
1

A High-Speed Accelerator for Homomorphic Encryption using the
Karatsuba Algorithm

VINCENT MIGLIORE, CÉDRIC SEGUIN, MARIA MÉNDEZ REAL, VIANNEY LAPOTRE,
ARNAUD TISSERAND, CAROLINE FONTAINE, GUY GOGNIAT, Univ. Bretagne-Sud, UMR
CNRS 6285, Lab-STICC, F-56100 Lorient, France
RUSSELL TESSIER, Department of Electrical and Computer Engineering, University of Massachusetts,
Amherst, MA, USA

Somewhat Homomorphic Encryption (SHE) schemes can be used to carry out operations on ciphered data.
In a cloud computing scenario, personal information can be processed secretly, inferring a high level of
confidentiality. The principle limitation of SHE is the size of ciphertext compared to the size of the message.
This issue can be addressed by using a batching technique that “packs" several messages into one ciphertext.
However, this method leads to important drawbacks in standard implementations. This paper presents a fast
hardware/software co-design implementation of an encryption procedure using the Karatsuba algorithm.
Our hardware accelerator is 1.5 times faster than the state of the art for 1 encryption and 4 times faster for 4
encryptions.

ACM Reference format:
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine,
Guy Gogniat and Russell Tessier. 2017. A High-Speed Accelerator for Homomorphic Encryption using the
Karatsuba Algorithm. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (October 2017), 17 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Homomorphic Encryption (HE) is a recent promising tool in modern cryptography that supports
operations on encrypted data. This property allows for the protection of private and sensitive data
in a cloud computing scenario. Figure 1 provides a flowchart of a basic Homomorphic cloud service.
Historically speaking, early cryptographic schemes presented partial homomorphic properties, for
multiplication [1] and addition [2]. Only after the approaches in [3] and [4] were presented was it
possible to support both types of operations at the same time. These schemes have been followed
by many other related contributions.
Most promising Fully Homomorphic Encryption (FHE) schemes base their arithmetic on a ring of
polynomials with integer coefficients [5][6][7][8][9][10]. Each operation requires a double reduc-
tion: a modular reduction by an irreducible polynomial, typically required after each polynomial
multiplication, and an integer reduction on each polynomial coefficient.

A key aspect of Homomorphic Encryption is the representation of messages. A message can be
seen as a binary value, or an integer if it has more than one bit. If messages are represented as
integers, only integer additions, subtractions and multiplications are possible. This list excludes

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1539-9087/2017/10-ART1 $15.00
https://doi.org/0000001.0000001

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

Key Generation

Encryption

Security
level

Message Decryption

Homomorphic Operations: + ×

Result

Pkey Skey

Pkey , Ciphers Ciphers

CLIENT

SERVER

Fig. 1. Flow of an homomorphic cloud service.

standard operators like comparison. To enable such operations, it is necessary to switch to a binary
message representation. The maximum value of a message is called the message space.
A second aspect of Homomorphic Encryption is the size of the encrypted data. Depending on

the complexity of the cloud service, the cipher size can vary from a few KB to a few MB for 1
message (which can be binary). To address this penalty, two main solutions exist: transciphering
and batching. With transciphering, data is sent to the server using standard symmetric encryption
and then is decrypted on the server-side with homomorphic encryption. This operation requires a
symmetric secret key, which is sent to the server encrypted with homomorphic encryption. This
technique is not in the scope of this paper, but the reader can refer to [11] for further information.
With batching, several messages are “packed" within one ciphertext using the Chinese Remainder
Theorem (CRT) [12]. When homomorphic operations are computed on the server side, operations
are executed for each message in parallel. Thus, the size of encrypted data per bit of information is
reduced by the number of messages packed.
In practice, actual implementations of homomorphic encryption cannot perform batching effi-

ciently due to the limitations of the standard algorithm used for such computation, i.e the NTT
algorithm [13]. To perform a batching operation, the irreducible polynomial chosen for the FHE
scheme must be factorizable in the message space. In particular, xn + 1, the most efficient choice for
NTT, is only factorizable for integer messages and not binary ones, and to our knowledge there is
no efficient alternative. Without batching, NTT is a very powerful tool because once polynomials
are converted to their NTT form, all computations are performed modulo xn + 1 and thus, one can
perform all required computations in this form.
In the batching case, the drawback is very significant. First, one needs to double the number

of NTT points to avoid performing polynomial reduction during computations. Second, each
polynomial multiplication must perform one NTT, one component-wise multiplication, and then
one inverted NTT. This process is in contrast to the no-batching case where polynomials remain in
NTT form. On the client side, because computing capacity is limited, this drawback can become very
costly. As a consequence, the well known SEAL library only implements batching for non binary
messages, which reduces the interest of the implementation for many algorithms. In practice, few

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:3

approaches use hardware to target homomorphic encryption with batching for binary messages
due to the incompatibility with NTT. To our knowledge, only [14] and [15] provide complete
accelerators with batching, although the former focuses on the server side only and the latter only
targets complex homomorphic algorithms. In this paper, we provide the first batching compliant
implementation of homomorphic encryption on the client side using the Karatsuba algorithm [16],
and compare our results to the latest homomorphic libraries. The implementation greatly extends
the work in [15] with important modifications to adapt the computation to the encryption both in
terms of software and hardware. The main contributions of this work are as follows:
• Encryption step acceleration using a hardware/software co-design approach that leverages
the Karatsuba algorithm (up to 4 ciphers in parallel).
• High performance software computations using vector programming (AVX2/SSE4.2 and
NEON).

Compared to the server-side accelerator [15] in which parallel operations could not be performed
due to the complexity of the homomorphic multiplication, we have exploited the polynomial
arithmetic simplicity of the encryption operation to parallelize our design. Thus, the main challenge
of this work was simultaneously dealing with a larger hardware design and much larger transfers
between hardware and software. This limitation has been addressed by exploiting the structure of
polynomials in Homomorphic Encryption.

This paper is organized as follows. Section 2 provides notation and basic mathematical knowledge
about encryption and the Karatsuba algorithm. Section 3 describes the hardware and software
accelerator architecture. Section 4 presents implementation results and compares them with a state
of the art software implementation. Section 5 summarizes and concludes the paper.

