
High-Performance Hardware Monitors to Protect Network
Processors from Data Plane Attacks

Harikrishnan Chandrikakutty, Deepak Unnikrishnan, Russell Tessier and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA
{chandrikakut,unnikrishnan,tessier,wolf}@ecs.umass.edu

ABSTRACT

The Internet represents an essential communication infras-
tructure that needs to be protected from malicious attacks.
Modern network routers are typically implemented using
embedded multi-core network processors that are inherently
vulnerable to attack. Hardware monitor subsystems, which
can verify the behavior of a router’s packet processing sys-
tem at runtime, can be used to identify and respond to an
ever-changing range of attacks. While hardware monitors
have primarily been described in the context of general-
purpose computing, our work focuses on two important as-
pects that are relevant to the embedded networking domain:
We present the design and prototype implementation of
a high-performance monitor that can track each processor
instruction with low memory overhead. Additionally, our
monitor is capable of defending against attacks on proces-
sors with a Harvard architecture, the dominant contempo-
rary network processor organization. We demonstrate that
our monitor architecture provides no network slowdown in
the absence of an attack and provides the capability to drop
attack packets without otherwise affecting regular network
traffic when an attack occurs.

1. INTRODUCTION
The Internet is a critical infrastructure component in to-

day’s society. Many aspects of personal communication,
business transactions, entertainment, digital government,
etc. rely on the availability and correct operation of the
Internet. In this work, we focus on the security of packet
processing functions that are necessary to handle packet for-
warding on a network router. The packet processing com-
ponent of a modern router is typically implemented using
a network processor (NP) system. A network processor
has multiple simple embedded processor cores that can be
programmed to handle network traffic. When changes are
necessary, the software on this network processor can be
changed to adapt the operation of the router. Unlike tradi-
tional routers that have been based on application-specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29 – June 07, 2013, Austin, Texas, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

integrated circuit (ASIC) technology, network-processor-
based routers can be adapted in their functionality. How-
ever, this flexibility raises an interesting security problem:
routers that use software-programmable packet processors
are vulnerable to attacks [5]. Vulnerable packet process-
ing code can be exploited using malformed data packets to
launch an in-network denial-of-service attack. This type of
attack on contemporary NPs is addressed by this paper.

To reduce the vulnerability of packet processors in routers
(as well as embedded processors in general), digital circuits
that monitor run-time processor operation have been pro-
posed [3, 5, 13]. These hardware monitors use information
about correct processor software execution to track the in-
structions executed by a processor core. If an attack on the
processor occurs, a deviation from expected, programmed
behavior is detected and a recovery process is initiated.
Compared to software-based protection mechanisms (e.g.,
virus scanners), hardware-based monitors require less per-
formance overhead and react faster. In the networking do-
main, low overhead and fast detection speed are particularly
important. Therefore, there have been ongoing efforts to
further improve NP protection mechanisms to better sup-
port the applications supported by NPs and the processor
organization typically exhibited by NPs.

In this paper, we address two key problems that have not
been previously addressed in protecting network processors
from software attacks. An effective NP monitoring system
must verify every instruction that is executed by the pro-
cessor and thus needs to operate at very high speeds. This
instruction-based monitoring operation can be viewed as a
finite automaton with a fixed number of acceptable paths.
Prior work in hardware monitoring [5, 13] has been based
on non-deterministic finite automaton (NFA) implementa-
tions, which potentially require high memory bandwidth
when tracking multiple parallel states, or coarse verifica-
tion at the level of basic blocks [3], which may not detect
attacks before they are executed. For our first contribu-
tion, we present an instruction-level monitoring solution for
NPs based on deterministic finite automaton (DFA) imple-
mentation, which overcomes the shortcomings of both prior
techniques.

Prior work in embedded NP security has assumed a von
Neumann processor architecture with a combined instruc-
tion and data memory, where an attack can execute code
from the processor stack [5]. Most network processors, how-
ever, are based on Harvard architectures that separate in-
struction and data memory making stack-based code execu-
tion impossible. Therefore, it is questionable whether data

plane attacks are even possible in networks. For our sec-
ond contribution, we present an attack example that demon-
strates the existence of Harvard architecture attacks and we
show that our monitoring system is effective in defending
NPs against them.

