
An Interactive Approach to Timing Accurate PCI-X Simulation

Kevin Andryc, Russell Tessier and Patrick Kelly
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, 01003

 To date, most system-level bus simulation platforms have
focused on the functional correctness of individual bus
components rather than the full system-level evaluation of
multiple components operating simultaneously. In this pa-
per, a new scalable system-level bus simulation environ-
ment is described which allows for the evaluation of the
PCI-X bus and a series of components. This simulation
environment takes advantage of the tight integration of
timing-accurate simulation of PCI hardware components
with software-level functional modeling to create a fast,
accurate system. A series of software techniques is used to
allow for time step synchronization across multiple bus
components and bus recovery following a transaction. A
graphical user interface allows designers to add new com-
ponents to the system easily, enhancing modularity. The
accuracy of the new simulation environment has been vali-
dated for a collection of candidate PCI-X systems using an
in-circuit PCI-X emulator. The new simulation environment
is shown to be accurate to within a percent error of 0.95%,
3.79%, and 2.78% for utilization, efficiency, and band-
width, respectively.

1 Introduction
The use of system-level buses, such as the Peripheral

Component Interconnect (PCI) [4][12] and the Peripheral
Component Interconnect Extended (PCI-X) [13] in system
designs adds unpredictability to the design process. Accu-
rate and efficient system-level simulation requires careful
modeling of cycle-level bus functionality for a variety of
design cases. Since simulation is often performed early in
the design process, these verification systems are critical to
the assessment of available bandwidth and intercomponent
latencies. In addition to accuracy, the simulator must exe-
cute quickly to allow for the verification of many system
cycles. One approach to achieving this efficiency is the use
of contemporary software engineering techniques. In gen-
eral, contemporary PCI and PCI-X simulators do not pro-
vide timing-accurate bus simulations for multiple master
and slave devices. Most simulators are instead used for
function verification of ASICs and system-on-chip designs.

In this paper, a new scalable, timing-accurate bus simu-
lation environment is described which allows for the
evaluation of PCI and PCI-X bus systems. The system can
simulate the software-level behavior of multiple master and
target devices while providing timing accurate hardware-

level bus operation. Each master and target device model
employs a set of user-adjustable parameters which allow
for accurate and flexible simulations. These parameters are
then evaluated and used to determine synchronization
across components as well as device specific interaction.
The configuration of each simulation run is performed via a
scalable enterprise-level, web-based graphical user inter-
face, allowing users to quickly create simulations and add
and remove components with ease.

2 Background
The Peripheral Component Interconnect, or PCI, bus is a

32 or 64-bit synchronous multiplexed bus which is de-
signed to interconnect high-performance components. Arbi-
trated data transfers in PCI are always between an initiator
device (master), one which initiates the data transfer, and a
target device, the receiver of the data. PCI-X protocol was
designed as a revision to the PCI standard and offers sev-
eral improvements over the original PCI standard including
a faster clock (133 MHz versus 66 MHz), lower latency
(Split Transaction versus Delayed Transaction), and im-
proved fault tolerance, amongst other enhancements. By
increasing the clock to 133 MHz, a theoretical bandwidth
of 1.06 GB/s can be achieved using a 64-bit bus path in
contrast to the 532 MB/s offered by PCI. In addition to
offering higher performance, PCI-X is generally backwards
compatible to PCI. However, while both PCI and PCI-X
devices may be intermixed, the bus speed is determined by
the slowest device [13].

2.1 Related Work
An important aspect of this work is the more accurate

modeling of PCI/PCI-X bus activities, including master and
slave recovery periods following transfers. Schönberg [14]
developed mathematical models to describe bandwidth and
latency on a bus with arbitrary devices. Specifically, a de-
scriptor was defined as:

D = (s, d, r) (1)

where s defines a non-data phase, d defines a data phase,
and r defines the recovery phase. The recovery phase is not
a physical bus phase and only guarantees that devices do
not access the bus during this time. Unlike Schönberg, our
approach uses calculated values for the recovery phase dur-
ing simulation to enhance modeling accuracy.

Finkelstien [3] developed a C++ based PCI/PCI-X simu-
lator that uses adjustable performance parameters for both
target and master devices. The approach improves the PCI
modeling efficiency and accuracy by eliminating wait states
initiated by the target. The simulation environment is com-
mand line driven with devices and performance parameters
embedded within the code, complicating ease-of-use. In
addition, the timing accuracy of the simulator is not nu-
merically validated versus a physical platform, although a
bus analyzer is used for logical verification. Our simulator
uses similar performance parameters from the PCI specifi-
cations, as well as two additional parameters: injection rate
and recovery period.

