
Adaptive System on a Chip (aSoC) for Low-Power Signal Processing

Andrew Laffely, Jian Liang, Prashant Jain, Ning Weng, Wayne Burleson, Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA. 01003

{alaffely, jliang, pjain, nweng, burleson, tessier}@ecs.umass.edu

Abstract
Adaptive System-on-a-Chip, aSoC, is an on-chip

communications architecture designed to promote scal-
ability and flexibility in system-on-a-chip designs. This
paper describes the use of aSoC to allow for dynamic
power management of video signal processing systems.
Content variation and perceptual tolerance in video sig-
nals can be exploited to gracefully trade quality for low
power. The regularity and flexibility of the aSoC archi-
tecture provides a predictable framework for modeling
the power, speed and area requirements of global com-
munications that dominate configurable video process-
ing.

1 Introduction
Wireless video processing systems need to perform

computationally intensive tasks with high through-
puts while meeting stringent power constraints. Fortu-
nately, VLSI technology, following Moore’s law, has en-
abled completely integrated video systems [12]. While
these early systems contain basic capabilities, more
complex systems are required to fully implement the
complexity and flexibility of present day video encod-
ing standards [8].

Core based system-on-a-chip (SoC) implementations
attempt to improve performance by taking advantage
of application parallelism. They also manage complex-
ity by enabling reuse of intellectual property (IP) cores.
Performance improvement and reduction in power con-
sumption depends on the following factors. First,
breaking up the computational component introduces
interconnect into the critical path. Second, algorithm
partitioning may create hot spot bottlenecks, which
limit performance. Coupled together, these two ineffi-
ciencies may introduce additional power consumption.

ASoC answers these concerns by using a novel, stati-
cally scheduled interconnect structure, which increases
system throughput by up to 3.5 times that of bus-
based systems [6]. Regularity of the interconnect struc-
ture and the predictability of static scheduling can be
used to eliminate unnecessary interconnect switching

activities. In addition, the aSoC architecture comes
complete with effective application mapping tools and
methodologies, which attempt to assure performance
by balancing the computational load across all the
cores. An asynchronous core interface allows for in-
dependent core operating frequencies thus mitigating
the negative impacts due to unbalanced core loading.
Finally, the core interface and cores themselves can be
dynamically reconfigured to low power modes in re-
sponse to data content variations and system operating
environments.

This paper uses a partial video encoding system to
demonstrate aSoC’s dynamic power management ca-
pabilities. First, it shows how the aSoC interconnect
supports the flexibility of dynamically reconfigurable
cores. Specifically, aSoC is used to configure a flexible
motion estimation core by selecting low power modes
capable of reducing power by a factor of nearly 40. Sec-
ond, dynamic reconfiguration of the interconnect and
interface are shown to complement core power savings
efforts by balancing core computation times and by
turning off idle cores. It is also shown that dynamic
configuration adds less than 10% overhead to the in-
terconnect bandwidth and power budgets.

This paper proceeds as follows. Section 2 presents
a brief overview of the aSoC architecture. Section
3 presents some VLSI power management techniques
used in aSoC. The experimental approach is described
in Section 4 and Section 5 shows how the aSoC archi-
tecture and reconfigurability support effective dynamic
power management with low control overhead. Section
6 concludes the paper and suggests future work.

2 Scheduled Communication
Architecture

Our approach to SoC integration is a tiled architec-
ture that addresses both scalability and flexibility [6].
As shown in Figure 1, each tile represents a computa-
tional core and its interface to the network. The core
interface supports the use of heterogeneous processing
cores occupying one or more tiles. The system connects



DCT

Viterbi

Control

FIR Memory

VLE

Interface

Interconnect

Cores

Encyrpt

Motion Estimation
& Compensation

Figure 1: Tiled Architecture

these tiles using a statically scheduled mesh of intercon-
nect, which assures predictable inter-core communica-
tions. Data moves between neighboring tiles in a com-
munication pipeline, thus enabling fast clock rates and
time sharing of interconnect resources. The ability to
reconfigure both the cores and interconnect at run-time
leads to the possibility of dynamic power management.

The core interface manages communications
through each tile and synchronizes global communica-
tions. As shown in Figure 2, the instruction memory
holds a list of the communication patterns required at
run-time. The PC fetches these patterns in succession
and a decoder converts them into switch settings for
a crossbar. The crossbar routes data between the lo-
cal core and the neighboring tiles (North, East South
or West). Each incoming data word can contain local
interface configuration information to be sent over the
local config. line to the controller. The Coreports in
Figure 2 use a simple protocol to interface communica-
tions between the potentially different clock domains of
the core and interconnect. Multiple input and output
Coreports can be used depending on the core and ap-
plication requirements. During normal operations, the
controller simply loops through a set of communication
patterns, called a schedule.