The specific contributions of our paper are:

1. Design of a high-performance hardware monitoring
system for NPs: Our pipelined design can perform in-
struction verification with a single memory read per
instruction and thus can operate at speeds sufficient
to maintain line rate networking data transfer.

2. Algorithm for construction of a deterministic moni-
toring graph: We present a method to convert the
monitoring graph of NP instructions, which initially
is non-deterministic due to control-flow changes (e.g.
branches), into a deterministic automaton. The repre-
sentation of the DFA is compacted to allow for a highly
efficient implementation in the hardware monitor.

3. Demonstration of an attack on and defense of a Har-
vard architecture network processor: We demonstrate
an in-network attack through the data plane of the
network that exploits an integer overflow vulnerabil-
ity to smash the processor stack and launch a return-
to-library attack. This attack propagates the attack
packet and crashes the processor system. We also
show that our hardware monitor is effective in defend-
ing against this attack and allowing for continued NP-
based router operation after attack identification and
recovery.

The remainder of the paper presents these contributions
in detail.

2. RELATED WORK
Programmability in the packet processing systems of

routers has been used increasingly widely over the past
decade. Most major router vendors employ network proces-
sors in their products (e.g., Cisco QuantumFlow [6], Cavium
Octeon [4]). While the programmability of these devices is
hidden from network users, it is used by vendors to extend
system functionality. It can be expected that routers will
continue to have programmable packet processing compo-
nents, especially with network virtualization [2] emerging as
promising technology for the future Internet.

While network security as a whole has received much re-
cent attention (e.g., end-system vulnerabilities leading to
botnets [9], worm propagation [14], etc.), there has been lit-
tle focus on vulnerabilities in the networking infrastructure
itself. Cui et al. [7] have surveyed vulnerabilities in the con-
trol plane of networks, where an attacker can potentially
gain access to the router system. In the data plane, Chasaki
et al. [5] have shown an example of how a simple integer
overflow vulnerability can be exploited to launch a denial-
of-service from within the network. In this case, a single
malformed User Datagram Protocol (UDP) packet triggers
the vulnerability, changes the network processor’s operation,
and causes a flood of attack packets to be sent by the sys-
tem. We adapt this attack example to a processor system
based on a Harvard architecture in our work to demonstrate
the effectiveness of our monitoring system in detecting and
stopping such data plane attacks in a practical networking
environment.

Table 1: Comparison of Monitoring Approaches.

Monitor granularity implemen- underlying
tation architecture

Chasaki et al. [5] instruction NFA von Neumann
Arora et al. [3] basic block DFA von Neumann
This paper instruction DFA Harvard

Protection mechanisms for embedded processors have
been proposed based on hardware monitors in general
[1, 3, 5, 10, 13, 15, 16]. These monitors differ by the level of
monitoring granularity (function calls, basic blocks, individ-
ual instructions) and if they require changes to source code
or if they are based on program binaries. We only focus
on approaches that do not require changes to the proces-
sor binaries. The main novelty of the monitoring system we
present in this paper is highlighted in Table 1. In contrast
to related work, we can monitor at the level of individual in-
structions and do so using a DFA, which can be implemented
with high performance.

3. HARDWARE MONITOR SYSTEM

ARCHITECTURE
The system architecture of the network processor system

with security monitor is shown in Figure 1. The network
processor shown on the left of the figure is based on a conven-
tional Harvard architecture with separate data memory for
network packets and processing state and instruction mem-
ory for packet processing code. For simplicity, only a single
processor core is shown; the system can easily be extended
for multiple processor cores. The processing monitor on the
right side of the figure verifies the operation of the proces-
sor instruction-by-instruction. For every instruction that is
executed on the processor core, a hash value of the executed
operation is reported to the monitor. The monitor uses the
comparison logic to compare the reported hash value to the
information that is stored in the monitoring graph. The
monitoring graph is derived by offline analysis of the packet
processing code binary.

Any attack on the system necessarily needs to change the
operation of the processor core (otherwise the attack is not
effective). This deviation leads to the processor reporting
hash values that do not match with the monitoring graph.
The comparison logic can detect this deviation and reset the
processor in response. In networking, such a reset and recov-
ery operation is very simple: The current packet is dropped
(i.e., the packet buffer is cleared), the processing state is re-
set (i.e., the stack is reset), and processing continues with
the next packet. Since most packet processing operations
are not stateful and there is no guarantee that packets are
reliably delivered, no further recovery actions are necessary.