3 Implementation
3.1 Architecture

The simulator system architecture is shown in Figure 1.
The web application architecture is designed using the Java
2 Enterprise Edition framework which provides a robust
and scalable architecture [2]. The web application dynami-
cally creates the graphical user interface using data that was
previously stored in the database by the user.

Figure 1: PCI Simulator System Architecture

The integration module uses information about the re-
quested simulation to configure device files. These device
files contain the information describing the device behavior
on the PCI/PCI-X bus including configuration information,
performance information and listings of every transaction
each device must make on the bus. In addition, the integra-
tion module dynamically creates the Verilog code which
describes what devices are attached to the bus as well as the
bus width and speed.

The web application architecture uses the classic
model-view-controller (MVC) architecture [1] with internal
designs following J2EE patterns, as shown in Figure 2. The
MVC architecture allows for the separation of the business
logic from the control and presentation logic providing a
scalable and maintainable infrastructure.

A client interacts with a single view which dynamically
updates content depending on the selected action. A client

action triggers an asynchronous HTTP request using the
XMLHttpRequest object created in JavaScript. The Con-
troller servlet receives the request and, using dynamic bind-
ing, retrieves one of the three Action objects. The Ac-
tion object extracts the data from the request and in-
vokes the proper method in the SimulationFacade
which performs the necessary work. This action involves
the retrieval of business objects represented as entity beans.
The entity beans use container-managed persistence so data
access logic is handled by the EJB container. The business
objects are passed back to the Action object via the
SimulationFacade to a handler method. The data is
then encapsulated within XML tags and sent back to the
view using an HTTP response. Within the view, a callback
method extracts the XML data and presents it to the client.

The GUI allows a user to configure a simulation by add-
ing devices and configuring them using the parameters de-
scribed subsequently in Sections 3.2.1 and 3.2.2.

ScriptSim [15] is an open source software tool that inte-
grates Verilog with scripts such as Python and Perl.
ScriptSim allows Verilog to dynamically create script proc-
esses and communicate with those processes by passing
Verilog data types to the scripts. In turn, the scripts have
access to any Verilog data used in the design and can per-
form the equivalent of any Verilog assign including: block-
ing, non-blocking, continuous assign, or force. In Figure 3,
a block level view of the ScriptSim architecture is pro-
vided.
 To communicate data between the various Verilog mod-
ules and the scripts, ScriptSim uses Verilog’s Programming
Language Interface (PLI). The PLI interface allows user
supplied C programs to interact with the simulation envi-
ronment and access Verilog’s internal data structures. One
major issue with PLI is that when Verilog calls a PLI rou-
tine, execution is suspended until the C subroutine is termi-
nated. This action causes problems since the software may
generate multiple access cycles, each of which must be
handled by the Verilog module. To solve this problem,
ScriptSim runs the software and simulator as two different
processes, communicating through Unix sockets. The
scripts then use the C programs as a proxy to send and re-
ceive data.
 ScriptSim simulates all functionality of the PCI Local
Specification Version 2.2 protocol; however, we have
modified ScriptSim to allow for simulation of the PCI-X
bus. ScriptSim uses several Python scripts to simulate the
PCI bus. The PCI bus is comprised of a bus monitor
(Monitor.py), arbiter (Arb.py), and one or more
agents (Agent.py). The agents represent the devices on
the bus and use command files (pci_cmds#) to configure
and generate activity.

Web
Browser

Web
Appl-

ication
Arch

(J2EE)

Data

Integration Module
(Java)

Data
Config
Files

ScriptSim

Verilog

Python
Modules

Web
Browser

Web
Appl-

ication
Arch

(J2EE)

Data

Integration Module
(Java)

Data
Config
Files

ScriptSim

Verilog

Python
Modules

Figure 2: MVC Architecture of the PCI Simulator

The integration module uses the data from the database to
dynamically create the Verilog and configuration files
which are fed into ScriptSim. Each configuration file de-
scribes a device including the transactions it will perform
on the bus along with its corresponding performance char-
acteristics, as described by the device descriptor. The inte-
gration module takes the information from the database,
dynamically creates the devices using the parameters de-
scribed in Section 3.2 and 3.2, and then triggers ScriptSim
to run the simulation. The results are then fed back to the
user in the form of text and graphs and stored in the data-
base for future viewing.

