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FPGAs have become increasingly popular in computing platforms. With recent advances in bitstream format

reverse engineering, the scientific community has widely explored static FPGA security threats. For example, it

is now possible to convert a bitstream to a netlist, revealing design information, and apply modifications to the

static bitstream based on this knowledge. However, a systematic study of the influence of the bitstream format

understanding in regards to the security aspects of the dynamic configuration process, particularly for Xilinx’s

Internal Configuration Access Port (ICAP), is lacking. This paper fills this gap by comprehensively analyzing

the security implications of ICAP interfaces, which primarily support dynamic partial reconfiguration. We

delve into the Xilinx bitstream file format, identify misconceptions in official documentation, and propose novel

configuration (attack) primitives based on dynamic reconfiguration, i.e., create/read/update/delete circuits

in the FPGA, without requiring pre-definition during the design phase. Our primitives are consolidated in a

novel Stealthy Reconfigurable Adaptive Trojan (STRAT) framework to conceal Trojans and evade state-of-the-art

netlist reverse engineering methods. As FPGAs become integral to modern cloud computing, this research

presents crucial insights on potential security risks, including the possibility of a malicious tenant or provider

altering or spying on another tenant’s configuration undetected.

Additional Key Words and Phrases: FPGA Security, Hardware Security, Hardware Trojans, Bitstream Reverse

Engineering, ICAP

ACM Reference Format:
Nils Albartus, Maik Ender, Jan-Niklas Möller, Marc Fyrbiak, Christof Paar, and Russell Tessier. 2023. On the

Malicious Potential of Xilinx’ Internal Configuration Access Port (ICAP). ACM Trans. Reconfig. Technol. Syst. 1,
1, Article 1 (January 2023), 29 pages. https://doi.org/10.1145/3633204

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) serve as key implementationmedia for digital circuits [11]

and are employed in a wide range of applications from consumer electronics (e.g., the iPhone [73]

and virtual reality headsets such as the HTC Vive [19]) to high-performance cloud computing

systems (e.g., Amazon EC2 F1 instances [5]). Although FPGAs are less power-efficient and have

slower performance than Application Specific Integrated Circuits (ASICs), their field-programmable

nature offers flexibility and adaptability, even during runtime.

From a security perspective, such dynamic reconfiguration capabilities, also known as runtime

update support, present a compelling attack vector. This issue has become particularly acute recently
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since FPGA applications now often contain circuitry from multiple sources [63, 45], such as third-

party intellectual property (IP) cores. Additionally, the globalized hardware design process often

includes numerous untrusted stakeholders, which can challenge hardware design trustworthiness.

Consequently, research has focused on the detection of malicious circuits, a.k.a. hardware Trojans,
in FPGA bitstreams [42].

With advances in bitstream reverse engineering, the threat potential to FPGAs security has

increased, in particular, to convert bitstreams to netlists, which allows for a deep understanding of

designs. There currently exists several tools that allow for the conversion for device bitstreams

out-of-the-box, particularly for contemporary Xilinx FPGAs. Popular projects, such as Project

X-Ray and U-Ray [2, 3], have documented significant parts of Xilinx FPGA family bitstreams. In

addition to the threat of reverse engineering, FPGAs are vulnerable to manipulations following

design retrieval, cf. [69, 23, 36].

While the static attack vector of design modification has been explored, reverse engineering of

the bitstream format also has consequences for dynamic (partial) reconfiguration. To the best of

our knowledge, no systematic security analysis of the dynamic configuration process (with a focus

on the capabilities of Xilinx Internal Configuration Access Port (ICAP) has been performed to date,

despite the introduction of ICAP in the Virtex II architecture [UG002] in January 2001. We partially

attribute this research gap to the low-level and complex nature of the reconfiguration process. In

particular, such a security analysis requires in-depth comprehension of the FPGA bitstream file

format, which has only matured in the past few years.

As partial reconfiguration is a critical factor for cloud FPGAs, the threat potential remains unclear.

Modern cloud computing demonstrates FPGA multi-tenancy in a restricted form, i.e., numerous

cloud vendors support FPGA computation and couple user logic with a predefined shell that is
responsible for bus interfacing and dynamic reconfiguration activities [5]. Given that the shell

functionality is not fully transparent to users, it poses a security risk in the context of potentially

malicious cloud providers. Lastly, the concurrent use of circuits from multiple independent paying

customers within an FPGA has been proposed [37] and is anticipated to become available to cloud

users in the near future. As demonstrated in this work, the exposure of internal configuration

interfaces can have severe security implications.

Goals and Contributions. In this paper, we focus on the security of Xilinx dynamic partial recon-

figuration ICAP interfaces. The capabilities and security implications of attacker-controlled access

to these interfaces are comprehensively and systematically assessed. Using knowledge of the Xilinx

bitstream file format and exploiting misconceptions and inconsistencies in official documentation,

we investigate novel and generic (attack) primitives that use dynamic reconfiguration to update

FPGA hardware design circuitry at runtime. The attack primitives are included in a framework

called STRAT (Stealthy Reconfigurable Adaptive Trojan Framework) that automatically generates

self-modifying hardware Trojans using dynamic partial reconfiguration. Finally, we demonstrate

the security consequences of attacker-controlled dynamic partial reconfiguration, including the

readback of a plaintext bitstream even if bitstream encryption is deployed and the snooping of

cryptographic key material in multi-tenant FPGA applications.

In summary, our contributions are:

• In-Depth SecurityAnalysis of Xilinx ICAP Interface.We contribute to the understanding

of FPGA security by performing a thorough analysis of dynamic partial reconfiguration using

ICAP. Novel (attack) primitives based on dynamic reconfiguration that create, read, update,

and delete arbitrary portions of an FPGA hardware design at runtime are implemented using

these insights.
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• STRAT: Stealthy Reconfigurable Adaptive Trojan Framework. As malicious designers

face the threats of detection by state-of-the-art reverse engineering methods, we present

design and implementation of STRAT, a framework to automatically deploy and remove

hardware Trojans using our novel dynamic reconfiguration primitives, to conceal FPGA

Trojans. By leveraging information about the bitstream file format, our generated hardware

Trojans are precise and minimally-invasive, i.e., enabling targeted modifications down to

single Look-Up Tables (LUTs), Flip-Flops (FFs), or wires. To further increase the stealthiness

of the dynamic approach, STRAT incorporates a novel adaptive readout detection and response
mechanism to automatically identify and remove Trojans before external bitstream readback

is completed.

