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  To date, most system-level bus simulation platforms have 
focused on the functional correctness of individual bus 
components rather than the full system-level evaluation of 
multiple components operating simultaneously. In this pa-
per, a new scalable system-level bus simulation environ-
ment is described which allows for the evaluation of the 
PCI-X bus and a series of components. This simulation 
environment takes advantage of the tight integration of 
timing-accurate simulation of PCI hardware components 
with software-level functional modeling to create a fast, 
accurate system. A series of software techniques is used to 
allow for time step synchronization across multiple bus 
components and bus recovery following a transaction. A 
graphical user interface allows designers to add new com-
ponents to the system easily, enhancing modularity. The 
accuracy of the new simulation environment has been vali-
dated for a collection of candidate PCI-X systems using an 
in-circuit PCI-X emulator. The new simulation environment 
is shown to be accurate to within a percent error of 0.95%, 
3.79%, and 2.78% for utilization, efficiency, and band-
width, respectively. 

1 Introduction 
The use of system-level buses, such as the Peripheral 

Component Interconnect (PCI) [4][12] and the Peripheral 
Component Interconnect Extended (PCI-X) [13] in system 
designs adds unpredictability to the design process. Accu-
rate and efficient system-level simulation requires careful 
modeling of cycle-level bus functionality for a variety of 
design cases. Since simulation is often performed early in 
the design process, these verification systems are critical to 
the assessment of available bandwidth and intercomponent 
latencies. In addition to accuracy, the simulator must exe-
cute quickly to allow for the verification of many system 
cycles. One approach to achieving this efficiency is the use 
of contemporary software engineering techniques. In gen-
eral, contemporary PCI and PCI-X simulators do not pro-
vide timing-accurate bus simulations for multiple master 
and slave devices. Most simulators are instead used for 
function verification of ASICs and system-on-chip designs.  

In this paper, a new scalable, timing-accurate bus simu-
lation environment is described which allows for the 
evaluation of PCI and PCI-X bus systems. The system can 
simulate the software-level behavior of multiple master and 
target devices while providing timing accurate hardware-

level bus operation. Each master and target device model 
employs a set of user-adjustable parameters which allow 
for accurate and flexible simulations. These parameters are 
then evaluated and used to determine synchronization 
across components as well as device specific interaction. 
The configuration of each simulation run is performed via a 
scalable enterprise-level, web-based graphical user inter-
face, allowing users to quickly create simulations and add 
and remove components with ease. 

2 Background 
The Peripheral Component Interconnect, or PCI, bus is a 

32 or 64-bit synchronous multiplexed bus which is de-
signed to interconnect high-performance components. Arbi-
trated data transfers in PCI are always between an initiator 
device (master), one which initiates the data transfer, and a 
target device, the receiver of the data. PCI-X protocol was 
designed as a revision to the PCI standard and offers sev-
eral improvements over the original PCI standard including 
a faster clock (133 MHz versus 66 MHz), lower latency 
(Split Transaction versus Delayed Transaction), and im-
proved fault tolerance, amongst other enhancements.  By 
increasing the clock to 133 MHz, a theoretical bandwidth 
of 1.06 GB/s can be achieved using a 64-bit bus path in 
contrast to the 532 MB/s offered by PCI.  In addition to 
offering higher performance, PCI-X is generally backwards 
compatible to PCI. However, while both PCI and PCI-X 
devices may be intermixed, the bus speed is determined by 
the slowest device [13]. 

2.1 Related Work 
An important aspect of this work is the more accurate 

modeling of PCI/PCI-X bus activities, including master and 
slave recovery periods following transfers. Schönberg [14] 
developed mathematical models to describe bandwidth and 
latency on a bus with arbitrary devices. Specifically, a de-
scriptor was defined as: 

D = (s, d, r)   (1) 

where s defines a non-data phase, d defines a data phase, 
and r defines the recovery phase. The recovery phase is not 
a physical bus phase and only guarantees that devices do 
not access the bus during this time. Unlike Schönberg, our 
approach uses calculated values for the recovery phase dur-
ing simulation to enhance modeling accuracy. 