2 THEORETICAL BACKGROUND
2.1 Notation
In the following, a polynomial is represented in uppercase and its coefficients in lowercase. For
polynomialA, ai represents its ith coefficient. A vector of polynomials is noted in bold. For vectorA,
A[i] is the ith polynomial of the vector. For set R and polynomialA,A← UR represents a uniformly
sampled polynomial in R, A← χσ is a polynomial sampled in a discrete Gaussian distribution with
standard deviation σ and BR a very narrow discrete Gaussian distribution in which polynomials
have binary coefficients. For coefficient ai of polynomial A, ai,(j ..k) corresponds to the binary
string extraction of ai between bits j and k . This notation is extended to polynomial A where
A(j ..k) is the sub-polynomial in which the binary string extraction is applied to each coefficient.
A modular reduction by an integer q is [·]q . For integer a, ⌊a⌋, ⌈a⌉ and ⌊a⌉ operators are floor,
ceil and nearest rounding operations, respectively. This notation is extended to polynomials by
applying the operation on each coefficient. For vectors A and B, ⟨A,B⟩ represents ∑A[i]B[i]. In
the following, polynomials have coefficients in Zq , i.e. integer coefficients in [0,q[.

2.2 Ciphering
This paper focuses on the encryption operation for the Ring-Learning With Error (R-LWE) [17]
based schemes, and in particular the Fan Vercauteren (FV) [7] scheme. The basic idea of R-LWE is to
hide a secret by using a noisy distribution. For a secret polynomial S ← BR and noisy polynomials
A ← UR and E ← χR , a R-LWE sample is the couple (−A · S + E, A). In the case of FV, Skey = S
is the secret key and Pkey = (−A · S + E,A) is the public key. For an integer t such as a message
m ∈ [0, t[(integer message), the encryption operation is performed as follows:

C =
([
∆m + Pkey[1]U + E1

]
q
,
[
Pkey[2]U + E2

]
q

)
(1)

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:4
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

Pkey[i] 4 ×U

Pre-computation
1 to 6

Pre-computation
1 to 6

1 (2560) [125] 4 × {1 (2560) [1]}

Send to
HW

}
729 Sequential transfers

729 (40) [131] 4 × {729 (40) [7]}

Pre-computation
7 to 9

Pre-computation
7 to 9

1 (40) [131] 4 × {1 (40) [7]}

sub-polynomials
multiplication +

modular reduction

{ }
×4

27 (5) [134] 4 × {27 (5) [10]}

Post-computation
1 to 5

}
×4

{ 4 × {27 (9) [125]}

Send to
SW

}
729 Sequential transfers

4 × {1 (79) [130]}

loop over the 729
sub-polynomials

Post-computation
6 to 9

729 (79) [130]

Modular reductionEi

+

C[i]

1 (5120) [134]

Karatsuba accelerator

loop over
the 4 polynomials

Legend

Software operation

Hardware operation

8(4) × {729(1)(40)(2)[32](3)}
(1) Number of polynomials
(2) Number of coefficients
(3) Bits per coefficient
(4) Polynomials in Parallel

Fig. 2. Flow of the encryption operation in our architecture, where i ∈ {1, 2} represents the ith member of
the ciphertext C. Values Pkey[i],U , and Ei are, respectively, the public key, a binary sampled polynomial and
a Gaussian sampled polynomial.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:5

withU ← BR , (E1,E2) ← χ 2R and ∆ = ⌊q/t⌋. If the noise term EU + E1 + SkeyE2 is below ∆/2, the
message can be decrypted without error. In the following, we set t = 2 which is a common choice
in the literature. In particular, it allows a wide range of operations (such as comparison) instead of
just integer addition, subtraction and multiplication (i.e. when t > 2).

To accelerate this operation, we use a software/hardware co-design implementation of a polyno-
mial multiplication algorithm which is based on the Karatsuba algorithm. For ciphering, Karatsuba
efficiently performs Pkey[1]U and Pkey[2]U operations. In addition, high-speed binary polynomial
generation and a discrete Gaussian sampler are required to generateU , E1 and E2. However, we
decided to do not include these primitives in the scope of this work as we believe a more mature
background is required.

2.3 The Batching Technique
The arithmetic of R-LWE schemes must perform polynomial operations modulo an irreducible
polynomial in Zq (usually chosen in the literature as a cyclotomic polynomial for security concerns).
Some cyclotomic polynomials have an additional property, they are reducible in Z2. If each factor
is unique and has a multiplicative order of 1, then the batching technique is possible. Formally, for
a vector of k messagesm and a given irreducible polynomial Φ in Zq compatible with batching, the
batching polynomialM can be expressed as:

M =
k∑
i=1

mi · Si ·Φi mod Φ, with


Φ ≡

k∏
i=1

φi mod 2

Φi =
Φ

φi

Si ≡ Φ−1i mod φi

(2)

To recover the ith message, it suffices to perform

mi ≡ M mod φi (3)

mi is called the residue polynomial. Then, for two batching polynomialsMa andMb , polynomial
additions, subtractions and multiplications, perform the same operation between residue polynomi-
als in parallel.
As stated in Section 1, the best choice for NTT is the cyclotomic polynomial xn+1. With such param-
eters, NTT can be adapted to compute polynomial modular reduction during computations (called
Negative Wrapped Convolution). However, the factorization of xn + 1 in Z2 is (x + 1)n . So this poly-
nomial is not compatible with batching due to the unique factor and the multiplicative order. NTT
Positive Wrapped Convolution is the current alternative. It performs polynomial arithmetic modulo
xn − 1 during computations. However, xn − 1 is not compatible with homomorphic encryption
because it is clearly reducible (1 is an obvious root). This greatly penalizes NTT, which requires
several adaptations. First, the number of points of the NTT algorithm must be twice as large versus
the Negative Wrapped Convolution case to not perform polynomial reduction. This issue is quite
critical when the degree is slightly higher than a power of two. For example, for degree-3000
polynomial multiplication, the required NTT has 2×4096 = 8192 points. Second, modular reduction
by a cyclotomic polynomial Φmust be carried out. This implies a need to perform an inverted-NTT,
a modular reduction, and then an NTT.