• Security Implications for FPGAs in the Cloud. The security implications of our novel

primitives and framework are examined within the context of real-world FPGA applications.

We explore the ramifications for FPGAs in cloud environments, in which a malicious tenant

(or malicious cloud provider) can spy on and/or modify a victim tenant’s configuration

without detection.

2 TECHNICAL BACKGROUND
This background section includes information about bitstreams and netlist reverse engineering

techniques.

2.1 Xilinx FPGAs
FPGAs in general are reconfigurable Integrated Circuits (ICs) that can be customized to implement

a broad range of logic designs. FPGA logic includes Look-Up Tables (LUTs) which implement

Boolean functions, Flip-Flops (FFs), wires, and specialized elements, such as multipliers and Block-

RAMs (BRAMs). Throughout the paper, we use the term fabric to refer to the part of the FPGA that

contains the user’s design, while the configuration engine is the FPGA component that configures

the fabric via internal or external configuration access ports. The following background focuses

primarily on Xilinx 7-Series & UltraScale(+) FPGAs.

2.1.1 FPGA Configuration. FPGA configuration is performed by applying a bitstream – containing

the FPGA’s design – to one of the configuration ports. Deployed in-field the bitstream is usually

stored on an external non-volatile memory. The bitstream itself is a specific command sequence of

32-bit words, which are read and write commands to registers in the FPGA’s configuration engine.

The bitstream can be used via both internal and external ports, i.e., JTAG, SPI, ICAP. The main part

of the bitstream configuration process is writing the fabric configuration data to the Frame Data

Register (FDRI), configuring the basic elements of the FPGA, i.e., LUTs, FFs, and routing. The fabric

is programmed in frames, which consist of 93 (UltraScale+), 101 (7-Series), or 123 (UltraScale) words.

Each frame within the fabric can be addressed individually by a frame address. Upon configuration,

this address must be provided in the Frame Address Register (FAR). Figure 1 shows a general system
overview of the FPGA configuration engine [UG570, UG470].

2.1.2 Bitstream Format. The Xilinx bitstream format follows a predefined structure, which is

documented in user guides [UG470, UG570]. Before the configuration engine retrieves commands,

the sync word (0xAA995566) must be sent, signaling the beginning of the bitstream. The main part

of the bitstream consists of type 1 packets, indicating a read/write to a certain register, including

the number of target words, and type 2 packets that optionally define larger word counts. This

information is followed by the data associated with the register. As described in the previous

section, fabric configuration occurs via writes to the FDRI register. It is important to note that a

bitstream does not necessarily only write information that alters fabric configuration. A bitstream
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Fig. 1. Simplified FPGA Configuration Overview.

typically contains a sequence of commands that communicates with multiple configuration registers.

Effectively, a bitstream defines a communication protocol, e.g., a bitstream can consist of only

commands to read back a configuration status register rather than only including logic-altering

information. While the general structure of the bitstream is vendor documented, the content of the

configuration data used to configure the fabric is proprietary. This information for the 7-Series [3]

and partially for UltraScale [2] FPGAs have been reverse engineered.

2.1.3 Bitstream Protection Schemes. Since hardware is often used as the root of trust within

an embedded system, safeguarding it is naturally essential. In the case of FPGAs, the executed

design is usually stored in external non-volatile memory. Therefore, securing the bitstream takes a

central role in the security design of FPGAs. FPGA manufacturers have implemented bitstream

protection systems to ensure (1) the integrity and authenticity as well as (2) the confidentiality of

the bitstream. Several attacks against bitstream protection schemes have been proposed based on

implementation/protocol flaws and hardware limitations (e.g., side-channel attacks). Most recently,

Ender et al. broke Xilinx 7-Series FPGA’s bitstream protection [22] and demonstrated attacks on the

UltraScale(+) bitstream protection[21], which, however, can still be considered secure if correctly

configured. Bitstream encryption side-channel and probing attacks have been successfully carried

out on (older) generation FPGAs [52, 53, 54, 55, 70, 71].

2.1.4 Partial Reconfiguration. Partial – or reconfiguration in general – is needed by many FPGA

applications to provide bug fixes and real-time updates [12]. Recently, partial reconfiguration has

been used to update machine learning (ML) parameters in FPGAs following training [47, 20]. Kernel

parameters and ML interconnect can be updated to provide improved algorithm performance. A

similar approach can be used to update encryption algorithms and keys in FPGAs [28, 31]. The
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cryptographic keys can be directly embedded in FPGA logic to obscure their function. Additionally,

partial reconfiguration is used in communication coding and network virtualization. For example,

to tune communication transmitters and receivers to adapt to changing channel noise [68, 75].

Since FPGAs are a popular choice for network routing, given their parallelism and specialization,

partial reconfiguration can be used to reduce router power consumption [56] and provide updated

routing information [83]. Finally, signal processing filter coefficients can be changed to adapt to

changing operating conditions [64, 16].

2.1.5 Internal Configuration Access Port (ICAP). The ICAP is an internal configuration access port

primarily used for partial reconfiguration. It can be instantiated as part of a design like any other

primitive located within the FPGA’s fabric. Xilinx 7-Series devices employ the ICAPE2 primitive,

while UltraScale(+) devices utilize ICAPE3, which includes added status ports. Since ICAP is directly

connected to the configuration engine, it is considered a trusted configuration port. Hence, netiher

encryption nor authentication is needed via ICAP.

2.2 Netlist Reverse Engineering
In some attack scenarios, an FPGA netlist is analyzed to gain design insights or find spots for Trojan

insertion. A bitstream is effectively an alternative format of an FPGA design netlist, and converting

the bitstream to a human-readable netlist format is possible [3]. After bitstream conversion, a

flattened netlist containing no high-level or hierarchical information [1, 7, 26] is obtained. This

netlist contains only logic gates and their interconnection. Netlists can be analyzed with (1) static

analysis methods, in which the netlist is analyzed without information collected during execution,

or (2) dynamic analysis methods that include simulation or on-chip debugging [67].