Finkelstien [3] developed a C++ based PCI/PCI-X simu-
lator that uses adjustable performance parameters for both 
target and master devices. The approach improves the PCI 
modeling efficiency and accuracy by eliminating wait states 
initiated by the target. The simulation environment is com-
mand line driven with devices and performance parameters 
embedded within the code, complicating ease-of-use. In 
addition, the timing accuracy of the simulator is not nu-
merically validated versus a physical platform, although a 
bus analyzer is used for logical verification. Our simulator 
uses similar performance parameters from the PCI specifi-
cations, as well as two additional parameters: injection rate 
and recovery period. 

3 Implementation 
3.1 Architecture 

The simulator system architecture is shown in Figure 1. 
The web application architecture is designed using the Java 
2 Enterprise Edition framework which provides a robust 
and scalable architecture [2]. The web application dynami-
cally creates the graphical user interface using data that was 
previously stored in the database by the user. 

 

Figure 1: PCI Simulator System Architecture 

The integration module uses information about the re-
quested simulation to configure device files. These device 
files contain the information describing the device behavior 
on the PCI/PCI-X bus including configuration information, 
performance information and listings of every transaction 
each device must make on the bus. In addition, the integra-
tion module dynamically creates the Verilog code which 
describes what devices are attached to the bus as well as the 
bus width and speed.  

The web application architecture uses the classic 
model-view-controller (MVC) architecture [1] with internal 
designs following J2EE patterns, as shown in Figure 2. The 
MVC architecture allows for the separation of the business 
logic from the control and presentation logic providing a 
scalable and maintainable infrastructure. 

A client interacts with a single view which dynamically 
updates content depending on the selected action. A client 

action triggers an asynchronous HTTP request using the 
XMLHttpRequest object created in JavaScript. The Con-
troller servlet receives the request and, using dynamic bind-
ing, retrieves one of the three Action objects. The Ac-
tion object extracts the data from the request and in-
vokes the proper method in the SimulationFacade 
which performs the necessary work. This action involves 
the retrieval of business objects represented as entity beans. 
The entity beans use container-managed persistence so data 
access logic is handled by the EJB container. The business 
objects are passed back to the Action object via the 
SimulationFacade to a handler method. The data is 
then encapsulated within XML tags and sent back to the 
view using an HTTP response. Within the view, a callback 
method extracts the XML data and presents it to the client. 

The GUI allows a user to configure a simulation by add-
ing devices and configuring them using the parameters de-
scribed subsequently in Sections 3.2.1 and 3.2.2. 

ScriptSim [15] is an open source software tool that inte-
grates Verilog with scripts such as Python and Perl. 
ScriptSim allows Verilog to dynamically create script proc-
esses and communicate with those processes by passing 
Verilog data types to the scripts. In turn, the scripts have 
access to any Verilog data used in the design and can per-
form the equivalent of any Verilog assign including: block-
ing, non-blocking, continuous assign, or force. In Figure 3, 
a block level view of the ScriptSim architecture is pro-
vided. 
   To communicate data between the various Verilog mod-
ules and the scripts, ScriptSim uses Verilog’s Programming 
Language Interface (PLI). The PLI interface allows user 
supplied C programs to interact with the simulation envi-
ronment and access Verilog’s internal data structures. One 
major issue with PLI is that when Verilog calls a PLI rou-
tine, execution is suspended until the C subroutine is termi-
nated. This action causes problems since the software may 
generate multiple access cycles, each of which must be 
handled by the Verilog module. To solve this problem, 
ScriptSim runs the software and simulator as two different 
processes, communicating through Unix sockets. The 
scripts then use the C programs as a proxy to send and re-
ceive data. 
   ScriptSim simulates all functionality of the PCI Local 
Specification Version 2.2 protocol; however, we have 
modified ScriptSim to allow for simulation of the PCI-X 
bus. ScriptSim uses several Python scripts to simulate the 
PCI bus. The PCI bus is comprised of a bus monitor 
(Monitor.py), arbiter (Arb.py), and one or more 
agents (Agent.py). The agents represent the devices on 
the bus and use command files (pci_cmds#) to configure 
and generate activity. 
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Figure 2: MVC Architecture of the PCI Simulator 