These limitations show that NTT has important issues dealing with batching. This issue motivates
our architecture based on the concurrent polynomial multiplication algorithm called Karatsuba.
Karatsuba does not suffer from batching limitations and it is possible to adapt the algorithm to
various polynomial sizes.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:6
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

2.4 Karatsuba Algorithm
The Karatsuba algorithm is an improvement on the standard polynomial multiplication algorithm
which reduces the number of sub-products. In SHE, polynomials have the same number of coeffi-
cients, and our setup always provides an even number of coefficients. Thus, in the following, we
only discuss the Karatsuba algorithm with these constraints. Input polynomials A and B of degree
n − 1 are split into two parts of equivalent size, n2 coefficients. Let AH and AL be two polynomials
composed of the coefficients of the highest degree of A and the lowest degree of A, respectively.
BH and BL are constructed using the same approach. Input polynomials can now be expressed as
A = AL +AHx

n/2 and B = BL + BHx
n/2.

When A and B are multiplied using the standard approach, the resulting decomposition is given
by:

A × B = (AL +AHx
n/2)(BL + BHxn/2)

= ALBL + (ALBH +AHBL)xn/2 +AHBHx
n

(4)

Karatsuba optimization exploits the fact that the middle factor (ALBH + AHBL) can be cleverly
computed as (AL +AH)(BL + BH) −ALBL −AHBH . ALBL and AHBH are already computed and do
not require additional multiplications.
In total, Karatsuba requires 3 sub-polynomial multiplications instead of 4, at a cost of two pre-

computations, (AH + AL) and (BH + BL), and two post-computations for the reconstruction of
the middle factor. These pre- and post-computations only require additions and subtractions. To
further reduce the complexity of the polynomial multiplication, one can apply recursively the
Karatsuba algorithm to each sub-polynomial multiplication, ALBL , AHBH and (AH +AL)(BH + BL).
The number of times that the Karatsuba algorithm is applied is called the number of Karatsuba
recursions. After several Karatsuba recursions, one has to perform many low degree polynomial
multiplications instead of a large polynomial multiplication. This recursiveness allows computation
sharing between software and hardware. For example, several recursions can be performed in
software and the remaining ones in hardware.
Because each Karatsuba recursion halves the size of sub-polynomials, Karatsuba can achieve

polynomial multiplication of degree 2r (p + 1) − 1, where r is the number of Karatsuba recursions
and p the degree of the smallest sub-polynomial.

3 ACCELERATOR ARCHITECTURE
3.1 High-Level Overview
We based our architecture on the design in [15] which uses Karatsuba algorithm to accelerate
server-side operations. This work uses the same Homomorphic Encryption setup (e.g. degree-2559
polynomials with 125-bit coefficients) to speed-up client-side operations, in particular the ciphering.
Figure 2 presents the flow of the proposed accelerator that supports 4 parallel encryptions. The
accelerator operates as follows: Six Karatsuba pre-recursions are computed in software and three
are performed in hardware. After software pre-computations for each input polynomial, 729 sub-
polynomials with 40 coefficients are generated and sent sequentially to the hardware. The hardware
is fully pipelined and operations on sub-polynomials are executed as soon as polynomials arrive. At
the end of Karatsuba pre-computations, 19,683 degree-4 polynomials are generated on each input
polynomial that must be multiplied term by term. These multiplications are computed in hardware
by four parallel polynomial multiplier units using the standard polynomial multiplication algorithm.
Because the accelerator computes up to four encryptions in parallel, four post-computation units
are implemented in parallel in hardware. These post-computations are computed sequentially in
software, although multi-threading can possibly be used. The distribution of Karatsuba pre- and

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:7

1st Chunk [32 bits]

1st Data segment [27 bits]

5th Data segment [17 bits]

1st coefficient [160 bits] 2nd coefficient 3rd coefficient 2560th coefficient

1st AVX2 vector [256 bits] 2nd AVX2 vector

1st polynomial

Fig. 3. Software representation of one polynomial of the public key.

1×4 2×4 3×4 4×4 5×4 6×4 7×4 8×4

[32 bits]
1st AVX2 vector [256 bits]

1
[1 bit]

2 3 4Sub-Coefficient :

Coefficient index :

[7 bits]

Fig. 4. Software representation of binary polynomials.

post-recursions between hardware and software is a key element of our architecture. Further details
are provided in Section 3.3.5.

3.2 Software Implementation
Our Karatsuba software design is implemented using contemporary vector programming (AVX2,
SSE4.2, NEON, ...). For simplicity, we describe our work for the AVX2 instruction set, but the
approach remains valid for SSE4.2 and NEON with the exception that their vectors have smaller
length. AVX2 Single Instruction Multiple Data (SIMD) instructions are performed on 256-bit vectors.
The vector can be seen as 4 doubles (64-bit operands), 8 floats (32-bit operands) or 8 integers (32-bit
operands). For each elementary operation, the computation is performed on each element of the
vector in parallel. AVX2 supports additions, subtractions, multiplications, maskings and various
methods to speed-up specific algorithms.

3.2.1 Representation of polynomials in memory. An efficient representation of polynomials in
memory has been made to enhance the efficiency of vector programming with Karatsuba. As
mentioned in Section 2.2, Karatsuba multiplies the public key Pkey with a randomly-generated
binary polynomial. Thus, two different kinds of storage are required: a full size polynomial with
125 bits per coefficient for the public key, and a small polynomial with 1 bit per coefficient for the
binary polynomial.
Figures 3 and 4 provide data representations of a full size polynomial and a binary polynomial,

respectively. For the full size polynomial, coefficients are split into five 32-bit chunks. Because
AVX2 operations do not support addition with carry, guard bits are required for carry propagation
between operations. In our case, this choice was quite simple because with 125-bit coefficients, it is
not possible to have less than five chunks to be able to have at least one guard bit per chunk. This
setup has the benefit of providing multiple guard bits per chunk, which allows for the computation
of successive operations before carry propagation. Section 3.2.2 provides a further explanation on

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:8
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

Pre-computation
7 to 9

Pre-computation
7 to 9

Pre-crossbar

Pre-crossbar

(×8)

(×8)

Polynomial
multiplier

Polynomial
multiplier

(×4)