3.2 Modeling Approach
In this section, device descriptors for both master and

target devices are described. The descriptor consists of sev-
eral previously-defined user adjustable performance pa-
rameters [3][14], data from PCI specifications, and ana-
lyzed bus data. A master device descriptor consists of eight
performance parameters. The read/write ratio, burst length,
and transaction parameters values (taken from [3]) and la-
tency parameters (taken from [14] and [12]) provide consis-
tency with earlier models. Additionally, injection rate and
recovery period are used to increase modeling accuracy.

The injection rate is the amount of data placed into the
system per unit time. In our simulator, the injection rate is
strictly defined as the required bandwidth of a device. More
complex methods, such as queuing models based on Pois-
son processes [9], may provide a more fine-grained ap-
proach at the cost of additional computation. As described
in Section 5, the use of required bandwidth was found to
provide sufficient modeling fidelity.

Parameter Description

Injection Rate The amount of bandwidth required
by the device.

Read/Write Ratio Describes the ratio between the
number of reads and the number of
writes.

Burst Length The number of data words a master
can send contiguously. A value of 1
places the device in normal mode
where only one data word is trans-
ferred per transaction.

Initial Wait States The number of wait states from the
assertion of FRAME# until the first
word is ready to be sent or received.

Subsequent Wait
States

The number of wait states a master
waits before sending or receiving
the next data word, after the initial
data word.

Recovery Period The minimum number of cycles the
master must wait before requesting
the bus.

Master Latency
Timer

The minimum number of clock cy-
cles the master is allowed to retain
ownership of the bus. This value is
decremented on each clock cycle
after initiating a transaction.

Transactions The number of transactions the mas-
ter is allowed to initiate.

Table 1: Master Device Parameter Summary

The recovery period for PCI devices was introduced in
Section 2.2. In a shared bus environment, each device will
incur an arbitration latency. This latency is a function of the
arbitration algorithm, the sequence in which masters are
granted access, and the amount of time each is allowed
access on the bus. Each device must therefore provide suf-
ficient buffer space to match the injection or consumption
rate of data that can be moved across the bus. Without loss

pci.v

ScriptSim HardwareUnix
Sockets

$s
cr

ip
ts

im
(…

)

PL
I O

ut
pu

tArb.py Monitor.py

Agent.py

pci_cmds0 pci_cmds1

Agent.py ag
en

t.c

ag
en

t_
py

th
on

.c

ScriptSim Software

pci.v

ScriptSim HardwareUnix
Sockets

$s
cr

ip
ts

im
(…

)

PL
I O

ut
pu

tArb.py Monitor.py

Agent.py

pci_cmds0 pci_cmds1

Agent.py ag
en

t.c

ag
en

t_
py

th
on

.c

ScriptSim Software

Figure 3: ScriptSim Architecture

of generality, we define creq,n as the first clock cycle the
device is able to request the bus for transaction n. The mini-
mum amount of time a device must wait before requesting
the bus for transaction n+1, regardless of whether transac-
tion n has completed or not, is given by:

recoveryn+1 = bytesn +1

bandwidthdevice × clock _ periodpci









 (2)

where bytesn+1 is the number of bytes expected to be sent
during transaction n+1, which is a function of the burst
length. Therefore, transaction n+1 can start on clock cycle:

creq,n +1 = creq,n + recoveryn+1 (3)

The specific performance parameters associated with a
master device descriptor are listed in Table 1.

Parameter Description

Decode Speed The number of clock cycles re-
quired to claim a transaction. Both
PCI and PCI-X offer four decode
speeds: Fast, Medium, Slow, and
Sub. Sub, or subtractive decode,
only responds to decodes ignored by
other targets.

Burst Length The maximum number of data
words a target can send or receive.

Initial Wait States The number of wait states from the
assertion of FRAME# until the first
word is ready to be sent or received.

Subsequent Wait
States

The number of wait states a target
waits before sending or receiving
the next data word, after the initial
data word.

Initial Retry
Threshold

The number of wait states allowed
by the target before a retry is gener-
ated. This only applies to the first
data word in a burst and is limited to
16 per the PCI 2.1 specification.