   
  
 
 
 
 
The integration module uses the data from the database to 
dynamically create the Verilog and configuration files 
which are fed into ScriptSim. Each configuration file de-
scribes a device including the transactions it will perform 
on the bus along with its corresponding performance char-
acteristics, as described by the device descriptor. The inte-
gration module takes the information from the database, 
dynamically creates the devices using the parameters de-
scribed in Section 3.2 and 3.2, and then triggers ScriptSim 
to run the simulation. The results are then fed back to the 
user in the form of text and graphs and stored in the data-
base for future viewing. 
 

3.2 Modeling Approach 
In this section, device descriptors for both master and 

target devices are described. The descriptor consists of sev-
eral previously-defined user adjustable performance pa-
rameters [3][14], data from PCI specifications, and ana-
lyzed bus data. A master device descriptor consists of eight 
performance parameters. The read/write ratio, burst length, 
and transaction parameters values (taken from [3]) and la-
tency parameters (taken from [14] and [12]) provide consis-
tency with earlier models. Additionally, injection rate and 
recovery period are used to increase modeling accuracy.  

The injection rate is the amount of data placed into the 
system per unit time. In our simulator, the injection rate is 
strictly defined as the required bandwidth of a device. More 
complex methods, such as queuing models based on Pois-
son processes [9], may provide a more fine-grained ap-
proach at the cost of additional computation.  As described 
in Section 5, the use of required bandwidth was found to 
provide sufficient modeling fidelity. 

Parameter Description 

Injection Rate The amount of bandwidth required 
by the device. 

Read/Write Ratio Describes the ratio between the 
number of reads and the number of 
writes. 

Burst Length The number of data words a master 
can send contiguously. A value of 1 
places the device in normal mode 
where only one data word is trans-
ferred per transaction.  

Initial Wait States The number of wait states from the 
assertion of FRAME# until the first 
word is ready to be sent or received. 

Subsequent Wait 
States 

The number of wait states a master 
waits before sending or receiving 
the next data word, after the initial 
data word. 

Recovery Period The minimum number of cycles the 
master must wait before requesting 
the bus. 

Master Latency 
Timer 

The minimum number of clock cy-
cles the master is allowed to retain 
ownership of the bus. This value is 
decremented on each clock cycle 
after initiating a transaction. 

Transactions The number of transactions the mas-
ter is allowed to initiate. 

Table 1: Master Device Parameter Summary 

The recovery period for PCI devices was introduced in 
Section 2.2. In a shared bus environment, each device will 
incur an arbitration latency. This latency is a function of the 
arbitration algorithm, the sequence in which masters are 
granted access, and the amount of time each is allowed 
access on the bus. Each device must therefore provide suf-
ficient buffer space to match the injection or consumption 
rate of data that can be moved across the bus. Without loss 
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of generality, we define creq,n as the first clock cycle the 
device is able to request the bus for transaction n. The mini-
mum amount of time a device must wait before requesting 
the bus for transaction n+1, regardless of whether transac-
tion n has completed or not, is given by:  

recoveryn+1 = bytesn +1

bandwidthdevice × clock _ periodpci

 

 
 

 

 
  (2) 

where bytesn+1 is the number of bytes expected to be sent 
during transaction n+1, which is a function of the burst 
length. Therefore, transaction n+1 can start on clock cycle: 

creq,n +1 = creq,n  +  recoveryn+1  (3) 

The specific performance parameters associated with a 
master device descriptor are listed in Table 1. 

 
Parameter Description 

Decode Speed The number of clock cycles re-
quired to claim a transaction. Both 
PCI and PCI-X offer four decode 
speeds: Fast, Medium, Slow, and 
Sub. Sub, or subtractive decode, 
only responds to decodes ignored by 
other targets. 