(1)
(2)
(3)

(4)

(2)
(3)

(4)

(1)

Post-crossbar
+ Post-

computation
1 to 5

Post-crossbar
+ Post-

computation
1 to 5

(×4)

(1)
(2)
(3)

(4)

(2)
(3)

(4)

(1)

(2)

(3)

Binary
polynomials
slot [7 bits]

Pkey slot
[27 bits]

PCIE Gen 3
128 bits

54321

PCIE bursts

1 Pkey coefficient
1 coefficient per binary polynomials (4 polynomials)

1st polynomial
output

2nd polynomial
output

3rd polynomial
output

4th polynomial
output

[10 bits]datapath→

[27 bits]datapath→

[10 bits] [27 bits]

[27 bits] [27 bits]

Pre-crossbar

Pre-crossbar

4 × {10×135-
bit integer
multiplier}

4 × {10×135-
bit integer
multiplier}

(×5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

Reconstruction

Reconstruction

(×4)

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

Polynomial multiplier

Pre-crossbar

Pre-crossbar

10×27-bit integer
multiplier

10×27-bit integer
multiplier

(×4)

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

Reconstruction
+modular reduction

Reconstruction
+modular reduction

(×4)

4 × {10×135-bit Integer multiplier}

Fig. 5. Hardware accelerator architecture.

the impact of guard bits. For binary polynomials, only 1 bit per coefficient is needed, implying an
inefficient use of memory and unnecessary computation overhead if the previous memory scheme
is followed. Figure 4 provides an optimized representation with 20 times less memory consumption.
First, the number of chunks per coefficient is reduced to one. Second, multiple coefficients are
stored per chunk. Because our Karatsuba implementation has six recursions in software, at least
six guard bits are required. Thus, one 32-bit chunk can store up to four coefficients. For efficiency
considerations, we decided to store four polynomials using 2,560 chunks instead of one using 640
chunks.

3.2.2 Elementary polynomial arithmetic. Karatsuba pre- and post-computations are quite simple
and only require polynomial additions and subtractions. That is why, our software implementation
focuses on polynomial addition and subtraction. As a reminder, our setup provides five guard bits
per chunk, and fifteen guard bits at the coefficient level. For addition, operations can be easily
implemented. With five guard bits per chunk, five additions at the chunk level are allowed before an
overlap. This effect is a consequence of the fact that an addition can increase the result by one bit in
the worst case. Then, a coefficient reconstruction is required to restore the guard bits. This operation
consists of taking the guard bits of one chunk, and adding them to the next one like a standard
carry propagation. This operation, apart from restoring the guard bits, has the consequence of
consuming the guard bits of the last chunk of each coefficient. As the addition consumes one
guard bit per chunk, one guard bit at the coefficient level is consumed per addition. Therefore, our
data representation supports fifteen successive polynomial additions before requiring a modular
reduction of each coefficient.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:9

The subtraction operation uses standard two’s complement arithmetic. For integer subtraction
of two integers A and B with log2 q bits, two’s complement subtraction can be expressed as :

A + B + 1 = A − B (5)

with B the binary inverse of B. In the standard case, carry propagation is performed during the
subtraction computation. In our case, due to the guard bits, we cannot invert chunks directly. If we
note tai the guard bits of a chunk ai andmai the other bits, we must in fact compute the inverse of
tai +mai+1 . This operation creates data dependencies between chunks, breaking the parallelism of
computations. This can be easily addressed using the following property:

tai +mai+1 = −tai −mai+1 − 1
= −tai − 1 −mai+1 − 1 + 1
= tai +mai+1 + 1

(6)

We just keep in mind that now the leading bit of a given chunk provides the sign. Thus, it reduces
by 1 bit the number of guard bits during subtractions compared to additions.
The asymmetry between AVX2 vector length, polynomial length, and coefficient length must
also be considered. An AVX2 vector has 256 bits which covers eight chunks. At the coefficient
level, the fact that a AVX2 vector is longer than a coefficient is not a problem. Because coefficients
are reconstructed later, a point-wise addition on the chunks is sufficient. At the polynomial level,
the situation is not as simple. The computation process, and especially Karatsuba computations,
leads to the creation of polynomials of various sizes. If the polynomial size is not a multiple of the
AVX2 vector, a data overlap is possible. In this case, a masking operation on the latest operation is
required to prevent operations and results outside of the valid data range.

3.2.3 Polynomial modular reduction. Polynomial modular reduction is performed after each
polynomial multiplication. Without batching, this operation is quite simple. For example, with
the cyclotomic polynomial xn + 1, the reduction of a polynomial A = AL + AH ·xn is AL − AH .
With batching, the cyclotomic polynomial may have numerous non-zero coefficients (Hamming
weight), leading to a possible complex reduction. The standard algorithm for such an operation is
the Barrett reduction [18]. However, this algorithm requires two polynomial multiplications and
one polynomial subtraction which is undesirable for performance. To address the reduction in our
design, we have made an exhaustive search on cyclotomic polynomials to extract good candidates
compatible with batching, i.e. with the smallest Hamming weight. Then, we have exploited the
structure of these polynomials to perform polynomial modular reduction as an addition/subtraction
of sub-polynomials. A degree-n cyclotomic polynomial can be written as:

Φ =
m∑
i=0

αi ·X β · i , with
{

α ∈ {−1, 0, 1}
(m, β) ∈ Z such as n =m · β

(7)

Because αi is an integer and Φ has been chosen to maximize β , the underlying polynomial has
numerous empty coefficients which greatly simplifies the polynomial reduction.
The polynomial reduction algorithm is performed by solving a system of equations. We note A,
a polynomial to be reduced by a cyclotomic polynomial Φ, B the quotient polynomial and R the
residue. First, we split polynomials A, B and R into several degree-β polynomials.