The monitoring graph used by the hardware monitor is
a state machine, where each state represents a specific pro-
cessor instruction. The state machine is derived from the
packet processing code as illustrated in Figure 2. Each pro-
cessor instruction corresponds to a state. The edges between
states are labeled with information relating to next valid in-
struction that can be executed after the current instruction.
In case of control flow operations, there may be multiple out-
going edges from each state (each being a valid transition).
In our system, we use a 32-bit processor (i.e., open source
embedded Plasma processor based on the MIPS instruction

network

processor

core

instruction memory

data memory

packet buffer

processing code

network interface

comparison

logic

mon. memory

mon. graph

n
e

tw
o

rk
 p

ro
c
e

s
s
o

r

h
a

rd
w

a
re

 m
o

n
it
o

r

hash of

processing

instruction

reset/

recovery

processing code

binary

NFA monitoring

graph

DFA monitoring

graph

NFA-to-DFA

transformation

o
ff
lin

e
 a

n
a

ly
s
is

ru
n

ti
m

e
 o

p
e

ra
ti
o

n

Figure 1: System architecture of network processor

with security monitor.

 […]
 49c: 97c20010 lhu v0,16(s8)

 4a0: 00000000 nop

 4a4: 2c420033 sltiu v0,v0,51

 4a8: 1440000a bnez v0,4d4

 4ac: 00000000 nop

 4b0: 3c026666 lui v0,0x6666

 4b4: 34430191 ori v1,v0,0x191

 4b8: 97c20010 lhu v0,16(s8)

 […]

49c

4a0

4a4

4a8

4ac

4b0

4b4

4b8

0

7

11

10

10

7

3

6

4d4

Figure 2: State machine generation from processing

binary.

set). The monitoring system uses a 4-bit hash of the next in-
struction to label edges in the monitoring graph (as has been
recommended in [13]). A hash (instead of the full 32-bit in-
struction) is used to reduce the size of the monitoring graph
and thus to reduce the implementation overhead of the hard-
ware monitor while still allowing instruction-by-instruction
monitoring. The use of a hash (or any other method that
uses a many-to-one mapping), however, leads to two funda-
mental problems:

• Attack detection ambiguity: The many-to-one map-
ping that occurs in a hash function of the monitor may
make it possible for an attacker to remain undetected.
This would require that the attack performs operations
that lead to a sequence of hash values that matches
the monitoring information of valid code. Mao et al.
have shown that this probability decreases geometri-
cally with the length of the attack code and thus is
unlikely to lead to practical attacks [13] (in particular
when the hash function is not known to the attacker).
We do not consider this issue further in this paper.

• Nondeterminism during monitoring: The many-to-one
mapping also leads to nondeterminism in the moni-
toring graph. There may be a control flow instruc-
tion where each of the next instructions has the same
hash value. As a result, the corresponding node in
the monitoring graph has two outgoing edges with the

same hash value (as illustrated in Figure 3). Since this
nondeterminism can continue for multiple such control
flow operations, it can lead to complex implementa-
tions [5], potentially slowing monitor performance.

In the following section, we show how we can address the
latter problem by converting the nondeterministic monitor-
ing graph into a deterministic monitoring graph, which is
easier to use in high-performance implementations.

4. DETERMINISTIC PROCESSOR MONI-

TORING
To realize a deterministic instruction-level monitor, we

first convert the NFA monitoring graph described in the pre-
vious section to a DFA monitoring graph. We then describe
how to implement a monitoring system that uses this DFA
graph.

4.1 Construction of Deterministic Monitoring
Graph

Tracking nondeterministic finite automata is difficult to
implement in practice since the automaton can have mul-
tiple active states. This leads to high bandwidth require-
ments between the monitoring logic and the memory that
maintains the NFA since next-state information for all ac-
tive states has to be fetched in each iteration. When using
a DFA, in contrast, only one state is active and implemen-
tation becomes much easier.