2.3 Hardware Trojans
Since the report on high-performance microchip supply in 2005 [18], the scientific community

has substantially researched offensive and defensive aspects of unauthorized malicious hardware

manipulations a.k.a. hardware Trojans [26, 76]. Surreptitious manipulations can be inserted during

various development phases (e.g., during the design phase by a malicious designer or during the

globalized IC production phase) and comprise various trigger and payload designs. Numerous

works focus on automated detection to counteract the risks of hardware Trojans, such as identifying

trigger mechanisms or focusing on payload features [26]. Here, different static and dynamic analysis

approaches have been proposed [34, 77, 82, 62, 15]. Powell et al. [58, 42] developed a framework that

can statically detect pre-defined malicious circuitry in FPGA designs while other strategies [62]

combine runtime detection strategies.

2.4 Related Work
In Bitman [57] and Byteman [46], the authors determined general knowledge of the FPGA bitstream

format to allow them to reallocate, merge and modify regions using this information. The tools

operate at the bitstream level. Upon receiving one or more input bitstream(s), different operations,

such as merging or reallocating entire blocks, can be applied. Currently, the tools are not based on

bitstream databases, so targeted modifications must be crafted by hand. Notably, these modifications

are directly applied to the bitstream itself, prior to FPGA initialization. The work focuses on

improving the tooling and offering faster workflows rather than on security implications. Stolz

et al. explored using low-level bitstream features for design obfuscation [67]. For example, they

check for targeted low-level routing manipulation via ICAP as a safeguarding mechanism within

their obfuscation scheme.
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Additional previous work, such as thangrycat [36], has focused on malicious static manipulations

to the bitstream. Modifications made by thangrycat were applied to the bitstream itself in a static

form by pre-startup bitstream exchange. Fyrbiak et. al. manipulated a LUT to leak a key of an FPGA

used for encryption for a USB storage device [69]. Ender et. al. [23] provided insights on how to

conduct static bitstream manipulation to bypass a self-check in a cryptographic core.

This work focuses on novel run-time manipulations, in conjunction with an understanding of

the bitstream format. Potential modifications are carried out during FPGA operation.

3 THREAT MODEL
In this work, we assume an attacker with access to ICAP and in-depth knowledge about ICAP

and the bitstream format. The high-level goal of the attacker is to undermine system security by

performing illegitimate hardware access. More precisely, such accesses can be an illegitimate read

operation (e.g., to spy out data that the attacker should not have access to) or an illegitimate write

operation (e.g., to perform malicious hardware manipulation).

We want to emphasize that our threat model is consistent with prior research on hardware

security [67, 35, 72, 40, 41] as detailed in the following:

(1) Malicious Designers. A malicious designer has the goal to conceal a hardware Trojan by

exploiting partial reconfiguration. Since partial reconfiguration features can be included

during design phase, the malicious designer has the capability to perform illegitimate spy

or manipulation actions. Note that we will demonstrate a substantial toolkit with STRAT to
insert and remove a Trojan, that will remain undetected with modern analysis techniques

(Section 5). Moreover we want to emphasize that the attacker class of malicious designers

can be categorized as follows:

• Malicious Designers / Integrator carefully craft a hardware design with the explicit

intent of inserting malicious elements such as a Trojan. To this end, they leverage their

system knowledge with the goal to embed harmful components in a covert way to render

detection as challenging as possible.

• Malicious 3rd-Party IP Cores Designers builds a malevolent Intellectual Property (IP)

core to introduce a Trojan (e.g., an exploit or backdoor) into the overall system, where the

IP core is integrated. Similarly to the malicious designer / integrator, the goal is to embed

the Trojan in a covert way.

• Malicious EDA Tools refers to manipulated or compromised EDA tools to introduce

harmful modifications during design (e.g., a malicious synthesizer adds a Trojan to the

design). Similarly to the other malicious designers, the goal is to embed the Trojan in a

covert way as well.

(2) (Multi-Tenant) Cloud FPGAs become increasingly popular, however, dynamic reconfigu-

ration features / ICAP challenge trust between cloud providers and users as outlined in the

following threat scenarios:

• Attack towards Customers can be performed by a malicious tenant or malicious cloud

provider by use of partial reconfiguration / ICAP to spy or manipulate victim tenant

hardware with the aforementioned security implications.

• Attack towards Cloud Provider can be performed by a malicious customer who leverages

partial reconfiguration / ICAP to spy or manipulate hardware of the cloud provider shell

(e.g., to overcome security access restrictions).

We want to highlight that numerous designs use ICAP and partial reconfiguration for legitimate

reasons (cf. Section 2.1.4), thus usage itself is not suspicious for a security analyst. However, we
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demonstrate that designs with ICAP are inherently hard to trust, as they pose potential to disguise

malicious intent.

4 SYSTEMATIC ANALYSIS OF (NOVEL) RECONFIGURATION CAPABILITIES
We now provide details on the real reconfiguration capabilities by providing an extension to the

vendor-intended reconfiguration flow (Section 4.1). Moreover, we introduce our setup and ICAP

prototyping framework that supported our ICAP exploration in a semi-automated way (Section 4.2).

4.1 Extending the Vendor-Intended Reconfiguration Flow
Modern FPGAs provide partial dynamic reconfiguration capabilities, enabling the exchange of

components within a programmed device. Support for this functionality is typically facilitated

by the vendor’s computer-aided design (CAD) tool flow. Designers are required to define logic

partitions that are targeted to specific regions (pBlocks) of the FPGA chip. This information is

provided to the tool flow. Partitions may occupy the same region at different times (Figure 2).

A full bitstream containing the static partition (not changed after initial configuration) and partial

bitstreams for the dynamic partition are created.

ICAP

FPGAstatic partition

predefined reconfigurable
partition (pblock)

011
100

011
100
partial
bitstream

full
bitstream

(may contain initial
design for pblock)

netlist visible
connection via fabric

Main Core

Fig. 2. General Partial Dynamic Reconfiguration Flow. The FPGA is programmed with the full bitstream,
whichmay contain an initial design for the predefined dynamically reconfigurable region. The partial bitstream
is supplied to the ICAP controller, which subsequently configures the partial bitstream via the internal fabric
configuration access.