Burst Length The maximum number of data 
words a target can send or receive. 

Initial Wait States The number of wait states from the 
assertion of FRAME# until the first 
word is ready to be sent or received. 

Subsequent Wait 
States 

The number of wait states a target 
waits before sending or receiving 
the next data word, after the initial 
data word. 

Initial Retry 
Threshold 

The number of wait states allowed 
by the target before a retry is gener-
ated. This only applies to the first 
data word in a burst and is limited to 
16 per the PCI 2.1 specification. 

Subsequent Retry 
Threshold 

This is the same as the initial retry 
threshold except it applies to burst 
cycles and is limited to 8 per the 
PCI 2.1 specification. 

Table 2: Target Device Parameter Summary 

The target device descriptor shares many performance 
parameters with a master device with a few exceptions. 
Burst length and subsequent retry threshold (taken from 
[3]), and other parameters (taken from [3] and [12]) define 

the descriptor. Performance parameters associated with a 
target device descriptor are summarized in Table 2. 

4 Experimental Design 
To verify the accuracy of the simulator, we gathered PCI 

and PCI-X cycle snapshots from a variety of configurations 
generated by Vanguard’s VMetro Bus Analyzer [16]. Sta-
tistical information was then extracted and compared to 
simulated values. 

Our target PC architecture splits the memory controller 
and I/O controller into separate chips, the Northbridge and 
Southbridge. The Northbridge [8], or memory controller 
hub, handles high speed communication between devices 
such as the CPU, RAM, and AGP via the PCI Express bus. 
The Southbridge, or I/O controller hub, handles less per-
formance critical I/O devices via the PCI or PCI-X bus, or 
LPC bus. In our experiments, the PCI/PCI-X bus contains 
one or more PCI/PCI-X devices and the VMetro Bus Ana-
lyzer, which is used to passively monitor the bus. Data col-
lected by the analyzer are sent to the PC via a USB port and 
are analyzed using VMetro’s BusView software. 

Table 3 outlines the various configurations used for test-
ing. Each test configuration was implemented on a physical 
system and assessed with the bus analyzer. Additionally, 
simulation was performed for the same system configura-
tion. The following statistics are determined for both cases: 
• Utilization: Indicates how frequently the bus is being 

used. The value is calculated by dividing the number 
of transactions (i.e.: the number of cycles where 
FRAME# and/or IRDY# are active) by the total num-
ber of cycles. 

• Efficiency: Measures how efficient the system is at 
transferring data by determining the duration of data 
transfers versus duration of transactions. The value is 
calculated by dividing the data total percentage (the 
number of data cycles divided by the total number of 
cycles) by the utilization. 

• Bandwidth: Amount of data sent over the bus per unit 
time. The value is calculated by dividing the total num-
ber of bytes sent by the total time. 

Bus PCI / PCI-X  
Devices 

Trial 
 

Type Speed 
MHz 

Width Master Target 

1 PCI 33  32-bit 1 PCI 1 PCI 
2 PCI 33 32-bit 3 PCI 2 PCI 
3 PCI-X 133 64-bit 1 PCI-X 1 PCI-X 

Table 3: Simulation Configurations 



5 Results 

5.1 Experiment 1: Single PCI Master 
Our first system configuration consisted of a 32-bit, 33 

MHz PCI bus using Intel’s 82801DB I/O controller hub 
[7]. A single bus master device, Foresight Imaging’s PCI 
frame grabber, can inject data onto the bus at a rate of 110 
MB/s (calculated using a resolution of 1280 by 1024 with 
24 bit depth at 28 frames per second) and exhibits perform-
ance characteristics described in Table 4. The frame grab-
ber writes to and reads from system memory, acting as the 
target device, via the host bridge. The target device incurs 
no initial wait states on writes and exhibits an average of 
15-34 initial wait states on reads. It can sustain long bursts 
(up to a 4K page boundary) with no subsequent wait states. 
The performance characteristics of system memory are de-
scribed in Table 4. The frame grabber performs 34 burst 
writes at the maximum speed (i.e.: no subsequent wait 
states) for each transaction until it hits a cache line which 
falls on a 4KB page boundary, in which case a read will 
occur. A round robin arbiter is modeled after the PCI 
scheduler found in Intel’s 82801 ICH with a MTT (multi-
transaction timer) set to 20. 