To convert an NFA to a DFA, a standard powerset con-
struction algorithm can be used [11]. This algorithm com-
putes all possible state sets in which the automaton can be
situated (i.e., the powerset). Based on the powerset, a DFA
is then constructed. Figure 4 shows the DFA that corre-
sponds to the NFA shown in Figure 3. Note that state {3,5}
represents the sets of states to where state 2 can branch when
hash value c is observed.

One potential problem with NFA-to-DFA conversions is
that the number of states in the DFA can grow exponen-
tially over the number of states in the NFA. However, the
monitoring NFAs constructed from binary code do not ex-
hibit this pathological behavior. Our experiments indicate
that this increase is small and does not lead to drastically
larger state machines (see Section 7). Thus, this approach
is effective for creating deterministic hardware monitors.

4.2 Implementation of Monitoring System
A key challenge in the implementation of our hardware

monitoring system is how to represent the monitoring DFA
in memory. The comparison logic needs to be able to re-
trieve the information about next state transitions for every
instruction that it tracks. Thus, state transitions need to
be implemented with no more than one memory access per
instruction (to keep up with the network processor core) and
be as compact as possible (to minimize the implementation
overhead of the monitor).

The information that needs to be stored in the monitoring
memory is illustrated on the left side of Figure 5. Each state
represents an instruction and an outgoing transition edge
from this state represents the hash value of the next expected
instruction in the execution sequence. For example, state c

has two next states, d and e, with hash values 11 and 3,
respectively.

1 2 3 4 5
b c d e f

c

6
a

Figure 3: Nondeterministic monitoring graph.

61
a

2
b

{3,5}
c

4
d

5
e f

f

Figure 4: Deterministic monitoring graph after

NFA-to-DFA conversion.

A näıve way to store the state machine in RAM would be
to store each state and all its possible edge transitions. This
would require 2h entries per state for an h-bit hash. Since
most states have only one or two outgoing edges, a large
number of edge transitions would never be used, leading to
inefficient memory use. Assuming that only two outgoing
transitions exist for each state is also not feasible due to
the cases where powerset construction creates states with
up to 2h outgoing edges. Finally, for performance reasons
we should only use one memory access per state transition,
which precludes a design where states with more than two
outgoing edges are handled as special cases.

Our main idea to compactly represent DFA states with
varying numbers of outgoing edges is to encode all the neces-
sary information in a single table entry and to group states
by the number of outgoing edges. The main challenge in
achieving compactness is to allocate exactly the amount of
memory that is needed for each state to store next state in-
formation while still being able to index this memory with-
out degrading to linear search. In our representation, we
group states together if they have the same previous state.
A state belongs to group g if the previous state has g outgo-
ing edges. For a monitor with a 4-bit hash value, there are
16 possible groups. For example, in Figure 5 on the right
side, groups are shown with different colors. Note that a
state can belong to multiple groups (e.g., state f belongs to
group 2 (because a has two outgoing edges, one to b and one
to f) and to group 3 (because e has three outgoing edges)).

The memory layout and basic operation of our DFA mon-
itor system is shown in Figure 6. The memory contains
tuples of {number of next states, offset in state group, valid
hash values on outgoing edges} and is logically divided into
groups. The base addresses for each group are stored in a
register file with 16 entries. Within a group, the sets of states
that share the previous state are grouped together (e.g., b
and f are together and d and e are together). Within a
set, states are ordered by the hash value on their incoming
edge (e.g., e before d because hash value 3 is smaller than
hash value 11). The hash comparison block performs two
functions: it determines if the one-hot coded hash bit is set
in the 16-bit value read from memory and it determines k,
which is the position of the matching hash value among the
valid hash values read from memory.

To illustrate the operation of the monitor, we describe an
example transition. Assume the monitor is in state a and the
processor reports an instruction that leads to a hash value
of 7. To perform the transition, the memory row labeled a

is read. The tuple in this row indicates that there are two
outgoing edges. The valid hash values of these two edges

d g

h

2

7

3

11

0

14

2

7

9

a

c e

grouping

group 1

group 2

group 3

f

b d g

h

2

7

3

11

0

5

2

7a

c e

f

b

9

Figure 5: Grouping of DFA states.

2

number of

next states

0

offset in

state group

0000 0000 1000 0100

valid hash values on

outgoing edges

2 1 0000 1000 0000 1000

1 1 0000 0000 1000 0000

1 0 0000 0010 0000 0000

3 0 0000 0000 0010 0101

...