If the bitstream format and frame content are understood, the standard vendor tool flow can be

extended. Since a bitstream consists of a series of commands, arbitrary command sequences to read

or write specific sections of the FPGA fabric can be created. This capability can be used to derive

novel primitives that are unsupported by the vendor flow and may be exploitable for malicious

purposes. In the following, we introduce novel configuration options.

4.1.1 Create / Delete. By using partial dynamic reconfiguration and bitstream format knowledge,

circuits that were not part of the initial design can be created and placed anywhere in the FPGA,

augmenting design functionality. Likewise, existing circuitry can be removed even if it was not

defined as partially reconfigurable in the initial design flow. In Xilinx’s standard Vivado tool flow,

only a predefined pBlock can be removed by creating and then loading an empty design for a

partition.
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Fig. 3. Partial reconfiguration supported by vendor tools versus the use of new primitives fashioned using
full bitstream knowledge

4.1.2 (Atomic) Modify. Xilinx support for partial reconfiguration limits configuration writes to

predefined pBlocks. However, with our approach, atomic modifications on single elements can be

performed. As a result, every FPGA basic element can be reconfigured, including the following

examples.

LUT Configuration1 Routing Modifications2

a

bLUT2
Configuration

String

0x8 (AND)
0x5 (XOR)

Fig. 4. Capabilities of the modify primitive

1 LUT Configuration. Manipulates a single LUT configuration to alter the Boolean function

without affecting the surrounding circuitry.

2 Routing Changes. Changes can include a modifying an input wire or rerouting a wire

completely or b cutting connections at a route Programmable Interconnect Point (PIP),

causing a signal output to take on a logic 1 value as a consequence. This approach can be used

to patch certain values to always output a 1 without modifying the combinational circuit.

Conducting Atomic Modifications. The smallest entity that can be replaced in an FPGA is a frame

(see Section 2.1.2). However, a single frame may contain more than just a single LUT or PIP for

routing, which means that replacing a frame might inadvertently alter unintended circuitry. To

address this issue, one must first read the current frame content, apply the desired modifications,

and then write the modified frame back. This approach ensures that no unwanted changes occur

during the manipulation process.
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Register Content Manipulation. While it is possible to perform targeted register value manipula-

tion, this is not feasible in practice. To change the value, the FF.INIT value has to be changed in

the bitstream. Normally this value is loaded when the FPGA is configured. However, a reset of the

associated global set reset (GSR) can also reset the FFs to their initial values. Thus all elements in a

region affected by the clock would be reset to their initial values, potentially destroying the current

state. Thus, to the best of our knowledge, a targeted change to one FF is impractical.

4.1.3 (Atomic) Read. Access to the configuration port not only allows for the write of configuration
but also a readout. Xilinx offers this feature to verify a current configuration. Here, we are also not

restricted to any boundaries allowing us to perform targeted readouts.

(Sub-)Circuit Read Back1 FF/BRAM Content Readout2

FF

Value
1

D Q

EN

ICAP

Fig. 5. Capabilities of the read primitive

1 (Sub-)Circuit Read Back. By reading specific frames, a subcircuit or even the entire design

can be read back. The readback circuits can then be converted to a netlist for further analysis.

2 Register/BRAM Content Readout. It is possible to read back current FF values or BRAM

state. This approach enables register access without a visible connection in the netlist. The

live readback is enabled by the capture feature offered by Xilinx, as described below.

Readback of Storage Elements. Xilinx devices provide a configuration readback capture feature,
enabling live readout of internal Configurable Logic Block (CLB) registers, including FFs and

BRAMs [XAPP1230]. For 7-Series devices, the CAPTUREE2 primitive and/or the GCAPTURE command

are required, while for UltraScale(+) devices, only the enabling of the capture bit in the CTL1 register
is necessary. The bit location in the fabric can be determined in two ways: (1) by matching the

value of the bit to the FF.INIT value in the bitstream database used for FF initialization, or (2)

by generating a logic localization file using vendor tools to define the exact position of the bit.

The latter method can be employed to create a database for devices without an existing bitstream

database by placing all FFs and retrieving their positions from the logic localization file. However,

for 7-Series devices, activating capture mode overwrites the FF.INIT value, causing potential

unintended states when a fabric reset/restore (GSR) is triggered for the region. UltraScale(+) devices

do not face this issue, as the original FF.INIT value is restored after disabling capture mode.

4.2 ICAP Prototyping Framework
We designed and implemented an ICAP prototyping framework to support our experiments. The

framework consists of two parts: (1) the hardware design, incorporating the ICAP to send com-

mands to it; and (2) the software that communicates via Universal Asynchronous Receiver Trans-

mitter (UART) with our controller. Our framework is able to receive bitstreams, i.e., a sequence of

commands
1
and send them to ICAP. The hardware sets the correct sequence for the ICAP control

1
Note that bitstream refers to the command sequence and does not necessarily mean a write to the fabric itself to configure

a design (see Section 2.1.2)
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signals, enabling write and read functionality. Thus the framework allows for tests ranging from

reads from and writes to all command registers to writes to all parts of the fabric.

ICAP Controller

FPGA Software

011
100

011
100

Bitstream
Command
Sequence

ICAP/
Configuration
Engine Output

data

control UART

Fig. 6. Overview of ICAP Prototyping Framework.

5 STRAT: STEALTHY RECONFIGURABLE ADAPTIVE TROJAN FRAMEWORK
We now describe the design and implementation of our stealthy reconfigurable adaptive Trojan

framework STRAT leveraging the novel primitives from Section 4. First, we motivate and introduce

the high-level idea and then the architecture and workflow of STRAT are detailed. We conclude

with a Trojan case study, where the Trojan is deployed and removed with STRAT, and a discussion.

5.1 Motivation
With recent advances in reverse engineering, a Trojan designer faces challenges that could lead to

Trojan detection. In the following we discuss modern reverse engineering techniques and introduce

our high-level idea to counter state-of-the-art detection methods furthering the need for improved

detection.

