate the general flow of packets. This
approach can be extended to account for dropped packets, multicast, and
similar special cases.

• Attribution: By uniquely marking incoming packets and passing this mark-
ing through the system, it is possible to attribute outgoing packets to their
“origin.” Such attribution allows the identification of misbehaving process-
ing features (or network slices). Based on this technique, per-flow or per-slice
transmission limits can be enforced.

• Timing: By recording timing information between incoming and outgoing
packets, the system delay can be measured (assuming that packets can be

10

packet processor

input packet

control

tag storageCRC

compare

output packet

control

match?input packet output packet

out CRC

output control/ID

in CRC

stored CRC

input control

in packet ID out packet ID

Fig. 3. Architecture of a Sample I/O Monitor.

distinguished using attribution). Delay information can be used to identify
functional and performance problems.

• Integrity: By recording the CRC or checksum over portions of the packet
that are not rewritten during normal packet forwarding (e.g., TCP header
and payload when using IP forwarding), the monitor can verify the integrity
of the packet at transmission. Unauthorized modifications to higher-layer
headers and packet payload can be identified with this process. (This check
can be disabled or limited to some range of the packet for services that
require changes to the packet payload.)

A more detailed architecture of an I/O monitor that implements attribution
and integrity checks is shown in Figure 3. The I/O monitor performs the
following actions for incoming packets:

(1) An incoming packet is assigned a specific packet identifier (packet ID)
by an input packet control circuit. This identifier is carried with the
packet through the packet processor as meta-information. The packet ID
is also stored in tag storage to allow for matching against subsequent
output packets. The identifier is unique to the packet (for the lifetime
of the packet in the system). The tag storage may include additional
information (e.g., packet arrival time, payload CRC).

(2) A cyclic redundancy check code (CRC) is computed for the incoming
packet payload by a dedicated CRC circuit. The resulting CRC is stored
in the tag storage under the control of the input packet control circuit.

11

After a packet has been processed, it is sent back to the I/O monitor for
checking and, ultimately, for transmission. The identifier of the packet which
was the source for the processed packet is still associated with the packet as
meta-information. When the outgoing packet arrives at the I/O monitor, the
following actions are performed:

(1) The outgoing packet’s identifier is matched against stored identifiers in
tag storage. A missing identifier in tag storage indicates that the outgoing
packet cannot be attributed to an incoming packet (either because it was
sent without a matching incoming packet or it is a retransmission and
the initial tag has already been “used”). In either case, the transmission
can be interpreted as unauthorized (e.g., caused by a denial-of-service
attack) and be blocked.

(2) If the identifier is located in tag storage, its companion CRC is checked
against the CRC of the payload of the processed packet. This validation
protects against malicious modification of packet payloads. If there is
CRC match, then the packet is transmitted.

The tag information of a packet is removed when a packet is transmitted and
the buffer slot can be reused by future packets. If a packet is dropped during
packet processing, its identifier and corresponding CRC can be removed from
tag storage following a timed period measured by a counter.

The I/O monitor shown in Figure 3 can be extended to address additional
packet processing issues. Input and output packet counts can be easily corre-
lated through the use of the packet identifiers. Using timestamps, processing
delays can be determined. In Section 4, the overheads associated with a pre-
liminary version of the I/O monitor are quantified.

3.4 Recovery Subsystem

The recovery of the router system after an attack (i.e., deviation from protocol
processing) has occurred is an important aspect of a security system. Ideally,
an attack should have as little impact as possible to avoid a denial-of-service
abuse of the monitoring system. It would seem that recovery in network sys-
tems is a simple process because the Internet Protocol inherently does not
provide delivery guarantees and thus packet loss is acceptable (and can be
dealt with through TCP and similar protocols). However, as more stateful
processing features are introduced into the network, we require more effective
recovery mechanisms.

To illustrate the importance of recovery, consider an intrusion detection system
that scans for a signature of malicious traffic in a stream of packets [42,43]. For
effective detection, it is necessary to consider signatures that are split across

12

Fig. 4. Example of State Recovery in Intrusion Detection.

multiple packets (see Figure 4). An attacker could hide a split signature by
introducing an “attack packet” between the packets. The attack could possibly
alter or destroy the detection state that was stored at the end of the first
packet. In such a case, the second part of the signature could not be matched
successfully and malicious traffic would reach its target. To avoid this and
many similar problems, we introduce a recovery mechanism into our Secure
Packet Processing Platform.