1 0 0000 0010 0000 0000

...

...

a

c

b

f

e

d

f

h

g

group 1

group 2

group 3

0x0000

0x0002

0x0006

...

group 1

group 2

group 3

group 16

...

group base
address

-1

mult

add

...

k

(position of

matching hash

among valid

hash values)

one-hot

encoding

...

hash

compari-

son

...

4-bit hash

function

processor

instruction

reset/

recovery

32
32

4

4

16

16

4

4

16

1

state machine memory

Figure 6: Memory representation of DFA monitor-

ing graph.

are stored in the 16-bit vector. To verify that the transition
is valid, the hash comparison unit checks if bit 7 is set in
the bit vector (which it is). If this bit is not set, then an
invalid transition takes place, indicating an attack, and the
processor is reset. After the check, the next state (i.e., state
f) in the DFA needs to be found in memory. To determine
the address of that state, the base address of the group of the
next state is looked up in the register file (i.e., 0x0002 since
the next state belongs to group 2). To this base address, the
product of the set size (i.e., group number) and the offset
in the state group is added (to index the correct set within
the group). Finally, k is added, which is the position of the
matching hash in the bit vector (in our case 1 since 2 is the
first matching hash (i.e., k=0) and 7 is the second matching
hash (i.e., k=1)). Thus the memory location of state f is
0x0002 + 2×0 + 1 = 0x003.

Note that any state transition takes only one memory read
from state machine memory and a lookup into a fixed-size
register file. The DFA is represented compactly without
wasting any memory slots (states shown with dots in Figure
6 point to other states not shown in our example). Thus,
this representation lends itself to a high-performance imple-
mentation.

5. HARVARD ARCHITECTURE ATTACKS
Even though general memory error techniques (integer

overflow, heap overflow etc.) cannot be used to generate
code injection attacks, Francillion et al. [8] demonstrated
that code injection attacks are still feasible on a Harvard
architecture processor using a return-oriented programming
technique. Here, an attacker takes control of return instruc-
tions in the stack to chain attack code from an existing li-
brary function. Since the code is already present in exe-
cutable memory, the attack will not be prevented from run-
ning. In this section, we describe how such an attack can
be constructed for the networking environment and how our
monitor can detect it.

Figure 7 shows portions of congestion management pro-
tocol (CM) and a IPV4 packet forwarding application used
to build an attack on the network processor system. The

CM protocol IPV4 application

Figure 7: Vulnerable application code.

congestion management protocol inserts a custom protocol
header in the packet header space between the IP header and
the UDP header. During this operation, the code needs to
make sure the new packet size does not exceed the maximum
datagram length (the boxed instruction in the CM code).
Exploiting an integer overflow vulnerability, the boundary
check in the CM code can be circumvented and the stack
can be smashed. To do so, an attacker sends a malformed
UDP packet with a size 0xfffe (decimal value 65534), which
will pass the maximum packet size check (since 65334 + 12 =
10, due to integer overflow). As a result, the packet payload
is copied over the stack. The packet payload of the attack
packet is crafted in such a way that the return address is
overwritten to direct the control flow to the IPv4 packet for-
warding application (which is library code on the processor
core) and the value of the ip dst low field is 0xff. The port
information gets updated with this value (the boxed instruc-
tion in the IPv4 code), forwarding the attack packet to all

the outgoing ports and then crashing the processor system.
As a result, the attack packet gets forwarded to all outgoing
interfaces before the system crashes, thus propagating the
attack through the network.

Since our hardware monitor has no valid edge between
the states in the middle of the CM application and the IPv4
application, this attack is detected. As soon as the control
flow changes, the hash values reported by the processor no
longer match the monitoring information and the system is
reset, dropping the malicious packet.

6. PROTOTYPE SYSTEM IMPLEMENTA-

TION
Although an end-system would likely be implemented in

fixed logic, we have prototyped the described network pro-
cessor and hardware monitoring system on a Stratix IV
GX230 FPGA located on an Altera DE4 board. The router
infrastructure surrounding the NP core is taken from the
NetFPGA reference router, which has been migrated to the
Stratix IV family. The DE4 board has four 1 Gbps Eth-
ernet interfaces for packet input/output. In our prototype
implementation, the single-core network processor is imple-
mented as a soft core and the monitor is implemented in
FPGA logic (using Quartus for synthesis, place and route).
Only the memory initialization files need to be reconfigured
on a per-application basis.