Subsequent Retry
Threshold

This is the same as the initial retry
threshold except it applies to burst
cycles and is limited to 8 per the
PCI 2.1 specification.

Table 2: Target Device Parameter Summary

The target device descriptor shares many performance
parameters with a master device with a few exceptions.
Burst length and subsequent retry threshold (taken from
[3]), and other parameters (taken from [3] and [12]) define

the descriptor. Performance parameters associated with a
target device descriptor are summarized in Table 2.

4 Experimental Design
To verify the accuracy of the simulator, we gathered PCI

and PCI-X cycle snapshots from a variety of configurations
generated by Vanguard’s VMetro Bus Analyzer [16]. Sta-
tistical information was then extracted and compared to
simulated values.

Our target PC architecture splits the memory controller
and I/O controller into separate chips, the Northbridge and
Southbridge. The Northbridge [8], or memory controller
hub, handles high speed communication between devices
such as the CPU, RAM, and AGP via the PCI Express bus.
The Southbridge, or I/O controller hub, handles less per-
formance critical I/O devices via the PCI or PCI-X bus, or
LPC bus. In our experiments, the PCI/PCI-X bus contains
one or more PCI/PCI-X devices and the VMetro Bus Ana-
lyzer, which is used to passively monitor the bus. Data col-
lected by the analyzer are sent to the PC via a USB port and
are analyzed using VMetro’s BusView software.

Table 3 outlines the various configurations used for test-
ing. Each test configuration was implemented on a physical
system and assessed with the bus analyzer. Additionally,
simulation was performed for the same system configura-
tion. The following statistics are determined for both cases:
• Utilization: Indicates how frequently the bus is being

used. The value is calculated by dividing the number
of transactions (i.e.: the number of cycles where
FRAME# and/or IRDY# are active) by the total num-
ber of cycles.

• Efficiency: Measures how efficient the system is at
transferring data by determining the duration of data
transfers versus duration of transactions. The value is
calculated by dividing the data total percentage (the
number of data cycles divided by the total number of
cycles) by the utilization.

• Bandwidth: Amount of data sent over the bus per unit
time. The value is calculated by dividing the total num-
ber of bytes sent by the total time.

Bus PCI / PCI-X
Devices

Trial

Type Speed
MHz

Width Master Target

1 PCI 33 32-bit 1 PCI 1 PCI
2 PCI 33 32-bit 3 PCI 2 PCI
3 PCI-X 133 64-bit 1 PCI-X 1 PCI-X

Table 3: Simulation Configurations

5 Results

5.1 Experiment 1: Single PCI Master
Our first system configuration consisted of a 32-bit, 33

MHz PCI bus using Intel’s 82801DB I/O controller hub
[7]. A single bus master device, Foresight Imaging’s PCI
frame grabber, can inject data onto the bus at a rate of 110
MB/s (calculated using a resolution of 1280 by 1024 with
24 bit depth at 28 frames per second) and exhibits perform-
ance characteristics described in Table 4. The frame grab-
ber writes to and reads from system memory, acting as the
target device, via the host bridge. The target device incurs
no initial wait states on writes and exhibits an average of
15-34 initial wait states on reads. It can sustain long bursts
(up to a 4K page boundary) with no subsequent wait states.
The performance characteristics of system memory are de-
scribed in Table 4. The frame grabber performs 34 burst
writes at the maximum speed (i.e.: no subsequent wait
states) for each transaction until it hits a cache line which
falls on a 4KB page boundary, in which case a read will
occur. A round robin arbiter is modeled after the PCI
scheduler found in Intel’s 82801 ICH with a MTT (multi-
transaction timer) set to 20.

Device Frame grabber Host bridge
PCI Device
Type

32-bit Master 32 bit Target

Injection Rate 110 MB/s N/A
Read/Write
Ratio

Perform write until
4K boundary and
then 1 read transac-
tion

N/A

Burst Length Read: 4
Write: 34

4K page boun-
dary

Initial Wait
States

Read: 0
Write: 0

Read: Random
(15-24)
Write: 0

Subsequent
Wait States

Read: 0
Write: 0

Read: 0
Write: 0

 Master Latency: 64 Decode Speed:
Medium

 Recovery Period:
Calculated using
Equation (2)

Initial Retry
Threshold: 16

 Transaction Count:
200

Subsequent
Retry Thresh: 8

Table 4: Experiment 1: Master and Slave Device

Figure 4: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 1

Figure 4 shows the results of our simulation versus the
statistics gathered by the VMetro Bus Analyzer. Minimal
errors are incurred with respect to bus utilization and effi-
ciency, 2.21% and 0.30% respectively. However, there is a
7.76% difference in the bandwidth, with the simulator pro-
ducing a larger bandwidth value. We believe that this is due
to our optimistic calculation of the recovery period. Recall
that our definition of recovery period is the minimum
amount of time between transaction requests, calculated
using Equations 2 and 3. Generally, this value is the
amount of time required to refill I/O buffers, although,
there may be other device specific factors involved which
may delay requests.