The recovery mechanism design is based on per-flow checkpointing. In such
a system, processing state is preserved at the granularity of packets. The
recovery mechanism is based on the following process:

(1) When processing a packet, record all memory operations to a shadow
memory. This allows for state recovery if processing of subsequent packets
causes a processor failure.

(2) When the processing of a packet has successfully completed, backup the
processor register values to shadow registers and commit shadow memory
operations.

(3) When the processing of a packet causes a processor failure (as identified
by the processing monitor), restore register values from shadow registers
and clear (i.e., do not commit) shadow memory operations. This step re-
stores the processing state to values stored before processing was started.

The processor pipeline is flushed at the end of packet processing (successful
or not). In the case of processor failure, the packet causing the problem is
discarded.

Our design differs from previous checkpointing approaches used by micropro-
cessors [44, 45] by providing checkpointing at a finer granularity (a packet).
The lack of caches in network processors simplifies the per-packet backup of
critical register and data values. Note that maintaining the state information
for checkpointing is not significantly more expensive than maintaining per-
flow processing state, which is already necessary to support the level of cus-
tom processing that can be expected to be encountered in the next-generation
Internet.

13

4 Results

We show results on the monitoring effectiveness for single-core and multi-core
systems.

4.1 Monitoring Stream Information

As shown in Figure 2, the monitoring subsystem tracks processing progress via
the monitoring stream provided by the processor. In our prior work, we have
evaluated different monitoring stream information and their effectiveness for
detecting attacks [30]. We briefly provide an overview on the results from this
work, which was focused on a single-core implementation, before discussing
extensions to multi-core systems.

We consider the following “patterns” as design alternatives for the monitoring
information stream:

• Address Pattern: The address of an instruction is a unique indicator, but it
does not contain any information about the operation that corresponds to
the instruction. An attacker can simply replace instructions without being
detected.

• Opcode Pattern: The opcode pattern tracks the instruction opcode and thus
represents a program’s functionality. An attacker would need to replace a
program with an identical sequence of opcodes.

• Load/Store Pattern: This pattern tracks memory access operations and their
target registers (since target addresses cannot be determined statically).
This pattern shows the same vulnerabilities as the opcode pattern.

• Control Flow Pattern: The control flow pattern tracks control flow oper-
ations (i.e., branches, calls, returns) and allows the monitor to track any
change in the program counter. This pattern exhibits a vulnerability that is
similar to an address pattern since there it contains no information about
the actual operation of the processor.

• Hashed Pattern: A pattern that we developed in prior work and that ad-
dresses the shortcomings of the above patterns is the hashed pattern [30].
In this case, several pieces of information (in our case an instruction ad-
dress and an instruction word) can be compacted to a smaller hash value.
This is particularly useful since opcodes, operands, etc. can consume a lot
of memory space. This pattern can be used with different lengths of hash
functions. We use the function name hashn to indicate that an n-bit hash
function is used. To circumvent this monitor, an attacker would need to craft
an instruction sequence with identical hash values, which is very difficult,
especially for larger values of n.

14

The quantitative tradeoffs between these patterns are considered below.

4.2 Single-Core Monitor

The single-core monitor is the basic building block for monitoring. The main
performance considerations are the ability to detect attacks quickly and to do
so with low overhead. We use the MiBench benchmark suite [46] to generate
workloads that are similar to what can be expected on an SPPP. We employ
the SimpleScalar simulator [47] to extract relevant monitoring information and
the objdump utility for binary analysis to generate monitoring graphs.

Table 1 shows the size requirements of different information streams graphs.
As a comparison, the size of the application binary is also shown. Monitoring
graphs require only in the order of 10% of the size of the application binary
and thus do not incur significant overhead. The monitoring graph for the
hash4 pattern requires least overhead with an average of 7.1% of the size of
the binary.

Table 2 shows the detection performance of the monitor. The hash4 pattern
can detect all but 6% of the attacks (due to hash collisions, which can be
reduced with a larger hash size). There are no false positive detections. The
important metric is the number of instructions that are executed until the
attack is detected. This delay provides a potential window for the attacker.
For the hash4 pattern, the attack can be detected in a single instruction.

These results show that effective attack detection on real applications can be
achieved with an overhead of less than 10% additional instruction memory
and the logic necessary for implementing the comparison monitor.