Figure 3 shows the complete data transfer, or
stream, between the cores of tile A and tile C built
by the coordination of independent schedules in tile in-
struction memories. During cycle 1, tile 1 sends data
from an output Coreports to the East. During cycle 2,
tile B sets its own crossbar to transfer the data from
its West input to tile C in the East. Finally during

West

East

South

North
South

East

West

North

Core

PC

ControllerDecoder

Coreports

Inputs outputs

North to South & East

Instruction Memory

Local
Config.
Line

Figure 2: Core and Communication Interface

cycle 3, tile C moves the data from the West input to
its own Coreports.

3 Dynamic Power Management
for aSoC

Dynamic power management exploits run-time vari-
ations in data content and operational requirements
to minimize one or more of the terms in the VLSI
power equation [1], shown in Equation 1. At present
aSoC supports and performs reduction of effective
capacitance(Ceff ) and frequency (f) with future goals
of developing effective voltage (Vdd) scaling procedures
[3][11] and associated hardware [2].

Pave = Ceff × V 2
dd × f (1)

In some logic systems, Ceff may be reduced by elim-
inating excess switching activity [1]. For example, the
discrete cosine transform (DCT) implementation dis-
cussed in [13] bypasses calculations on the higher order
bits whenever their inclusion does not change the fi-
nal result. An important example of Ceff reduction
efforts in aSoC is the interconnect disabling. Although
the scheduled communications guarantee the periodic



Tile A Tile B Tile C

2
1

3

x

x

x

x

x
x

core to east

west to east

west to core

loop

Figure 3: Example Data Stream

generation of specific streams, cores may not need or be
able to use all stream instances. ASoC keeps track of
the unused streams by including a valid bit with each
data word. Using this valid bit as an enable for in-
terconnect drivers eliminates switching activity for the
unused data portion of the transfer.

We have built a motion estimation core based on the
principles in [4] which can be dynamically configured
to use one of three search methods: full, spiral, or three
step. Method selection trades power consumption for
motion estimation and possibly overall video quality. A
control tile with access to the global power and qual-
ity requirements chooses the best search method and
sends the information to an ME tile on a dedicated
configuration stream.

Independently developed heterogeneous cores may
require independent clock domains to meet critical
path requirements. Additionally, reconfigurable IP
cores may require reconfigurable clock domains. A sim-
ple configurable clock reference generator provided at
each tile multiplies or divides the global interconnect
synchronization clock by 2n, where n represents a 3 bit
binary number. The clock value is loaded at run-time
through the tile local config. line to the controller. Such
a system supports dynamic power management by re-
ducing unnecessary slack in core computations and po-
tentially improves battery life as well by reducing cur-
rent spikes [7].

Finally, changes in the global schedule eliminate
data transfers through unused tiles. System commu-
nication can be reconfigured at run-time using jump
or load commands sent through the tile local config.
line to the controller. A jump command changes a lo-
cal pointer to a different schedule in the interconnect
memory while a load command loads the contents of
the new schedule.

DCTMotion Estimation
& Compensation

configuration streams

Transform
MV

Reconstructed
Frame

Frame
In

Figure 4: System Under Test

4 Methodology
The demonstration system, shown in Figure 4, con-

sists of two of the most power hungry components of
video encoding; discrete cosine transform (DCT) and
motion estimation (ME) [4]. These two cores are imple-
mented at the register-transfer level (RTL) and include
many dynamic power savings features. The DCT is a
replicated row accumulate (RAC) unit implementation
[5] and includes dynamic power savings mechanisms
such as most significant bit (MSB) rejection and row
column classification (RCC), found in [13]. The ME
core permits selection of several search algorithms in-
cluding full, spiral and three step [4]. It also allows
selection of search range. These two cores combine to
make an adequate test bench for the architecture as
their incorporation demonstrates aSoC’s asynchronous
interface and aSoC’s ability to deal with reconfigura-
tion. The interconnect and interface system has been
implemented as custom layout in 0.18 micron technol-
ogy, and is modeled in HSPICE using the Berkeley Pre-
dictive Tools. A C-code motion compensation unit is
attached to the ME core. It bridges the two cores of
interest by generating a motion compensated difference
frame for the DCT.