5.1.1 The Threat of Netlist Reverse Engineering from a Malicious Designer Perspective. From the

perspective of a Trojan designer, advances in netlist reverse engineering are worrisome, as they

allow Trojans to be identified more easily.

FPGA Bitstream

Simulation

Functional

Structural

Dynamic
Analysis

Static
Analysis

On-Device

Bitstream
Converter

Netlist Recovery Netlist Analysis

Bitstream
Database

Gate-Level
Netlist

011
100

011
100

A

B

C

D

Boolean Analysis
SMT/SAT Solver
...

...

Graph Algorithm
Graph Clustering

Fig. 7. Netlist Reverse Engineering Overview.
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With bitstream databases readily available for many FPGA devices, FPGA netlist reverse engi-

neering can be conducted without the need for expensive equipment. An attacker must extract

the netlist, which is often stored in external non-volatile memory, and convert it to a netlist. For

ASICs, expensive equipment, extensive know-how from various research areas, and significant time

are necessary to achieve netlist extraction. Thus we argue that ASIC reverse engineering is more

possible for nation state actors or parties with extensive resources, while FPGA reverse engineering

can generally be conducted in a basic research setting. Generally, an FPGA Trojan designer must

consider netlist analysis an acute and realistic threat, which needs to be taken into account when

designing a Trojan, and a countermeasure developer must be able to use it to their advantage.

Once the netlist has been recovered, an attacker can deploy various static and dynamic analysis

techniques to analyze the sea-of-gates. A popular framework to support these analysis efforts is

HAL - The Hardware Analyzer, which is available open-source [24, 32]. Generally, we distinguish

between dynamic and static analysis methods [67].

Static Analysis. Static analysis facilitates an examination of design functionality at the netlist

level, without necessitating design execution. Here, the community often distinguishes between

functional and structural analysis methods [6, 7]. In structural analysis, the netlist can be interpreted

as a directed graph, thus allowing the application of graph theory. This approach enables the reverse

engineer to leverage detection algorithms to conduct tasks such as identifying the control path

[13, 14, 25, 48, 50, 49] or performing data-path analysis [1, 43]. Most recently the use of Graph

Neural Networks (GNNs) have gained attention as their applicability to netlist reverse engineering

has yielded promising results [4]. In functional analysis, the underlying logic function is analyzed

[7]. Here, tools like Satisfiability Modulo Theories (SMT) solvers often find usage, e.g., to match

subcircuits against predefined models [27, 43].

Dynamic Analysis. Dynamic analysis enables a reverse engineer to monitor temporal chip behav-

ior. This category of analysis encompasses various types, including simulation-based and on-chip

methods [67]. Specifically, within the context of FPGAs, the Joint Test Action Group (JTAG) readout

ports could be utilized to extract the current bitstream and ascertain the device’s state.

5.1.2 High-level Idea. Since netlist reverse engineering can stymie Trojan insertion, an attacker

must hinder static and dynamic analysis methods as much as possible. Given advancements in FPGA

analysis and reverse engineering, Trojans must be concealed from techniques such as graph-based,

simulation-based, and on-device analysis.

Software attackers often deploy self-modifying code in malicious software to counter state-of-the-

art detection methods [74, 9]. We adapt this principle to FPGA deployment by exploiting our novel

reconfiguration primitives to counteract static detection strategies. The primitives are incorporated

within an automated tool flow to effectively build dynamic hardware Trojan triggers and payloads

and thereby circumvent state-of-the-art methods that detect static malicious circuitry [42]. Precise

and minimally invasive Trojans are developed using bitstream knowledge, facilitating tailored

modifications (e.g., for single LUTs, FFs, or wires) using a custom Trojan-specific bitstream file

format. A novel adaptive readout detection and response mechanism is also designed. Thus, our

mechanism detects external bitstream readbacks and adaptively responds by removing the Trojan

before the readout is completed.

5.2 STRAT - Design
We now detail the design of STRAT and its automated Trojan generation workflow from an attacker

perspective. STRAT is build around the Project X-Ray database, thus supporting 7-Series devices [3].
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Building Blocks. STRAT consists of 3 building blocks: (1) a software part to analyze the bitstream

and generate a trojanized version (Section 5.2.1), (2) a hardware runtime fabric manipulation engine

to dynamically reconfigure the Trojan into the design (Section 5.2.2), and (3) a hardware readout

detection and response engine to detect external readbacks and respond with dynamic removal of

the Trojan before the readback occurs (Section 5.2.3). An overview of STRAT’s hardware components

is shown in Figure 8.

ICAP

Application
Core 1

Application
Core 2

STRAT
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Fig. 8. High-Level Overview of STRAT.

Workflow. We first detail the workflow from a malicious designer’s perspective. For simplicity, we

assume that the Trojan functionality is given at the netlist level, i.e., the malicious designer knows

which gates and wires are targeted, see Section 5.3 for malicious designer case studies. Operation

steps are as follows: (1) the malicious designer uses the bitstream analysis and delta generation

software together with the current bitstream and Trojans FPGA Assembly (FASM) description to

generate our so-called configuration delta memory file, i.e., the changes that are required to realize

the Trojan functionality in the current bitstream, cf. Figure 9. The delta memory file is then patched

into the memory of the runtime fabric manipulation engine by updating the bitstream via the Xilinx

memory update tool. (2) Once the runtime fabric manipulation engine receives a signal to perform

the dynamic reconfiguration to load the Trojan, it reads back the associated frames in the device

via ICAP. It stores them in temporary memory (BRAM). (3) The configuration delta is applied to

the retrieved frames during readback, and only specific words are changed. (4) The ICAP is then

used to configure the malicious changes in the FPGA by writing back the manipulated frames from

the temporary memory.

Suppose the readout detection and response engine detects a readout attempt by the victim at

runtime. In that case, the runtime fabric manipulation engine is triggered to revert the changes and

re-generate the original configuration data that does not include the Trojan. We want to emphasize

that we store the configuration delta as XOR bitmask to ease the reversion as an involution and

simply re-use the same bitmasks for both adding and removing the Trojan, as in more detail

discussed in Section 5.2.2.