A =
2 ·m−1∑
i=0

Ai ·X βi , B =
m−1∑
i=0

Bi ·X βi , R =
m−1∑
i=0

Ri ·X βi (8)

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:10
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

Second, we extract the equations system by exploiting the relationship between A, B and R:

A = B ·Φ + R (9)

Because degR < n, we have the following system:
∀i ∈ {m, 2m}, Ai =

i∑
j=0

Bj ·αi−j (a)

∀i ∈ {0,m − 1}, Ai =

i∑
j=0

Bj ·αi−j + Ri (b)

(10)

With equation 10(a), we can calculate the different Bi , and equation 10(b) determines the residue
polynomial R. We have implemented a script to automatically determine the different Ri . For
degree-2560 polynomials with 125-bit coefficients (22 batches), our software library performs the
polynomial reduction in 114𝜇s on average (1000 runs). This value is competitive with Barrett
reduction, because a simple polynomial multiplication using NFLlib for the same parameters
costs 1.7ms on average. To improve the performance of the polynomial modular reduction, we
first compute sub-polynomial additions to maximize the number of successive operations before
reconstruction. Then subtractions are performed with the limitation explained in Section 3.2.2.

3.2.4 High-speed Batching Implementation. One of the key elements for batching to be a good
alternative to the standard approach is the batching cost. In equation 2, for k batches, possibly 2 ·k
polynomial multiplications, k polynomial additions and 1 polynomial reduction are required. In
our architecture, we need to avoid polynomial multiplications as much as possible for efficiency.
We performed several optimizations to greatly reduce the complexity of this step. First, Si ·Φi in
equation 2 can be precomputed as they are constant for a given cyclotomic polynomial Φ. Second,
messages are binary so the productmi · Si ·Φi can be replaced by a simple test. Third, degmi = 0,
deg Si = degφi − 1 and degΦi = degΦ − degϕi , so degmi · Si ·Φi = degΦ − 1. Thus the final
polynomial reduction can be avoided. Finally, the complete process is reduced to k conditional
polynomial additions, which can be quickly implemented.

3.2.5 Karatsuba pre- and post-computation details. Karatsuba pre- and post-computations have
been implemented with a recursive algorithm which follows the approach presented in [15]. The
pre-computation is quite easy to implement because operations are polynomials additions only. It
is only necessary to reconstruct each coefficient after at most five successive polynomial additions,
as explained in Section 3.2.2. When this operation is performed it is optimized to reduce perfor-
mance overhead. The Karatsuba algorithm is composed of several successive recursions. At the
ith recursion, sub-polynomials are the results of at most i sub-polynomial additions. We experi-
mented with several approaches to determine the best moment to implement the reconstruction. In
our case, the best results were achieved when the reconstruction is implemented during the first
Karatsuba recursion. A simple reasoning leads to this result. Between each Karatsuba recursion, the
number of sub-polynomials increases but each elementary sub-polynomial has lower coefficients.
However, each recursion increases the total size of sub-polynomials by 1.5. Thus, the earlier the
reconstruction is performed, the smaller the amount of data that must be considered. The last
recursion also requires reconstruction to support compatibility with the hardware accelerator. A
minor modification to the hardware that performs this last reconstruction results in an accelerator
performance improvement. Because the AVX2 vector performs addition on eight chunks in parallel,
it is important to have a chunk count that is a multiple of eight to avoid masking operations. For a
polynomial of 2,560 coefficients, this criterion is met during pre-computation since the smallest

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:11

sub-polynomial addition has 80 coefficients after the fifth recursion. To prevent masking, four
binary polynomials are stored in 2,560 chunks, as explained in Figure 3.
More issues are apparent for post-computation than for pre-computation. First, the number of

coefficients is not a multiple of eight, so operations require masking. Second, data is not always
aligned on 32-byte boundaries, so computation is penalized during non-aligned data loads. Third,
post-computation requires successive polynomial subtractions which are subject to the limitations
explained in Section 3.2.2. The final recursion of the pre-recursion and the first post-computation
in software have been adapted to automatically deal with sub-polynomials in such a way that
data is compatible with the PCI-E driver. The main benefit of this approach is avoiding data type
conversion as much as possible.

3.3 Hardware implementation
3.3.1 Architecture overview. Software and hardware components in our system communicate via

the PCI-E bus. The hardware accelerator is implemented on an FPGA (further details are provided
in Section 4). A RIFFA [19] interface implemented for PCI-E Gen 3 with four lanes is used. On the
FPGA side, the interface provides data bursts of 128 bits at 250MHz. Figure 5 shows the hardware
accelerator architecture. Computations are pipelined so computation operations are executed during
transfers. The pre-computation units perform the remaining pre-computations and consist of three
smaller units in cascade (one per recursion). For a sub-polynomial A, one smaller unit produces
sub-polynomials AL , AH and AL +AH (according to notation provided in Section 2.4), and pushes
these polynomials to the following unit to perform one pre-computation operation on AL , AH and
AL +AH , respectively. After three recursions, the design has eight lines of sub-polynomials but
many lanes are not fully fed by sub-polynomials. Thus a crossbar is implemented to better schedule
sub-polynomials and reduce the number of sub-polynomial lanes. A sub-polynomial multiplier is
implemented to multiply the different sub-polynomials with the standard polynomial algorithm.
The post-crossbar and the post-computation units are represented in the same box because they
are implemented successively but at the recursion level to reduce the storage overhead.
Many improvements have been made to the preliminary work in [15] to support encryption

operations. First, the pre-computation was adapted to efficiently pre-compute four binary poly-
nomials in parallel during public key pre-computation. Second, the polynomial multiplier core
was modified to support the multiplication of four polynomials with unbalanced coefficient sizes
(10×135-bit integer multipliers). Third, five post-computations were implemented in hardware
instead of three to reduce bandwidth. These new aspects of the architecture are discussed in the
following sections of the paper.

3.3.2 Adaptation of the pre-computation. Two lane types are supported for the computations:
one lane for the public key and a second for the binary polynomials. For the public key, coefficients
are split into five 27-bit chunks. Elementary coefficient addition/subtraction is performed in five
steps, which corresponds to a simple chunk-wise addition/subtraction with carry propagation. This
setup is sufficient to store each coefficient and matches the software representation of polynomials,
simplifying the connection with software. The binary polynomials are much smaller than standard
ones and only 32 bits are required to send one coefficient of the four binary polynomials. Tomaximize
resource utilization, one coefficient of one binary polynomial is stored per PCI-E burst. This approach
allows for the pre-computation of five binary polynomials during Pkey pre-computation. In practice,
processing is only performed in four out of the five available slots because the software only
pre-computes four binary polynomials.