4.3 Multi-Core Monitor

When monitoring multiple processor cores in a single system, it is possible
to amortize the overhead for storing the monitoring graph among cores that
execute the same code. While packet processing systems typically do not use
SIMD processing, they often execute the same code independently on multiple
cores [48]. Similar to how shared instruction stores are used, shared monitor-
ing graph storage can be employed. To illustrate the effectiveness of such a
sharing architecture, Figure 5 shows the overhead for monitoring for varying
numbers of cores and distinct tasks. Processors that execute the same task
can share the storage used by monitors (but not the comparison logic). It
is assumed that task allocations are done independently of each other. The
overhead is the per-core overhead relative to a single monitor. As the number

15

Table 1
Size of Monitoring Graph for Different MiBench Benchmarks and Information
Streams.

Application binary pattern

size address opcode load/store ctrl. flow hash4

(kB) size % of size % of size % of size % of size % of

(kB) bin. (kB) bin. (kB) bin. (kB) bin. (kB) bin.

adpcm 953 98 10.3 80 8.4 65 6.9 81 8.5 59 6.2

basicmath 1023 106 10.3 88 8.6 71 7.0 87 8.5 64 6.2

bitcount 1200 141 11.8 114 9.5 90 7.5 116 9.7 83 6.9

blowfish 969 100 10.3 82 8.5 67 6.9 83 8.5 60 6.2

crc 958 98 10.3 80 8.4 65 6.8 81 8.4 59 6.1

dijkstra 1107 129 11.6 104 9.4 83 7.5 105 9.5 76 6.9

fft 1001 104 10.3 84 8.4 69 6.8 85 8.5 62 6.2

gsm 1104 126 11.4 104 9.4 85 7.7 104 9.4 76 6.9

ispell 1186 130 11.0 105 8.9 85 7.1 108 9.1 77 6.5

jpeg 1204 156 13.0 128 10.7 104 8.6 129 10.7 93 7.8

lame 3454 946 27.4 743 21.5 631 18.3 779 22.6 569 16.5

mad 1430 151 10.5 126 8.8 100 7.0 123 8.6 90 6.3

patricia 1123 129 11.5 105 9.4 83 7.4 106 9.4 76 6.8

quicksort 1106 127 11.5 103 9.4 82 7.4 104 9.4 75 6.8

rijndael 998 98 9.9 83 8.3 68 6.8 81 8.1 60 6.0

rsynth 1370 148 10.8 122 8.9 97 7.1 121 8.9 88 6.4

sha 955 98 10.3 80 8.4 65 6.8 81 8.4 59 6.1

sphinx 2185 230 10.5 192 8.8 157 7.2 188 8.6 139 6.4

stringsearch 960 100 10.4 81 8.5 66 6.9 83 8.6 60 6.2

susan 1084 120 11.0 101 9.3 81 7.5 98 9.0 72 6.7

tiff2bw 1668 174 10.4 116 7.0 97 5.8 121 7.2 87 5.2

tiff2rgba 1739 185 10.6 126 7.2 106 6.1 129 7.4 94 5.4

tiffdither 1457 159 10.9 127 8.7 104 7.1 131 9.0 94 6.5

tiffmedian 1458 161 11.1 129 8.8 105 7.2 132 9.1 95 6.5

typeset 1899 369 19.5 336 17.7 315 16.6 302 15.9 256 13.5

average 11.9% 9.6% 7.9% 9.6% 7.1%

16

Table 2
Detection Rate of Monitor for Bit Flip Attacks. The results are based on 100 sim-
ulations using the gsm application.

Monitoring detection avg. no. of

pattern rate of instr. to

bit flips detection

address 13% 49.1

opcode 40% 1.2

load/store 24% 15.8

control flow 26% 23.6

hash4 94% 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8 16 32 64 128

re
la

tiv
e

pe
r-

co
re

m
on

ito
rin

g
ov

er
he

ad

number of processor cores

4 tasks
16 tasks
64 tasks

Fig. 5. Multi-Core Monitoring Overhead.

of cores increases, more sharing is possible and the overhead decreases. With
an increase in task diversity, sharing becomes more difficult and the overhead
increases. Nevertheless, the relative overhead in a multi-core architecture with
sharing is less than that of a single-core system. Thus, our proposed moni-
toring system will require relatively less system resources when using highly
parallel multi-core packet processors.

4.4 I/O Monitor

A preliminary version of the I/O monitor shown in Figure 3 has been developed
and prototyped using an Altera Stratix III FPGA. A series of implementation

17

Table 3
Performance and Size of I/O Monitor.