5.2.1 Bitstream Analysis and Delta Generation Software. To generate a Trojan bitstream from a

FASM description and subsequently embed the Trojan into a given bitstream, we leverage Project

X-Ray [3] bitstream databases. Based on the bit differences between the original and malicious
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bitstreams, we generate the delta configuration as lists of triplets of (1) the configuration frame

address, (2) the word address in the configuration frame, and (3) the delta data. Finally, the software

outputs an updated memory file, i.e., for the memory of the runtime fabric manipulation engine.

This output is then passed to the Xilinx memory update tool to generate the malicious bitstream

containing the Trojan.

SLICEL_X1Y3.ALUT.INIT[63:0] = 64'hffffffffffffffff1

2 INT_L_X2Y66.ER1BEG2.ER1END1 = 0

FASM Manipulations

Bitstream Database Memory File for
Manipulation Engine ROM

Bitstream

Manipulation
Framework

011
100 updates

Fig. 9. Workflow for Generating Trojanized Designs with STRAT.

Implementation. Our bitstream analysis and delta generation is written in C++ and can parse

Xilinx 7-Series bitstream databases provided by Project X-Ray [3]. The software can handle manip-

ulations for incomplete databases since only the manipulations have to be covered by the bitstream

database, i.e., bitstream modifications are inserted at known points, and the rest is left untouched. In

addition to memory file generation, the tool can be used to insert modifications into the bitstream

directly.

5.2.2 Runtime Fabric Manipulation Engine. We leverage our runtime fabric manipulation engine

to apply the insertion and removal of the Trojan functionality from the bitstream configuration

at runtime. The operational heart of this engine is a state machine that handles communication

with ICAP and a memory block that stores the configuration delta. First, the engine reads the

configuration frame via ICAP, i.e., identified by the first entry of a configuration delta triplet.

Second, the engine then applies the configuration delta data in the target word, i.e., identified by

the second and third entry of a configuration delta triplet. Finally, the engine then writes back the

configuration frame via ICAP. As noted before, we store the Trojan configuration delta data as an

XOR bitmask, so the same circuitry is used to add and remove the Trojan from the design.

Hardware Implementation. The runtime fabric manipulation engine is implemented using a state

machine with 12 states, 1 BRAM used for temporary frame storage, and 1 Read-OnlyMemory (ROM)

containing the bitstream delta. In total, the engine, including the ICAP controller, uses 286 LUTs,

245 FFs and 2 BRAMs (one configured as ROM).

5.2.3 Readout Detection and Response Engine. Even though dynamic reconfiguration hardware

Trojans evade static Trojan detection strategies by design, readout of an FPGA configuration at

runtime via external ports would reveal its presence, e.g., by applying static Trojan detection

strategies on the readout configuration or even simply comparing the readout configuration to the

initial bitstream configuration. To this end, we design a readout detection and response engine to

detect such readout attempts and remove the Trojan before the readout is completed. Since Xilinx
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FPGAs provide readout capabilities using JTAG, we now first briefly present JTAG to understand

the mechanics of the inner working of our readout detection and response engine.

Readout Detection. JTAG is a typical debug interface and Xilinx provides the so-called BSCANE2
primitive to access JTAG chain fromwithin the FPGA design. Based on the design of JTAG chains, all

clock and data signals are shared between the external interface and all internal BSCANE2 primitives.

If any activity is sensed on the shared clock or data signals, it implies that the JTAG interface is in

use and thus serves as a straightforward readout detection, cf. [XAPP1084, XAPP1098]

Response. Once we detect a readout via JTAG, we aim to remove the Trojan from the current

configuration immediately. However, once a JTAG readout occurs, access to all other configuration

ports is locked, including the ICAP used to remove the Trojan. Note that this challenges the short
time frame from detection that a readout occurs to the response to remove the Trojan using ICAP.

In our experiments, the time until the ICAP is locked took 5.350 ms on average (min: 0.348 ms,

max: 9.216 ms) for a Basys3 board (Artix-7, FTDI USB to serial) using OpenOCD 0.11 running on a

Linux PC (6.1.23-1-MANJARO). For example, since our Trojan from the case study in Section 5.3

is removed within 0.194 ms, thus the response time is sufficient to remove the Trojan before the

ICAP is locked.

Our controller which is optimized for area and not speed, needs 522 + 3 × 𝑛 cycles to manipulate

a single frame (with 𝑛 = number of manipulation within the frame). Considering the minimum

time frame of 0.348 ms it is possible to change up to 63 frames with 10 manipulation in each frame

and a 100 MhZ clock. However, the actual needed time highly depends on the location of the

conducted manipulations, e.g., its placement relative to each other, and thus the placement within

the frames. Note as well that for example one LUT configuration string is spread into multiple

different frames. An attacker can optimize the manipulation process, by manually placing the LUTs

and other desired modifications in the same frames, thus reducing the overall amount of frames

being modified.

We want to note that a noise-less JTAG query system (e.g., using another FPGA to communicate

with JTAG) may significantly reduce the readout time. Thus we examined an alternative strategy to

increase the response time for our Trojan removal. Since the BSCANE2 primitive configuration can

disable the JTAG altogether, we can simply disable external JTAG access. Once a readout attempt

via JTAG occurs, the external interface will generate an error as JTAG is disabled. Meanwhile, we

remove the Trojan and restore JTAG access, so any further JTAG debug attempt will succeed and

find the configuration without the Trojan.

Hardware Implementation. The implemented JTAG detection is using 1 LUT, 2 FFs, and 1 BSCANE2
primitive, since a connection to the BSCANE2 clock suffices to detect activity.

5.3 Case-Study: Insert Key-Leakage Trojan in AES with STRAT

In this scenario, we consider a malicious designer who employs our framework to execute their

nefarious objectives covertly. The motivation behind this action could be to establish a backdoor,

facilitating unauthorized access or control over the system. To evade detection, the Trojan must

be expertly concealed. Consequently, we explore how a malicious designer can leverage STRAT
to discreetly embed a Trojan within a design. The design uses the ICAP for legitimate purposes,

it might be an advanced ML core, network equipment circuit, or soft error mitigation IP core

that is part of Xilinx’s IP core library. Hence the use of ICAP is not necessarily suspicious to

the victim. Attackers can use our STRAT framework to insert hardware Trojans at runtime, thus

evading advanced detection mechanisms. In the following, we conduct a case study which inserts a

key-leakage Trojan into an AES core.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



On the Malicious Potential of Xilinx’ Internal Configuration Access Port (ICAP) 1:15

Attack Outline. In this attack we modify the SBox output of the round function to always output

zero. The flow of the last AES round is depicted in Figure 10.