Device Frame grabber Host bridge 
PCI Device 
Type 

32-bit Master 32 bit Target 

Injection Rate 110 MB/s N/A 
Read/Write 
Ratio 

Perform write until 
4K boundary and 
then 1 read transac-
tion 

N/A 

Burst Length Read: 4 
Write: 34 

4K page boun-
dary 

Initial Wait 
States 

Read: 0 
Write: 0 

Read: Random 
(15-24) 
Write: 0 

Subsequent 
Wait States 

Read: 0 
Write: 0 

Read: 0 
Write: 0 

 Master Latency: 64 Decode Speed: 
Medium 

 Recovery Period: 
Calculated using 
Equation (2) 

Initial Retry 
Threshold: 16 

 Transaction Count: 
200 

Subsequent 
Retry Thresh: 8 

Table 4: Experiment 1: Master and Slave Device 

Figure 4: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 1 

Figure 4 shows the results of our simulation versus the 
statistics gathered by the VMetro Bus Analyzer. Minimal 
errors are incurred with respect to bus utilization and effi-
ciency, 2.21% and 0.30% respectively. However, there is a 
7.76% difference in the bandwidth, with the simulator pro-
ducing a larger bandwidth value. We believe that this is due 
to our optimistic calculation of the recovery period. Recall 
that our definition of recovery period is the minimum 
amount of time between transaction requests, calculated 
using Equations 2 and 3. Generally, this value is the 
amount of time required to refill I/O buffers, although, 
there may be other device specific factors involved which 
may delay requests.   

5.2 Experiment 2: Three PCI Masters 
The system for the second experiment consists of a 32-

bit, 33 MHz PCI bus using Intel’s 82801DB I/O controller 
hub and three PCI master devices. In addition to the frame 
grabber used in Experiment 1, a camera and PCI interface 
which can inject live data at approximately 110 MB/s onto 
the bus is included. Their parameters are shown in Table 5. 
The camera performs burst writes for 66 cycles at the full 
data rate (i.e. no wait states). While the device’s master 
latency timer is set at 64, the PCI specification allows two 
extra cycles before a device must complete a transaction. 
After each burst write, a memory read is performed fol-
lowed by an I/O read of 4 cycles and 1 cycle, respectively. 
Periodically, a CPU read of the camera’s PCI interface is 
performed and injects approximately 1 MB/s of data. Reads 
and writes to memory are performed via the host bridge. 
However, I/O reads via the host bridge now incur initial 
wait states of between 5 and 8 cycles (Table 6). A round 
robin arbiter with the MTT set to 20 cycles is used. 

Figure 5 shows the results of our simulation versus the 
statistics gathered by the VMetro Bus Analyzer. A signifi-
cant bandwidth error decrease (87%) with respect to the 
Experiment 1 bandwidth error is noted. We recall from 
Experiment 1 that our optimistic calculation of the recovery 
period causes our simulator to produce a higher bandwidth. 



 
Device Camera CPU 
Device Type 32-bit PCI Master 32-bit PCI 

Master 
Injection Rate 110 MB/s 1 MB/s 
Read/Write 
Ratio 

Repeat memory 
write followed by 
read and then I/O 
read 

All memory 
reads 

Burst Length Read: 4 
Write: 66 

Read: 1 
Write: 0 

Initial Wait 
States 

Read: Random (13-
15) 
Write: 0 

Read: 0 
Write: 0 

Subsequent 
Wait States 

Read: 0 
Write: 0 

Read: 0 
Write: 0 

Master Latency 
Timer 

64 64 

Recovery Pe-
riod 

Calculated using 
Equation (2)  

Calculated us-
ing Equation 
(2)  