Tag storage size LUTs FFs memory bits clock rate throughput

64 packets 356 118 2688 316.86 MHz 10.14 Gbps

128 packets 361 121 5372 308.45 MHz 9.87 Gbps

256 packets 364 124 10752 306.84 MHz 9.82 Gbps

512 packets 367 127 21504 317.26 MHz 10.15 Gbps

1024 packets 371 130 43008 305.62 MHz 9.77 Gbps

2048 packets 375 133 86016 287.03 MHz 9.18 Gbps

4096 packets 378 136 172032 265.39 MHz 8.49 Gbps

8192 packets 368 139 344064 258.60 MHz 8.28 Gbps

16384 packets 372 142 688128 196.73 MHz 6.30 Gbps

choices were made regarding the architecture described in Section 3.3. The
tag storage is implemented as an n-slot FIFO. (For simplicity, we assume in-
order processing for this prototype – a requirement that can be loosened in
a real system.) Each incoming data packet is tagged with a logn-bit packet
identifier generated with a standard counter. The identifier and a 32-bit CRC
for the payload portion of the packet is stored in the tag storage FIFO. As
packets arrive at the output packet control portion of the I/O monitor, the
identifier is compared against the identifier at the front of the FIFO. If its
value is greater, the intermediate packets must have been dropped and the
next FIFO location is examined. If the incoming identifier is less than the first
identifier in the FIFO, an unauthorized retransmission is determined. Finally,
the stored CRC and the newly calculated CRC for the outgoing packet payload
are compared to determine if the payload has been maliciously modified. If a
match is determined, the packet is permitted to be transmitted.

The results in Table 3 show the resource requirements for the prototype imple-
mentation (four-input lookup tables (LUT), flip-flops (FF), and block memory
bits) and its performance (maximum clock rate, throughput). The resource re-
quirements for the implementation are quite small and are dominated by the
need for memory for tag storage. The throughput performance of around 10
Gigabits per second is sufficient to support state-of-the-art core routers and
thus show that the presented architecture is a feasible approach to securing
the data path in routers.

18

5 Summary and Conclusions

We have presented a novel approach to addressing security vulnerabilities
within the networking infrastructure itself. Our SPPP architecture uses mon-
itoring to detect an attack and a recovery subsystem to limit its impact. Our
results show that the proposed architecture can detect attacks and can be im-
plemented efficiently. The system may be deployed in next-generation network
testbeds to assess the practical impact of defending network infrastructure.

References

[1] A. Feldmann, Internet clean-slate design: what and why?, SIGCOMM
Computer Communication Review 37 (3) (2007) 59–64.

[2] T. Wolf, Challenges and
applications for network-processor-based programmable routers, in: Proc. of
IEEE Sarnoff Symposium, Princeton, NJ, 2006.

[3] A. Cui, Y. Song, P. V. Prabhu, S. J. Stolfo, Brave new world: Pervasive
insecurity of embedded network devices, in: Proc. of 12th International
Symposium on Recent Advances in Intrusion Detection (RAID), Vol. 5758 of
Lecture Notes in Computer Science, Saint-Malo, France, 2009, pp. 378–380.

[4] D. D. Clark, The design philosophy of the DARPA Internet protocols, in: Proc.
of ACM SIGCOMM 88, Stanford, CA, 1988, pp. 106–114.

[5] D. L. Tennenhouse, D. J. Wetherall, Towards an active network architecture,
ACM SIGCOMM Computer Communication Review 26 (2) (1996) 5–18.

[6] N. T. Bhatti, R. D. Schlichting, A system for constructing configurable
high-level protocols, in: SIGCOMM ’95: Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication, Cambridge, MA, 1995, pp. 138–150.

[7] T. Wolf, Service-centric end-to-end abstractions in next-generation networks,
in: Proc. of Fifteenth IEEE International Conference on Computer
Communications and Networks (ICCCN), Arlington, VA, 2006, pp. 79–86.

[8] S. Ganapathy, T. Wolf, Design of a network service architecture, in: Proc. of
Sixteenth IEEE International Conference on Computer Communications and
Networks (ICCCN), Honolulu, HI, 2007, pp. 754–759.

[9] N. C. Hutchinson, L. L. Peterson, The x-kernel: An architecture for
implementing network protocols, IEEE Transactions on Software Engineering
17 (1) (1991) 64–76.