To run networking code on the processor plus monitor sys-
tem, the code is first passed through a standard MIPS-GCC
compiler flow to generate assembly-level instructions. The
output of the compiler allows for the identification of branch
instructions and their target addresses. In our current im-

Table 2: Evaluation of monitoring approaches for

our new DFA approach and a previous NFA-only ap-

proach. The maximum number of memory accesses

for our approach is 1 for all benchmarks.

Chasaki [5] Ours
Netw. No. NFA Max. DFA Mem. Mem.
appli- of states mem. states entries over-
cation instr. access head
frag 573 573 3 592 627 9.4%
mtc 2427 2427 3 2460 2584 6.4%
red 802 802 2 808 857 6.8%
wfq 905 905 2 921 978 8.0%

plementation, all possible branch targets and return instruc-
tions are analyzed at compile time. The monitor can handle
an arbitrary number of indirect branches to statically known
targets (e.g., return addresses) since the NFA representation
allows any number of outgoing branches. (Our monitor can-
not handle indirect branches to statically unknown targets
that are resolved at run time, but such programming con-
structs did not appear in any of 11 benchmark applications
that we looked at.)

The NFA-to-DFA conversion starts with a non-
deterministic NFA representation obtained from the com-
piler information. Through powerset construction, a DFA
is constructed. This DFA is then converted into a mem-
ory initialization file using the process described in Section
4 and is loaded into the monitor when the processing bi-
nary is installed in the processor. To evaluate our system,
four benchmarks from the NPbench suite [12] were processed
with this flow.

7. EVALUATION RESULTS

7.1 Monitoring Graphs
The results of generating instruction-level monitoring

graphs for both our approach and a previous approach [5]
are illustrated in Table 2. The number of entries in the state
machine memory (Figure 6) for each benchmark are shown
in the Mem. entries column. A clear benefit of the new ap-
proach is speed. In all cases, only one access to the monitor
memory is required for any benchmark (including the four
shown here). The previous NFA-based approach requires
up to three memory accesses for the benchmarks tested and
potentially up to 16 for other benchmarks. The conversion
from an NFA to a DFA does incur a memory overhead of
7.7% on average for the benchmarks.

Table 3: Resource Utilization

Resources Secure Network DE4 Available
monitor proc. interface in FPGA

LUTs 140 3,792 37,803 182,400
FFs 26 2,120 38,444 182,400
Mem. bits 131,072 201,216 2,550,800 14,625,792

Attack Packet

Normal Packet

Attack detected

& packet dropped

Normal Packet

forwarded

Figure 8: Simulation waveforms showing the identi-

fication of an attack packet and the successful for-

warding of the subsequent packet. This behavior

was confirmed using hardware.

7.2 Monitoring Speed and Effectiveness
Our network processor and monitoring system were suc-

cessfully implemented on the DE4 platform. The lookup
table (LUT), flip flop (FF), and memory resources required
for the network processor core, monitor, and other interface
circuitry for the router (e.g. buffers, input arbiter, queuing
control, etc) are shown in Table 3. The NP memory includes
space for up to 4096 monitor memory entries. All circuitry
operated at 125 MHz, the same clock speed for the system
without the monitor. Experiments in simulation and in the
lab on FPGA hardware showed that the processor is able to
forward packets ranging in size from 64 to 1500 bytes per
packet at the same rate under monitoring as without mon-
itoring (e.g. no slowdown for monitoring). For hardware
experiments, packets were generated and transmitted to the
DE4 with the NP and monitor at a 1 Gbps line rate by a
separate DE4 card serving as a packet generator. This same
card was used to receive the processed packets from the card
with the NP.

In a final experiment, we tested the ability of the monitor-
based system to detect and recover from an attack. The vul-
nerable application code shown in Figure 7 was implemented
and used with the NP to send copies of a packet to all ports
of the router and then crash the router. We confirmed this
behavior for a system without a monitor both in simulation
and in hardware. As shown in Figure 8, after the monitor
was added to the system, the attack packet was successfully
identified, the NP was reset, and subsequent regular packets
were routed successfully. This behavior was verified using
our DE4 hardware setup.