Byte Substitution (SBox)

ShiftRows

Plaintext

Ciphertext

Key

Key
Schedule

Last
Round

rk last

rk last

00...00

00...00

Fig. 10. Attack Outline Showing AES Key Leakage via SBox Manipulation.

With the modified SBox generating zeros as output, the result of the Byte Substitution layer is

zero. In ShiftRows the positions of the bits are only shifted, thus the output is not changed. As a

consequence, in the last round we are able to retrieve the last round key (𝑟𝑘) as the ciphertext. With

the Trojan inside the ciphertext is computed as follows:

Ciphertext = 𝑟𝑘𝑙𝑎𝑠𝑡 ⊕ ShiftRows𝑙𝑎𝑠𝑡𝑅𝑜𝑢𝑛𝑑

Ciphertext = 𝑟𝑘𝑙𝑎𝑠𝑡 ⊕ 000...000

Ciphertext = 𝑟𝑘𝑙𝑎𝑠𝑡

Once the last round key has been retrieved, the key schedule can simply be reverted, as it is a

static function, with only the main key as input. Thus, given any round key, the input key can be

calculated.

Trojan Design. We use an AES-128 design optimized for space by implementing an SBox lookup in

quarter rounds, i.e., four SBoxes enabling a 32-bit lookup in one cycle [66]. Our Trojan manipulates

the SBox output of a round function to always output zero, ensuring that the ciphertext corresponds

to the last round key, which can then be analyzed to obtain the input key. As a malicious designer,

there are two ways to achieve this result, which are illustrated in Figure 11:

1 Cut PIPs managing the SBox output so that the LUT input signals are consistently set to a

constant ’1’.

2 Set the LUT’s configuration string to always output ’0’.
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Fig. 11. Overview of possible manipulations to set the SBox output to 0.

To minimize manipulations, we implemented a buffer LUT after each SBox bit, thus requiring

the modification of only one LUT. This approach ensures that the SBox output does not spread

throughout the remainder of the design, as it could be employed in multiple locations.

Numerous potential triggers for Trojan deployment exist, such as activation based on a specific

plaintext input or deployment after a certain number of encryptions. Using our manipulation

framework, the trigger condition circuit can also be configured at runtime. For the sake of simplicity,

in our proof-of-concept implementation, we trigger the Trojan via a simple button push.

Trojan Implementation. Depending on the placement, multiple frames may require manipulation.

In our example design, we extracted the 32 LUT locations for manipulation using a Tcl script within

Vivado applied to the generated netlist. Note that if one opts to cut the PIPs, the respective PIPs

must be carefully selected, as pseudo-PIPs are often employed on routes, which are not configurable

but static. Once the correct locations are extracted, the corresponding FASM file for the 32 SBox

buffer output LUTs is created (as mentioned earlier, the AES implementation uses quarter-round

states for the SBox lookup). From here, the flow to generate the manipulation ROM, described in

Section 5.2.2, is followed.

Evaluation. Our proof-of-concept implementation successfully triggered and removed the Trojan

when the readout detection was activated within 0.194 msec (19404 cycles at 100 MHz). This is

below the minimum measured readout time we observed for our framework via JTAG. Generally,

this time frame heavily depends on the placement and number of LUT changes.

Once the Trojan has been triggered, the attacker must start an encryption and can extract the

main key by calculating the key schedule in reverse with the last round key received as ciphertext.

5.4 Discussion
We now briefly discuss the design of STRAT in the context of the vendor’s partial reconfiguration

flow and the readout detection strategies for other readback FPGA interfaces.

On Vendor Partial Reconfiguration Flows. While our framework can be built using the standard

vendor partial reconfiguration flow from a high-level perspective, our framework provides various

advantages by using the introduced atomic primitives in Section 4.1. In particular, the vendor flow

generates a (large) partial bitstreams for a predetermined pBlock. From a malicious designers point

of view, the vendor flow has major downsides: (1) the stored partial bitstream can be extracted,

easily converted to a netlist, and then analyzed with static analysis techniques to detect a Trojan,
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(2) the partial bitstream covers a much larger area, taking up unnecessary space and restricting a

larger portion of the design due to the minimum size of the pBlock. In our case, first our readout

protection must be circumvented and then the atomic modifications must be carefully mapped to

the original design to identify malicious changes. Note that such analysis can be further complicated

by additionally encoding and decoding the configuration delta, so that only encoded configuration

delta data resides in memory.

On SelectMAP Readout. Similar to JTAG, the SelectMAP configuration interface can be used for

readback. But as the I/O ports of the SelectMAP interface are shared with common FPGA I/Os,

the SelectMAP is usually deactivated and used as standard I/O ports after the initial configuration.

If these I/Os are configured to remain as the SelectMAP interface, the ICAP is disabled, as both

features are mutually exclusive. In our setting this results in the fact that our Trojan can never be

observed via SelectMAP at runtime because either the SelectMAP is deactivated or the ICAP is

deactivated and our Trojan cannot be configured.

On ICAP Readout Detection and Response. In case ICAP is used as a readback mechanism by

an analyst as well, e.g., to validate the integrity of their configuration at runtime, a malicious

designer can simply re-route the wires from ICAP to an attacker-controlled hardware simulated

ICAP interface that plays back the original configuration without the Trojan.

6 SECURITY IMPLICATIONS FOR CLOUD FPGAS
In this section, we highlight various security-critical real-world scenarios that may arise from using

ICAP, based on our findings. We show that ICAP poses a significant security risk to multi-tenant

cloud applications, including any tenant and the cloud provider itself.