Transaction 
Count 

200 200 

Table 5: Experiment 2: Master Devices 

Device Host Bridge (I/O Device) 
Device Type 32-bit PCI Target 
Decode Speed Medium 
Burst Length 1 
Initial Wait States Read: Random (5-8) 

Write: 0 
Subsequent Wait 
States 

Read: 0 
Write: 0 

Initial Retry Thresh-
old 

16 

Subsequent Retry 
Threshold 

8  

Table 6: Experiment 2: I/O Target Device 

However, in this case the recovery period is hidden by 
the fact that another device is transferring data on the bus. 
Consider a simple example with two devices on a bus, D1 
and D2, where D1 has been granted access to the bus and D2 
is beginning its recovery period. If the recovery period for 

D2 is less than or equal to the bus access time required by 
D1 to complete its transfer, then D2 will be able to immedi-
ately start after D1 completes.  

 

Figure 5: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 2. 

5.3 Experiment 3: Single PCI-X Master 
Our final simulated system consists of a 64-bit, 133 

MHz PCI-X bus using Intel’s 6700PXH 64-bit PCI hub [6]. 
A single bus master device, a Nallatech 64-bit 133 MHz 
PCI-X FPGA computing motherboard [11] can inject data 
onto the bus at a rate of 192 MB/s and exhibits perform-
ance characteristics as described in Table 7. An FPGA can 
perform burst writes to system memory, acting as the target 
device, via the host bridge. The target device incurs no ini-
tial wait states on writes and can sustain long bursts (up to a 
4K page boundary) with no subsequent wait states. The 
characteristics of system memory are the same as the host 
bridge in Table 4, except that the device is a 64-bit PCI-X 
target. The FPGA will perform 1,024 burst writes with no 
subsequent wait states for each transaction until it hits a 
cache line, which falls on a 4KB page boundary. 

As shown in Figure 6, modest errors are incurred with 
respect to bus utilization, efficiency, and bandwidth, 
0.95%, 3.79%, and 2.78%, respectively. As discussed in 
Section 3, the simulator calculates a minimum recovery 
period, thus leading to a higher bandwidth. However, the 
simulator determines a slightly higher efficiency than the 
actual system. For completeness, we calculate the bus effi-
ciency using the following formulas: 

 efficiency =
percentdata

percentutilization

   (4) 

The data percentage is calculated by: 

total

data
data cyclesclock

cyclesclockpercent
_
_

=                      (5) 

 



Device Nallatech FPGA 
Device Type 64-bit PCI-X Master 
Injection Rate 192 MB/s 
Read/Write Ratio Perform write until 4K boundary 

and then 1 read transaction 
Burst Length Read: 1024 

Write: 0 
Initial Wait States Read: 0 

Write: 0 
Subsequent Wait 
States 

Read: 0 
Write: 0 

Master Lat. Timer 1024 
Recovery Period Calculated using Equation (2)  
Transaction Count 100 

Table 7: Nallatech FPGA Master Device 

 

Figure 6: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 3. 

6 Conclusion 
In this work a new approach to PCI simulation using ac-

curate bus parameters and an interactive simulation envi-
ronment has been developed. A web-based graphical user 
interface is used which provides users with a high level of 
configurability to model advanced bus systems. The archi-
tecture and design of the system employ well known soft-
ware engineering techniques that ensure scalability. By 
using well known design patterns, we promote reuse while 
decreasing overall design time.  

In order to achieve a high-level of accuracy in our simu-
lations, we developed techniques that allow devices to ex-
hibit individualized behavior on the bus. This assessment 
was done by decomposing devices into sets of performance 
parameters that make up a device descriptor. Two unique 

simulation parameters, injection rate and recovery period, 
are introduced. The parameters make it possible to specify 
how quickly a device can place data on a bus and the mini-
mum amount of time is needed before a subsequent transac-
tion can start, once a transaction has started. Experimental 
results show that a high level of accuracy (a few percent 
difference in the worst case) is achieved for bus utilization, 
efficiency, and bandwidth versus system data captured by a 
commercial bus analyzer.1 
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