ASoC modularity creates an environment where sys-
tem power is accurately modeled as the sum of in-
dividual component power provided that the timing
and data activity are accurately captured and used
in the individual power estimations. Three different
simulators are used to analyze the performance and
power consumption of this aSoC model. First, the two
cores are simulated independently at the RTL level, us-
ing Synopsys tools, on representative bit streams from
video benchmarks. The simulation includes TSMC
standard cell libraries to approximate both perfor-
mance and power consumption of cores for each mode
of operation and desired frequency. The aSoC network
simulator is used to determine system performance and
network activity. Using the known core delays, the
aSoC simulator accurately models the cycle-by-cycle



connectivity, flow control, and core usage. Core usage,
showing idle and active time can be fed back through
Synopsys to compute core power. Based on network
activity and HSPICE circuit simulation of the inter-
connect, the network power consumption (Pint) can be
tabulated as follows:

Pint =
∑

t

PIF/D +
∑

s

0.5 × (33×Nvs
.Ps + Nivs

.Ps)

(2)
Where t represents the number of tiles, PIF/D is the

overhead of the instruction memory fetch and decode,
and s is the number of streams. Nvs

and Nivs
are the

number of valid and invalid transfers for stream s while
Ps is the power consumed in transferring 1 bit through
stream s.

This system is setup to process 352x240, 8 bit pixel
frames at a rate of 30 frames a second. The input com-
pensated, reconstructed and transformed frame data
are packed 4 pixels to a word. Each motion vector uses
one full word of data.

5 Results
The following results showcase aSoC’s capabilities.

The first experiment uses the schedule shown in Ta-
ble 1 to process MPEG P-frames. At each clock cycle
the connectivity for each tile is established as shown.
The PC cycles through instructions 0 to 9 and loops
back to 0. The schedule length of 10 is used to imply
that these three tiles are part of a much larger sys-
tem. This experiment shows the benefit of allowing
reconfiguration in addition to the benefit of clock sig-
nal configuration. Column 2 of Table 2 shows the clock
rate of each subsystem required to meet the deadlines
of the input video stream. Column 3 shows the power
numbers of both cores and interconnect for a system,
which processes data at these minimum frequencies.
The last column dramatizes the pitfalls of forcing each
tile to synchronize to the worst case clock frequency. In
this part of the experiment core power increases dra-
matically as both cores are developed without clock
gating systems of their own. The aSoC network simu-
lator confirms that the clock modified system meets all
input/output requirements and identifies network ac-
tivity for the interconnect power tabulation shown in
the last row.

When processing I-frame data, the large ME/MC
system could be left unused if the input frame is
rerouted directly to the DCT as shown in Table 3.
A jump command used during run-time changes the
pointer to select the modified schedule represented as
instructions 10 through 19. During jumps, care must
be taken to assure the new schedule does not change
the other streams in the system. In this new schedule

Tiles
Cycle ME MC DCT

0 (Frame in) (Saved Frame) (DCT Frame)
w → ip1 s → ip1 op1 → e

1 (MV), (MC Frame), -
op1 → e op1 → e
(config.) (config.) (config.)
s → ip2 s → ip2 s → ip2

2 - (MV) (MC Frame)
w → e w → ip1

(config.) (config.) (config.)
s → i s → i s → i

3 - - (MV)
- - w → e

. - - -

. - - -
9 - - -
(Steam Name), op=output Coreport, ip=input Coreport

n,s,e,w=north, south, east, west, → = connect, - = don’t care

Table 1: P Frame Communication Schedule

Optimal Independent Fixed Worst
Clocks Case (110MHz)

IP:Mode Frequency Power Power

ME:FS 105MHz 973mW 973mW
ME:spiral 9.9MHz 76mW 659mW1

ME:TSS 2.75MHz 25mW 580mW
DCT 9.6MHz 54mW 349mW1

Interconnect 6.34MHz .14mW .81mW
1 Spiral search and DCT cannot run at 110MHz
They run at 100MHz and 90MHz respectively.

Table 2: Power for Modes and Clock Rates

Tiles
Cycle ME MC DCT

10 (Frame in) (Saved Frame) (DCT Frame)
w → ip1 s → ip1 op1 → e

11 - (Frame in), -
w → e

(config.) (config.) (config.)
s → ip2 s → ip2 s → ip2

12 - - (Frame in)
w → ip1

(config.) (config.) (config.)
s → i s → i s → i

. - - -

. - - -
19 - - -

Table 3: I Frame Communication Schedule



of Table 3, the input frame in the ME tile is rerouted
to the east in cycle 10 and passed through the MC tile
in cycle 11. Making these changes does not affect the
other streams of data so long as they do not use the
wire between the ME and MC tiles in the first cycle. To
assure the availability of this resource, a place holder
is used during compilation preventing its use by any
other stream.