At the beginning of the pre-computation process, each binary polynomial coefficient has at most
7-bit width. Because three pre-computations are performed in hardware, in the worst case, output

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:12
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

a0[0]
a0[1]
a0[2]
a0[3]

b0

a1[0]
a1[1]
a1[2]
a1[3]

b1

a2[0]
a2[1]
a2[2]
a2[3]

b2

a3[0]
a3[1]
a3[2]
a3[3]

b3

a4[0]
a4[1]
a4[2]
a4[3]

b4

a0[0]
a0[1]
a0[2]
a0[3]

b0

a0[0]
a0[1]
a0[2]
a0[3]

b1

a0[0]
a0[1]
a0[2]
a0[3]

b2

a0[0]
a0[1]
a0[2]
a0[3]

b3

a0[0]
a0[1]
a0[2]
a0[3]

b4

a1[0]
a1[1]
a1[2]
a1[3]

b0

a1[0]
a1[1]
a1[2]
a1[3]

b1

a1[0]
a1[1]
a1[2]
a1[3]

b2

a1[0]
a1[1]
a1[2]
a1[3]

b3

a1[0]
a1[1]
a1[2]
a1[3]

b4

a2[0]
a2[1]
a2[2]
a2[3]

b0

a2[0]
a2[1]
a2[2]
a2[3]

b1

a2[0]
a2[1]
a2[2]
a2[3]

b2

a2[0]
a2[1]
a2[2]
a2[3]

b3

a2[0]
a2[1]
a2[2]
a2[3]

b4

a3[0]
a3[1]
a3[2]
a3[3]

b0

a3[0]
a3[1]
a3[2]
a3[3]

b1

a3[0]
a3[1]
a3[2]
a3[3]

b2

a3[0]
a3[1]
a3[2]
a3[3]

b3

a3[0]
a3[1]
a3[2]
a3[3]

b4

a4[0]
a4[1]
a4[2]
a4[3]

b0

a4[0]
a4[1]
a4[2]
a4[3]

b1

a4[0]
a4[1]
a4[2]
a4[3]

b2

a4[0]
a4[1]
a4[2]
a4[3]

b3

a4[0]
a4[1]
a4[2]
a4[3]

b4

tim
e

Inputs 4 × {10×135-bit Integer Multiplier} Inputs

Polynomial multiplier

1 2 3 4 5

Fig. 6. Polynomial multiplier schedule. ai [j] represents the ith coefficient of the jth binary polynomial, and
bi the ith coefficient of the public key. The gray block represents an element scheduled by the 4×{10×135-bit
Integer Multiplier}.

coefficients of the pre-computation unit have 10-bit widths. The addition with carry units in the
previous pre-computation unit can be replaced by a simple adder and the datapath can be adjusted
to 10 bits to avoid carry propagation.

3.3.3 Adaptation of the PolynomialMultiplier. The polynomialmultiplier performs sub-polynomial
multiplication of polynomials generated after the pre-computation process. These sub-polynomials
have a low degree, four in our case, and are implemented with the standard multiplier algorithm.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:13

a0[0]
a0[1]
a0[2]
a0[3]

b0

a0[0]
a0[0]
a0[0]
a0[0]
a0[0]

b0

a0[1]
a0[1]
a0[1]
a0[1]
a0[1]

b0

a0[2]
a0[2]
a0[2]
a0[2]
a0[2]

b0

a0[3]
a0[3]
a0[3]
a0[3]
a0[3]

b0tim
e

Inputs 10×27 bits Integer Multiplier Inputs

4 × {10×135-bit Integer Multiplier}

1 2 3 4

Fig. 7. 4×{10×135-bit Integer Multiplier} schedule. ai [j] represents the ith coefficient of the jth binary
polynomial, and bi the ith coefficient of the public key.

For efficiency, the multiplier is fully parallelized, and as shown in Figure 5, requires five integer
multiplier units. These integer multiplier units have been designed to support four 10×135-bit
integer multipliers in parallel to support four encryptions. Because binary polynomial operations
are scheduled to improve resource utilization, the polynomial multiplication schedule has been
adapted. Both polynomial multiplier and 4×{10×135-bit Integer Multiplier} units follow the same
approach: A pre-crossbar to schedule incoming data, multiplier units, and a reconstruction unit.
Figures 6 and 7 provide the schedule of the polynomial multiplier and internal 4×{10×135-bit integer
multiplier} units. The block of data represented in gray is an elementary block of data processed
by the internal integer multipliers. From a high level point of view, the polynomial multiplier
pre-crossbar is responsible for supporting the convolution operation as the integer multiplier
pre-crossbar separates the coefficients of the four binary polynomials into four different lanes. In
Figure 7, it is apparent that five lanes of binary polynomials are possible. However, to be compliant
with our software architecture, we only use four lanes instead of five.

3.3.4 Adaptation of Post-Computation Operations. Due to limited PCI-E bandwidth, it was
necessary to implement two additional post-computations in hardware beyond the standard case.
In the standard case of three pre- and post-computations, input polynomials have 40 coefficients
with a 131-bit width and output polynomials have 79 coefficients with a 128-bit width due to integer
modular reduction. Thus, twice the bandwidth is needed for the output compared to the input.
Because chunks have 27 bits, for four polynomial multiplications, 2 × 4 × 27 = 216 bits are needed
for the output, which is larger than the 128 bits provided by RIFFA. Depending on the number of
post-computations, it is possible to have fewer output coefficients than the number of required input
coefficients. This assertion becomes true when implementing the two additional post-computations
in hardware in our case. Output polynomials now have 319 coefficients, and the number of input
polynomials for two post-recursions is nine, leading to 360 input coefficients. This architectural
modification has both pros and cons. Implementing additional post-computations in hardware
speeds-up the software post-computation process and reduces the size of the transfer between the
FPGA and the software. However, one needs to ensure that nine successive input polynomials can
be sent to the hardware accelerator without significant latency between them. As will be explained
in the next section, RIFFA input buffer management must be carefully implemented.