5.2 Experiment 2: Three PCI Masters
The system for the second experiment consists of a 32-

bit, 33 MHz PCI bus using Intel’s 82801DB I/O controller
hub and three PCI master devices. In addition to the frame
grabber used in Experiment 1, a camera and PCI interface
which can inject live data at approximately 110 MB/s onto
the bus is included. Their parameters are shown in Table 5.
The camera performs burst writes for 66 cycles at the full
data rate (i.e. no wait states). While the device’s master
latency timer is set at 64, the PCI specification allows two
extra cycles before a device must complete a transaction.
After each burst write, a memory read is performed fol-
lowed by an I/O read of 4 cycles and 1 cycle, respectively.
Periodically, a CPU read of the camera’s PCI interface is
performed and injects approximately 1 MB/s of data. Reads
and writes to memory are performed via the host bridge.
However, I/O reads via the host bridge now incur initial
wait states of between 5 and 8 cycles (Table 6). A round
robin arbiter with the MTT set to 20 cycles is used.

Figure 5 shows the results of our simulation versus the
statistics gathered by the VMetro Bus Analyzer. A signifi-
cant bandwidth error decrease (87%) with respect to the
Experiment 1 bandwidth error is noted. We recall from
Experiment 1 that our optimistic calculation of the recovery
period causes our simulator to produce a higher bandwidth.

Device Camera CPU
Device Type 32-bit PCI Master 32-bit PCI

Master
Injection Rate 110 MB/s 1 MB/s
Read/Write
Ratio

Repeat memory
write followed by
read and then I/O
read

All memory
reads

Burst Length Read: 4
Write: 66

Read: 1
Write: 0

Initial Wait
States

Read: Random (13-
15)
Write: 0

Read: 0
Write: 0

Subsequent
Wait States

Read: 0
Write: 0

Read: 0
Write: 0

Master Latency
Timer

64 64

Recovery Pe-
riod

Calculated using
Equation (2)

Calculated us-
ing Equation
(2)

Transaction
Count

200 200

Table 5: Experiment 2: Master Devices

Device Host Bridge (I/O Device)
Device Type 32-bit PCI Target
Decode Speed Medium
Burst Length 1
Initial Wait States Read: Random (5-8)

Write: 0
Subsequent Wait
States

Read: 0
Write: 0

Initial Retry Thresh-
old

16

Subsequent Retry
Threshold

8

Table 6: Experiment 2: I/O Target Device

However, in this case the recovery period is hidden by
the fact that another device is transferring data on the bus.
Consider a simple example with two devices on a bus, D1
and D2, where D1 has been granted access to the bus and D2
is beginning its recovery period. If the recovery period for

D2 is less than or equal to the bus access time required by
D1 to complete its transfer, then D2 will be able to immedi-
ately start after D1 completes.

Figure 5: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 2.

5.3 Experiment 3: Single PCI-X Master
Our final simulated system consists of a 64-bit, 133

MHz PCI-X bus using Intel’s 6700PXH 64-bit PCI hub [6].
A single bus master device, a Nallatech 64-bit 133 MHz
PCI-X FPGA computing motherboard [11] can inject data
onto the bus at a rate of 192 MB/s and exhibits perform-
ance characteristics as described in Table 7. An FPGA can
perform burst writes to system memory, acting as the target
device, via the host bridge. The target device incurs no ini-
tial wait states on writes and can sustain long bursts (up to a
4K page boundary) with no subsequent wait states. The
characteristics of system memory are the same as the host
bridge in Table 4, except that the device is a 64-bit PCI-X
target. The FPGA will perform 1,024 burst writes with no
subsequent wait states for each transaction until it hits a
cache line, which falls on a 4KB page boundary.