A final result shows the overhead of the configura-
tion streams. One main concern is the fact that config-
uration streams must be scheduled periodically along
with the data. In the P-frame example there are poten-
tially 6 configuration streams and only 5 data streams
used by the tiles. Fortunately, aSoC has an abundance
of interconnect bandwidth. In the example, for the
10 cycle schedule shown, these cores can support up
to 150 streams (= 5 streams/cycle × 10 cycle). The
result is that configuration only uses 4% of the avail-
able bandwidth. If needed, loop unrolling techniques
could further increase the ratio of data to configuration
bandwidth.

Power overhead is another major concern since in
our example the number of scheduled transfers for con-
figuration exceeds those for data. This is where the
flow control system is helpful. Configuration streams
go unused most of the time. For example, the motion
estimation core uses at most 1 word of configuration
data per macroblock and node schedule reconfigura-
tion happens at most once per frame. Disabling the
interconnect for invalid transfers eliminates most of the
potential power used. For the optimal and worst case
interconnect power shown in Table 2, only 4% and 9%
respectively are due to the configuration streams.

6 Summary and Future Work

This paper presents the dynamic power management
capability of aSoC applied to video processing systems.
Reconfigurable clock based system balancing creates
an environment of just in time computing which can
reduce overall power usage. Taking advantage of in-
terconnect flexibility allows a system to dynamically
change functionality and avoid unused computational
units. Interconnect power consumption is shown to be
low and the overhead due to configuration streams is
shown to be under 10% for both bandwidth and power.

In our future architectures we are looking to add
reconfigurable voltage regulation systems to each tile.
These systems would allow us to fully take advantage of
the just in time computing capabilities of our clocking
system. In addition, we are attempting to fabricate a
4 tile demonstration system.

Acknowledgments
In addition to the authors listed, four other students

have significantly contributed to the aSoC project; Sri-
ram Srinivasan, Manoj Sinha, Srividya Srinivasaragha-
van, and Subramanian Venkatraman. This work is
based upon work supported by the National Sci-
ence Foundation under Grant Numbers CCR-0081405,
CCR-9988238, CCR-9875482.

References
[1] L. Benini, Giovanni De Micheli, Dynamic Power Manage-

ment, Design Techniques and Cad Tools. Kluwer Academic
Publishers., 1998.

[2] F. Ichiba, et al, “Variable Supply-Voltage Scheme with 95%-
Efficiency DC-DC Converter for MPEG-4 Codec,” Proceed-
ings: Intl Symposium on Low Power Electronics and De-
sign, 1999.

[3] I. Hong, et al, “Power Optimization of Variable Volt-
age Core-Based Systems,” Proceedings: Design Automation
Conference, 1998.

[4] P. Kuhn, Algorithms, Complexity Analysis and VLSI Archi-
tectures for MPEG-4 Motion Estimation, Kluwer Academic
Publishers. 1999.

[5] V. Lakamraju, A Power-Aware Synthesizable Core for The
Discrete Cosine Transform, Master’s thesis, University of
Massachusetts, Department of Electrical and Computer En-
gineering, 2001.

[6] J. Liang S. Swaminathan, R. Tessier, “aSOC: A Scal-
able, Single-Chip Communications Architecture,” Proceed-
ings, IEEE International Conference on Parallel Architec-
tures and Compilation Techniques, Oct. 2000.

[7] T. Martin, D. Siewiorek, “A Power Metric for Mobile
Systems,” Proceedings: International Symposium on Low
Power Electronics and Design, 1996.

[8] MPEG-4 Overview: ISO/IEC JTC1/SC29/WG11 N4030,
Moving Picture Experts Group, 2001.

[9] J. Rabaey, Digital Integrated Circuits, A Design Perspective,
Prentice Hall Inc., 1996.

[10] D. Shoemaker, C. Metcalf, and S. Ward, “NuMesh: An Ar-
chitecture Optimized for Scheduled Communication,” Jour-
nal of Supercomputing, V10, pp 285-302, 1996.

[11] T. Simunic, et al, “Dynamic Voltage Scaling and Power
Management,” Proceedings: Design Automation Confer-
ence, 2001.

[12] CXD1922Q: An Industry Breakthrough in MPEG-2
Technology (web-page), Sony Electronics Inc, 2001,
www.sel.sony.com/semi/cxd1922qwp.html.

[13] T. Xanthopoulos, A. Chandrakasan, “Low-Power DCT
Core Using Adaptive Bitwidth and Arithmetic Activity Ex-
ploiting Signal Correlations and Quantization,” Proceedings,
IEEE Journal of Solid-State Circuits, V35, No 5, May 2000.