3.3.5 Selection of the distribution ratio between hardware and software for Karatsuba recursions.
The distribution ratio of the Karatsuba recursions between hardware and software is a critical
design choice. Although software can implement Karatsuba pre- and post-recursions, implementing
numerous recursions in software has several limitations. First, software recursions increase the

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:14
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

transfer size through the PCI-E (as a reminder, each recursion increases the size of the transfer by
1.5x). Since the software computation time increases, the overall computation time increases as well.
Second, post-computations in software are costly compared to pre-computation. Our experiments
show that post-computation can be eight times slower than pre-computation. Moreover, for four
parallel encryptions, post-computation must be performed four times in software.

Implementing additional post-recursions in hardware (i.e. more than the number of pre-recursions)
is not a complex task because additional post-crossbars are unneeded. The main issue is the imple-
mentation of the pre-crossbar. For fewer than three pre-recursions, there is not enough parallelism
to efficiently feed hardware multipliers (multipliers are unused 25% of the time). For more than
three, parallel implementation requires a complex sub-polynomial schedule which can penalize
the maximum design frequency. As a result, three pre-recursions are performed in hardware to
limit pre-crossbar complexity. For the post-computation, only five post-recursions are performed
due to PCI-E bandwidth limitations. This implementation greatly improves upon the software
performance by reducing computation time.

3.3.6 Limitations of the PCI-E interface. As mentioned earlier, a RIFFA 2.1 interface is used to
make the connection between software and hardware components. The transfer bandwidth mostly
depends on the size of the transfer [19]. For our system, instead of initiating one transfer per set of
sub-polynomials, a large transfer with all pre-computed polynomials is initiated. As explained in the
discussion in Section 3.3.1 regarding PCI-E bursts, a transfer requires the transmission of 729 degree-
39 sub-polynomials, about 2.2MB of data. With such a transfer, RIFFA should achieve a bandwidth
of 3,000MB/s which corresponds to a transfer time of 741 µs. In practice, we achieved a bandwidth
of 2,000MB, since our hardware accelerator shares the PCI-E bus with several components.

This limitation leads to two consequences. First, although the total hardware computation time
(including transfers) is lengthened, the Karatsuba hardware computation can partially compensate
since it can be performed during transfers. However, the transfer latency impact is not negligible.
Compared to the best possible case of 583𝜇s to perform all hardware computations, performance
is slowed down by 47%. Second, two extra components were designed to interface RIFFA to our
Karatsuba accelerator. The packager component manages the input stream and the buffer component
manages the output stream. The packager temporarily stores input coefficients so they can be
sent to the accelerator without interruption. This approach compensates for the risk of pipeline
bursts. The buffer is responsible for improving upload transfers. It stores output coefficients from
the Karatsuba algorithm until it is able to perform a complete transfer to the software without
interruption. This approach addresses the issue of the input stream length being larger than the
output stream length. Two more post-computations than pre-computations were implemented to
reduce the number of output lanes, resulting in a reduction in the size of the output stream. For 729
input sub-polynomials with 40 coefficients (29,160 coefficients in total), our Karatsuba accelerator
produces 81 sub-polynomials with 319 coefficients (25,839 coefficients in total). The bandwidth
issue in this case is limiting because it requires a long wait before transfer initiation, leading to the
use of a large FIFO.

4 IMPLEMENTATION RESULTS
Our design has been implemented on a DE5-net platform from Terasic. The platform includes a
Stratix V (GXEA7N2F45C2) FPGA, several embedded memories (SRAM, Flash), and 8GB of DDR3
memory. For communication, the DE5-net provides four SPI+ connectors, a PCI-E interface (up to 8
lanes) and one RS422. Our co-design architecture also includes a desktop computer which runs the
Microsoft Windows 7 operating system on an Intel Core i7-4790. The DE5-net board was plugged
into one of the PCI-E slots.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:15

Algorithm 1 Product/accumulation using NFLlib
Require: Pkey (in RNS and NTT form),U and E
1: Ũ ← NTT(RNS(U))
2: Ẽ ← NTT(RNS(E))
3: R̃ ← Pkey · Ũ + Ẽ
4: R ← invRNS(invNTT(R̃))
5: return R

Table 1 shows the FPGA hardware resources consumption for the co-design accelerator. The
contribution of RIFFA, the interface between RIFFA and the Karatsuba accelerator, and the accel-
erator itself are noted. The Karatsuba algorithm implementation is responsible for a substantial
consumption of FPGA arithmetic logic modules (ALMs). Half of these ALMs are used as memory.
This is the consequence of the pipeline cost and the temporary storage of coefficients required by
the architecture. Pipelining is important to reach the minimum 250 MHz frequency imposed by the
PCI-E. The substantial memory requirement of the design (more than 1MB) is due to the interface
between the multiplier and RIFFA, as described in Section 3.3.6. The buffer is responsible of more
than 99% of the memory consumption. This issue reveals that the main Karatsuba limitation is
the length of data transfers. For the output stream, we need to send data without interruption to
maximize the bandwidth, and so a large amount of data is buffered for that purpose. To reduce the
memory impact, the bandwidth itself would need to be improved, possibly by reducing the load on
the PCI-E bus. It is also possible to implement additional post-computations in hardware, reducing
the software post-computation time. Several issues complicate the comparison of our work with
the state of the art. Because a large majority of implementations target the Negative Wrapped
Convolution NTT for efficiency, which is not compatible with batching for binary messages, direct
comparisons are not possible. As a result, we compared our design with software algorithms from
the NFLlib library. NFLlib is also based on NTT, but it is enough flexible to be adapted for batching.
To speed-up computations, NFLlib splits polynomial coefficients into small numbers using the RNS
system. RNS provides an efficient strategy to parallelize computations and works similarly to CRT.
Table 2 compares the total computation time of this work with NFLlib and the software memory
requirements. The results are given for the computation of Pkey ·U + E (Algorithm 1 provides more
details about this computation in NFLlib). As random number and Gaussian noise generation are
not in the scope of the implementation, they are not included. Our accelerator is approximatively 1.5
times faster for 1 encryption and 4 times faster for 4 encryptions. The important drawback in NFLlib
is the several computations of RNS and NTT. Karatsuba does not require such transformations.
For software memory requirements, because Karatsuba has several data dependencies between
recursions, pre-allocation is required for efficiency. NFLlib also requires pre-allocated memory,
but has been deported to the polynomial itself as they are mostly polynomial-dependents (NTT
intermediate coefficients, RNS and NTT pre-computed constants, ...). However, the overall cost
benefits to NFLlib as very few polynomials are required during encryption.
We must also notice that a pure software implementation of Karatsuba is clearly not competitive
compared to NFLlib (more than 7ms are spent just for pre- and post-computations). Thus, the
hardware accelerator significantly improves computation time. This work also greatly improves
the implementation in [15], the basis for our architecture. Because the architecture in [15] does not
exploit the specific structure of polynomials, the computation time of the same operation costs
2.44ms per encryption, without any asymptotic gain for several successive encryptions.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:16
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,

Caroline Fontaine, Guy Gogniat and Russell Tessier

Table 1. Hardware resource consumption for the FPGA-based co-design accelerator.