8. SUMMARY AND FUTURE WORK
The effective use of the Internet depends on reliable net-

work routers that are impervious to attack. In this paper,
we have described a high-performance monitor for a network
processor that requires only a single memory lookup per net-
work processor instruction. This single memory lookup is
maintained regardless of the complexity of the NP program
using an NFA-to-DFA translation of the monitoring graph.
Our monitor, which tracks individual NP instructions, has
been verified in hardware using an NP with a Harvard ar-
chitecture. The presence of monitoring does not slow down
NP operation since it is performed outside of the operational
paths of the NP. In the future, we plan to evaluate our mon-
itoring approach using a multi-core network processor.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1115999. We grate-

fully acknowledge Altera Corporation’s donation of the DE4
boards and Quartus software.

9. REFERENCES
[1] Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J.

Control-flow integrity principles, implementations, and
applications. In ACM Conference on Computer and
Communication Security (CCS) (Alexandria, VA, Nov.
2005), pp. 340–353.

[2] Anderson, T., Peterson, L., Shenker, S., and Turner,
J. Overcoming the Internet impasse through virtualization.
Computer 38, 4 (Apr. 2005), 34–41.

[3] Arora, D., Ravi, S., Raghunathan, A., and Jha, N. K.
Secure embedded processing through hardware-assisted
run-time monitoring. In Proc. of the Design, Automation
and Test in Europe Conference and Exhibition (DATE’05)
(Munich, Germany, Mar. 2005), pp. 178–183.

[4] Cavium Networks. OCTEON Plus CN58XX 4 to 16-Core
MIPS64-Based SoCs. Mountain View, CA, 2008.

[5] Chasaki, D., and Wolf, T. Attacks and defenses in the
data plane of networks. IEEE Transactions on Dependable
and Secure Computing 9, 6 (Nov. 2012), 798–810.

[6] Cisco Systems, Inc. The Cisco QuantumFlow Processor:
Cisco’s Next Generation Network Processor. San Jose, CA,
Feb. 2008.

[7] Cui, A., Song, Y., Prabhu, P. V., and Stolfo, S. J.
Brave new world: Pervasive insecurity of embedded
network devices. In Proc. of 12th International Symposium
on Recent Advances in Intrusion Detection (RAID)
(Saint-Malo, France, Sept. 2009), vol. 5758 of Lecture Notes
in Computer Science, pp. 378–380.

[8] Francillon, A., and Castelluccia, C. Code injection
attacks on Harvard-architecture devices. In Proc. of the
15th ACM Conference on Computer and Communications
Security (CSS) (Alexandria, VA, Oct. 2008), pp. 15–26.

[9] Geer, D. Malicious bots threaten network security.
Computer 38, 1 (2005), 18–20.

[10] Gogniat, G., Wolf, T., Burleson, W., Diguet, J.-P.,
Bossuet, L., and Vaslin, R. Reconfigurable hardware for
high-security/high-performance embedded systems: the
SAFES perspective. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 16, 2 (Feb. 2008),
144–155.

[11] Hopcroft, J. E., and Ullman, J. D. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[12] Lee, B. K., and John, L. K. NpBench: A benchmark suite
for control plane and data plane applications for network
processors. In Proc. of IEEE International Conference on
Computer Design (ICCD) (San Jose, CA, Oct. 2003),
pp. 226–233.

[13] Mao, S., and Wolf, T. Hardware support for secure
processing in embedded systems. IEEE Transactions on
Computers 59, 6 (June 2010), 847–854.

[14] Moore, D., Shannon, C., and Brown, J. Code-Red: a
case study on the spread and victims of an Internet worm.
In IMW ’02: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurement (Marseille, France,
Nov. 2002), pp. 273–284.

[15] Ragel, R. G., and Parameswaran, S. IMPRES:
integrated monitoring for processor reliability and security.
In Proc. of the 43rd Annual Conference on Design
Automation (DAC) (San Francisco, CA, USA, July 2006),
pp. 502–505.

[16] Zambreno, J., Choudhary, A., Simha, R., Narahari, B.,
and Memon, N. SAFE-OPS: An approach to embedded
software security. Transactions on Embedded Computing
Sys. 4, 1 (Feb. 2005), 189–210.