19

[10] L. Ruf, K. Farkas, H. Hug, B. Plattner, Network services on service extensible
routers, in: Proc. of Seventh Annual International Working Conference on
Active Networking (IWAN 2005), Sophia Antipolis, France, 2005.

[11] T. Anderson, L. Peterson, S. Shenker, J. Turner, Overcoming the Internet
impasse through virtualization, Computer 38 (4) (2005) 34–41.

[12] Intel Corporation, Intel Second Generation Network Processor,
http://www.intel.com/design/network/products/npfamily/ (2005).

[13] EZchip Technologies Ltd., Yokneam, Israel, NP-3 – 30-Gigabit Network
Processor with Integrated Traffic Management, http://www.ezchip.com/

(May 2007).

[14] LSI Corporation, APP3300 Family of Advanced Communication Processors,
http://www.lsi.com/ (Aug. 2007).

[15] J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns,
S. Kumar, J. Lockwood, J. Lu, M. Wilson, C. Wiseman, D. Zar, Supercharging
PlanetLab: a high performance, multi-application, overlay network platform,
in: SIGCOMM ’07: Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications, Kyoto,
Japan, 2007, pp. 85–96.

[16] A. Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford, In VINI
veritas: realistic and controlled network experimentation, in: SIGCOMM
’06: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Pisa, Italy, 2006,
pp. 3–14.

[17] D. Geer, Malicious bots threaten network security, Computer 38 (1) (2005)
18–20.

[18] A. Hussain, J. Heidemann, C. Papadopoulos, A framework for classifying denial
of service attacks, in: SIGCOMM ’03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications, Karlsruhe, Germany, 2003, pp. 99–110.

[19] A. Kuzmanovic, E. W. Knightly, Low-rate TCP-targeted denial of service
attacks: the shrew vs. the mice and elephants, in: SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications, Karlsruhe, Germany, 2003, pp. 75–86.

[20] J. Xia, L. Gao, T. Fei, Flooding attacks by exploiting persistent forwarding
loops, in: IMC ’05: Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement, Berkeley, CA, 2005.

[21] S. Parameswaran, T. Wolf, Embedded systems security – an overview, Design
Automation for Embedded Systems 12 (3) (2008) 173–183.

[22] S. Ravi, A. Raghunathan, S. Chakradhar, Tamper resistance mechanisms for
secure, embedded systems, in: Proc. of 17th International Conference on VLSI
Design (VLSI Design 2004), Mumbai, India, 2004, pp. 605–611.

20

http://www.intel.com/design/network/products/npfamily/
http://www.ezchip.com/
http://www.lsi.com/

[23] A. Wood, J. A. Stankovic, Denial of service in sensor networks, IEEE Computer
35 (10) (2002) 54–62.

[24] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: Proc. of the
19th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’99), Vol. 1666 of Lecture Notes in Computer Science, Springer-
Verlag, London, United Kingdom, 1999, pp. 388–397.

[25] G. Gogniat, T. Wolf, W. Burleson, J.-P.
Diguet, L. Bossuet, R. Vaslin, Reconfigurable hardware for high-security/high-
performance embedded systems: the SAFES perspective, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 16 (2) (2008) 144–155.

[26] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, S. Nettles, PLAN: A
packet language for active networks, in: Proc. of the Third ACM SIGPLAN
International Conference on Functional Programming Languages, ACM, 1998,
pp. 86–93.

[27] D. Arora, S. Ravi, A. Raghunathan, N. K. Jha, Secure embedded processing
through hardware-assisted run-time monitoring, in: Proc. of the Design,
Automation and Test in Europe Conference and Exhibition (DATE’05),
Munich, Germany, 2005, pp. 178–183.

[28] R. G. Ragel, S. Parameswaran, IMPRES: integrated monitoring for processor
reliability and security, in: Proc. of the 43rd Annual Conference on Design
Automation (DAC), San Francisco, CA, USA, 2006, pp. 502–505.

[29] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, N. Memon, SAFE-OPS: An
approach to embedded software security, Transactions on Embedded Computing
Sys. 4 (1) (2005) 189–210.

[30] S. Mao, T. Wolf, Hardware support for secure processing in embedded systems,
in: Proc. of 44th Design Automation Conference (DAC), San Diego, CA, 2007,
pp. 483–488.

[31] M. Abadi, M. Budiu, Ú. Erlingsson, J. Ligatti, Control-flow integrity principles,
implementations, and applications, in: ACM Conference on Computer and
Communication Security (CCS), Alexandria, VA, 2005, pp. 340–353.