RIFFA RIFFA/ Karatsuba
interface Karatsuba

Setup (n, log2 q) (2560, 135)

ALM
for logic 8,207 286 30,566

for memory 110 0 30,030
total 8,317 286 60,596

Registers 11,334 203 79,440
Memory bits 697,720 8,464,384 25,164

DSPs 0 0 80

fmax 250MHz (PCI-E limitation)

Table 2. Computation times and software memory requirements to perform the product/accumulation
operation required during the ciphering of FV (n=2560, log2 q = 135).
Software computations are performed on an Intel Core i7-4790.

Computation time
Notation: average time (standard deviation)

Encryptions This work NFLlib [20]
1 1,935 µs (220µs) 3,078 µs (98µs)
2 2,191 µs (138µs) 5,646 µs (148µs)
3 2,410 µs (176µs) 8,218 µs (191µs)
4 2,525 µs (184µs) 10,814 µs (237µs)

Software memory requirements
This work NFLlib [20]

Pkey ,U , E 150 KB 480KB
Pre-allocation 570 KB 0KB

Total 720 KB 480KB

5 CONCLUSION
In this paper, we described a high speed hardware/software accelerator to speed-up the cipher-
ing operation of lattice-based cryptography and, in particular, the promising FV homomorphic
scheme. This implementation focuses on batching techniques which pack several messages inside
one ciphertext to reduce the ratio between encrypted data length and message length. We target
polynomial arithmetic and compare the approach speed-up to a state of the art Lattice-Based arith-
metic software library, NFLlib. Our accelerator is approximatively 1.5 times faster for 1 encryption
and 4 times faster for 4 encryptions. To achieve such performance, a high speed software library
using AVX2 has been implemented, coupled with a fully pipelined hardware accelerator to reduce
the transfer latency impact between software and hardware. This paper also demonstrates the
interesting use of FPGAs as peripherals to improve computation times in homomorphic operations.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 1:17

Future work will consist of implementing the architecture on an FPGA/processor platform targeted
to embedded applications.

ACKNOWLEDGMENT
This study has been partially funded by the french Direction Générale de l’Armement (DGA).

REFERENCES
[1] T. E. Gamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” in Proc. of CRYPTO,

1984.
[2] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,” in Proc. of EUROCRYPT, 1999.
[3] C. Aguilar Melchor, P. Gaborit, and J. Herranz, “Additively Homomorphic Encryption with D-Operand Multiplications,”

in Proc. of CRYPTO, 2010.
[4] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation, Stanford University, 2009.
[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully Homomorphic Encryption Without Bootstrapping,” in

Proc. of ITCS, 2012.
[6] Z. Brakerski, “Fully Homomorphic EncryptionWithout Modulus Switching from Classical GapSVP,” in Proc. of CRYPTO,

2012.
[7] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic Encryption,” Cryptology ePrint Archive, Report

2012/144, 2012.
[8] C. Gentry, A. Sahai, and B. Waters, “Homomorphic Encryption from Learning with Errors: Conceptually-Simpler,

Asymptotically-Faster, Attribute-Based,” in Proc. of CRYPTO, 2013.
[9] Z. Brakerski and V. Vaikuntanathan, “Lattice-Based FHE as Secure as PKE,” in Proc. of ITCS, 2014.
[10] A. Khedr, G. Gulak, and V. Vaikuntanathan, “SHIELD: Scalable Homomorphic Implementation of Encrypted Data-

Classifiers,” IEEE Transactions on Computers, 2015.
[11] T. Lepoint and M. Naehrig, “A Comparison of the Homomorphic Encryption Schemes FV and YASHE,” in Proc. of

AFRICACRYPT, 2014.
[12] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun, “Batch Fully Homomorphic Encryption

over the Integers,” in Proc. of EUROCRYPT, 2013.
[13] J. Pollard, “The Fast Fourier Transform in a Finite Field,” in Mathematics of Computation, 1971.
[14] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede, “Modular Hardware Architecture for

Somewhat Homomorphic Function Evaluation,” in Proc. of CHES, 2015.
[15] V. Migliore, M. Mendez Real, V. Lapotre, A. Tisserand, C. Fontaine, and G. Gogniat, “Hardware/Software co-Design of

an Accelerator for FV Homomorphic Encryption Scheme using Karatsuba Algorithm,” IEEE Transactions on Computers,
2016.

[16] A. Karatsuba and Y. Ofman, “Multiplication of Multi-Digit Numbers on Automata (in Russian),” Doklady Akad. Nauk
SSSR, 1962, translation in Soviet Physics-Doklady.

[17] O. Regev, “On Lattices, Learning With Errors, Random Linear Codes, and Cryptography,” Journal of the ACM, 2009.
[18] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital

Signal Processor,” in Proc. of CRYPTO, 1986.
[19] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A Reusable Integration Framework for FPGA

Accelerators,” ACM Transactions on Reconfigurable Technology and Systems, 2015.
[20] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, and L. T. Killijian, MArc-Olivier, “NFLlib: NTT-Based Fast Lattice

Library,” 2016.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Notation
	2.2 Ciphering
	2.3 The Batching Technique
	2.4 Karatsuba Algorithm

	3 Accelerator Architecture
	3.1 High-Level Overview
	3.2 Software Implementation
	3.3 Hardware implementation

	4 Implementation results
	5 Conclusion
	References