As shown in Figure 6, modest errors are incurred with
respect to bus utilization, efficiency, and bandwidth,
0.95%, 3.79%, and 2.78%, respectively. As discussed in
Section 3, the simulator calculates a minimum recovery
period, thus leading to a higher bandwidth. However, the
simulator determines a slightly higher efficiency than the
actual system. For completeness, we calculate the bus effi-
ciency using the following formulas:

 efficiency =
percentdata

percentutilization

 (4)

The data percentage is calculated by:

total

data
data cyclesclock

cyclesclockpercent
_
_

= (5)

Device Nallatech FPGA
Device Type 64-bit PCI-X Master
Injection Rate 192 MB/s
Read/Write Ratio Perform write until 4K boundary

and then 1 read transaction
Burst Length Read: 1024

Write: 0
Initial Wait States Read: 0

Write: 0
Subsequent Wait
States

Read: 0
Write: 0

Master Lat. Timer 1024
Recovery Period Calculated using Equation (2)
Transaction Count 100

Table 7: Nallatech FPGA Master Device

Figure 6: VMetro Analyzer vs. PCI Simulator Re-
sults for Experiment 3.

6 Conclusion
In this work a new approach to PCI simulation using ac-

curate bus parameters and an interactive simulation envi-
ronment has been developed. A web-based graphical user
interface is used which provides users with a high level of
configurability to model advanced bus systems. The archi-
tecture and design of the system employ well known soft-
ware engineering techniques that ensure scalability. By
using well known design patterns, we promote reuse while
decreasing overall design time.

In order to achieve a high-level of accuracy in our simu-
lations, we developed techniques that allow devices to ex-
hibit individualized behavior on the bus. This assessment
was done by decomposing devices into sets of performance
parameters that make up a device descriptor. Two unique

simulation parameters, injection rate and recovery period,
are introduced. The parameters make it possible to specify
how quickly a device can place data on a bus and the mini-
mum amount of time is needed before a subsequent transac-
tion can start, once a transaction has started. Experimental
results show that a high level of accuracy (a few percent
difference in the worst case) is achieved for bus utilization,
efficiency, and bandwidth versus system data captured by a
commercial bus analyzer.1

References

[1] A. Leff, J.T Rayfield, “Web-application development using
the Model/View/Controller design pattern”, in Proceedings
of the Fifth IEEE International Enterprise Distributed Object
Computing Conference, pp. 118-127, Sept. 2001.

[2] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns. Upper
Saddle River, NJ: Prentice Hall, 2nd ed., 2003.

[3] E. Finkelstein, “Design and Implementation of PCI Bus
Based Systems.” Master’s Thesis, Tel Aviv University, 1997.

[4] E. Solari and G. Willse, PCI & PCI-X Hardware and Soft-
ware Architecture & Design. Research Tech Inc., 6th ed.,
2005.

[5] Intel Corp., Santa Clara, Intel 440FX PCISET 82441FX PCI
and Memory Controller (PMC) and 82442FX Data Bus Ac-
celerator (DBX), May 1996. Order # 290549-001.

[6] Intel Corp., Santa Clara, Intel 6700PXH 64-bit PCI Hub, July
2004. Order # 302628-002.

[7] Intel Corp., Santa Clara, Intel 82801DB I/O Controller Hub 4
(ICH4), May 2002. Order # 290744-001.

[8] J.L. Hennessy, D.A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, Menlo Park,
California, 2003.

[9] L.M. Ni, C.-F.E Wu, “Design tradeoffs for process schedul-
ing in shared memory multiprocessor systems”, in IEEE
Transactions on Software Engineering, vol. 15, issue 3, pp.
327-334, Mar. 1989.

[10] M. Fowler and K. Scott, UML Distilled Second Edition.
Reading, MA: Addison-Wesley, Jan. 2000.

[11] Nallatech. http://www.nallatech.com/.

[12] PCI Special Interest Group, PCI Local Bus Specification
Revision 2.2, Dec. 1998.

[13] PCI Special Interest Group, PCI-X Addendum to the PCI
Local Bus Specification, rev. 1.0b, July 2002.

[14] S. Schönberg, “Using PCI-Bus Systems in Real-Time Envi-
ronments.” PhD Thesis, Technische Universität Dresden,
2002.

[15] ScriptSim. http://www.nelsim.com/scriptsim/intro.html.

[16] VMETRO. http://www.vmetro.com/.

1 Research sponsored by Kollmorgen Electro-Optical.