[32] N. Nakka, Z. Kalbarczyk, R. K. Iyer, J. Xu, An architectural framework for
providing reliability and security support, in: Proc. of the 2004 International
Conference on Dependable Systems and Networks (DSN), Florence, Italy, 2004,
pp. 585–594.

[33] R. G. Ragel, S. Parameswaran, S. M. Kia, Micro embedded monitoring for
security in application specific instruction-set processors, in: Proc. of the 2005
international conference on Compilers, architectures and synthesis for embedded
systems (CASES), San Francisco, CA, 2005, pp. 304–314.

[34] Z. Shao, Q. Zhuge, Y. He, E. H.-M. Sha, Defending embedded systems against
buffer overflow via hardware/software, in: Proc. of the 19th Annual Computer
Security Applications Conference (ACSAC), Las Vegas, NV, 2003, pp. 352–363.

21

[35] G. F. Cretu, J. J. Parekh, K. Wang, S. J. Stolfo, Intrusion and anomaly
detection model exchange for mobile ad-hoc networks, in: Proc. of 3rd IEEE
on Consumer Communications and Networking Conference (CCNC 2006), Las
Vegas, NV, 2006, pp. 635–639.

[36] Y. Zhou, V. Lakamraju, I. Koren, C. M. Krishna, Software-based failure
detection and recovery in programmable network interfaces, IEEE Transactions
on Parallel and Distributed Systems 18 (11) (2007) 1539–1550.

[37] N.-F. Huang, Y.-T. Chen, Y.-C. Chen, C.-N. Kao, J. Chiou, A network
processor-based fault-tolerance architecture for critical network equipments, in:
Proc. of Information Networking, Networking Technologies for Broadband and
Mobile Networks, International Conference (ICOIN), Vol. 3090 of Lecture Notes
in Computer Science, Springer Verlag, Busan, Korea, 2004, pp. 763–772.

[38] Y. Luo, J. Fan, Fault tolerant practices on network processors for dependable
network processing, in: Proc. of IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), Miami, FL, 2008.

[39] T. Wolf, R. Tessier, Design of a secure router system for next-generation
networks, in: Proc. of Third International Conference on Network and System
Security (NSS), Gold Coast, Australia, 2009.

[40] CERT Coordination Center, Carnegie Mellon University, Pittsburgh, PA,
CERT Advisory CA-2001-19 “Code Red” Worm Exploiting Buffer Overflow
In IIS Indexing Service DLL (Jul. 2001).

[41] D. Moore, C. Shannon, J. Brown, Code-Red: a case study on the spread
and victims of an internet worm, in: IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, Marseille, France, 2002, pp.
273–284.

[42] H.-J. Jung, Z. Baker, V. Prasanna, Performance of FPGA implementation of
bit-split architecture for intrusion detection systems, in: Proc. of 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Rhodes
Island, Greece, 2006.

[43] A. Das, D. Nguyen, J. Zambreno, G. Memik, A. Choudhary, An fpga-based
network intrusion detection architecture, IEEE Transactions on Information
Forensics and Security 3 (1) (2008) 118–132.

[44] B. T. Gold, J. C. Smolens, B. Falsafi, J. C. Hoe, The granularity of soft-
error containment in shared memory multiprocessors, in: Proc. of Workshop
on System Effects of Logic Soft Errors, Urbana-Champaign, 2006.

[45] R. Teodorescu, J. Nakano, J. Torrellas, SWICH: A prototype for efficient cache-
level checkpointing and rollback, IEEE Micro 26 (5) (2006) 28–40.

[46] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.
Brown, MiBench: A free, commercially representative embedded benchmark
suite, in: Proc. of IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, 2001.

22

[47] D. Burger, T. M. Austin, The SimpleScalar tool set, version 2.0, Tech. Rep.
1342, Department of Computer Science, University of Wisconsin in Madison
(Jun. 1997).

[48] Q. Wu, T. Wolf, On runtime management in multi-core packet processing
systems, in: Proc. of ACM/IEEE Symposium on Architectures for Networking
and Communication Systems (ANCS), San Jose, CA, 2008, pp. 69–78.

23

	Introduction
	Related Work
	System Architecture
	Security Model
	Secure Packet Processing Platform
	Monitoring Subsystem
	Recovery Subsystem

	Results
	Monitoring Stream Information
	Single-Core Monitor
	Multi-Core Monitor
	I/O Monitor

	Summary and Conclusions
	References