6.1 Scenario: ICAP in (Multi-Tenant) Cloud FPGAs
As modern FPGAs contain millions of LUTs and storage elements, not all users may require the full

capacity of a single FPGA device. The simultaneous sharing of FPGA resources among multiple

tenants provides significant advantages, particularly in cloud environments where individual

tenants may not need dedicated access to all FPGA hardware. Thus, resources could be effectively

shared. Since commercial FPGAs contain a single on-chip power distribution network (PDN),

malicious tenants can monitor or manipulate on-FPGA voltage values. For example, voltage sensors

crafted from FPGA logic are used as a side-channel [84, 29, 65] to detect details of the victim

tenant’s computation, e.g., an encryption core [63]. In the latter case, the attacker deliberately

wastes substantial power [60], causing the on-FPGA voltage to drop. This effect can induce faults

in the victim tenant [30, 59] or cause an FPGA crash [61]. Thus, FPGA multi-tenancy is currently

not supported by commercial cloud vendors, such as Amazon AWS [5] and Microsoft Azure [51]

due to security concerns. However, several schemes [39, 38, 61, 44], have been proposed to counter

the aforementioned attacks and multi-user co-tenancy is likely in the future [37]. Also, the use of

intellectual property cores and the presence of the cloud provider shell already serves as a form of

multi-tenancy in cloud FPGAs.

In this scenario, we explore a new, previously-unexplored risk for multi-tenant cloud FPGAs.

While there are currently no commercial services available that allow for the purchase of multi-

tenant clouds instances, significant research has been performed in the area. In the following we

consider a cloud scenario, with multiple tenants sharing an FPGA that is managed by a shell from

the cloud provider. We assume that a malicious participant has access to the ICAP interface. Our

demonstration will highlight the potential for victim bitstream readback and espionage activities

by this malicious entity through ICAP access. This investigation underscores the inherent security
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vulnerability of exposing ICAP to tenants, emphasizing the importance of robust access control in

future multi-tenancy service offerings.

6.1.1 High-Level Idea. Although a number of proposed implementation approaches exist, the

physical layouts of multi-tenant FPGAs are similar. Different regions of the FPGA are typically

assigned to distinct tenants. A management engine or shell [10] establishes external communication

by implementing interfaces that enable data transmission to and from the assigned partitions.

Tenants are physically isolated from one another, without any connections between them. Figure 12

presents a high-level overview.

Tenant 1

ICAP

FPGA

netlist visible

reconfiguresdata reconfiguresdata

connection via fabric

Shell

Tenant 2

Controller AES

Key

1

3

2

pblockpblock

Fig. 12. High-Level Attack Overview in a Multi-Tenant Cloud Scenario.

If a malicious tenant can instantiate an ICAP interface, it poses a risk to all other tenants,

including the cloud provider, as an attacker can create/read/update/delete circuits of other tenants

based on our primitives discussed in Section 4.1. In the multi-tenant setting, the following attacks

are particularly concerning:

1 Design Readout. The attacker can read the proprietary circuit of another tenant and analyze

it after converting the recovered bitstream to its gate-level netlist.

2 Design Manipulation. Once a suitable target in the circuit has been identified, i.e., by means

of reverse-engineering, it can be manipulated without the other tenant knowing.

3 Register Readout. As an alternative to manipulating, the attacker can access current register

values in the victim circuit to leak sensitive information, such as cryptographic key material.

6.1.2 Case-Study: Reading the Key Register of Another Tenant. In this case study, we demonstrate

how a malicious tenant can surreptitiously read the key register of another tenant via a fabric

readout. In Figure 12, Tenant 2 has implemented an Advanced Encryption Standard (AES) core,

while the malicious Tenant 1 can instantiate the ICAP primitive in their region.

Design & Implementation. In our proof-of-concept system, each tenant has a predefined region

akin to the one depicted in Figure 12. We chose to utilize Xilinx’s dynamic reconfiguration feature

via JTAG, leaving all ICAP ports available on the device and minimizing the management engine’s

complexity. Each simulated tenant has access to dedicated output pins, where a UART connection
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can be established for external communication – in a cloud setting, the communication would be

established via a shell. We conducted the attack on a Virtex UltraScale+ VCU118 board.

Attack Execution. The goal of the malicious Tenant 1 is to read out the key of the Tenant 2 AES

core. We assume that Tenant 1 knows the region where Tenant 2 is located, e.g., due to a previous

assignment to that region or by reading the entire bitstream and examining the detailed FPGA

utilization.

Note here that the attack is not limited to cryptographic keys, but any internal register state can

be read, including unencrypted private data, state machine states obfuscated by logical locking,

etc. During read out, it is essential to read back the exact registers and their order as even the

complexity of finding the correct order of each register grows factorial (e.g., draw without replacing

in order is 𝑛!).

(1) Design Readout & Analysis (partially omitted). The first step is to read out the design. The

retrieved partial bitstream is converted to a netlist. From here, it can be analyzed to identify

points of interest, such as the key register. Note that we partially omitted this step in our

proof of concept since our focus is not on netlist analysis. Instead, we use knowledge from

the placed and routed netlist and general design information.

(2) Readout Frames with Activated Capture Mode. The analyst can identify the correct

readout positions in the fabric frames by knowing the points of interest, i.e., the FFs holding

the key. The controller then reads the identified frames, as described in Section 4.1.3. To

this end, the controller retrieves a list of corresponding frame addresses and transmits the

readback frame. Note that the capture mode must be activated by enabling the capture bit in

the CTL1 configuration register (see Section 4.1.3).

(3) Key Retrieval. The individual key bits can then be extracted from the returned frames as

the positions of the individual bits are known from the analysis in step 1.

pBlock Boundaries. Wewant to highlight that configuration pBlocks do not have strong boundaries
and those that exist are enforced by vendor tools in generating partial bitstreams. Thus, we can

easily overcome the boundaries using our comprehensive bitstream understanding and ICAP. The

severity of this scenario is significant since other tenants have no way of detecting the harm, as

the attack occurs entirely under-the-hood within the configuration engine, e.g., the fabric has no

indication of being attacked. Moreover, there does not have to be a logical connection between the

tenants’ regions.

Malicious Cloud Provider. In addition to a malicious user, a malicious cloud provider could carry

out attacks using this approach. ICAP is often utilized by the shell to enable the fast reconfiguration

of tenants, as it allows for high data throughput [33]. Such a setup is employed by Amazon F1 [5]

and Azure Cloud FPGAs [8] to reconfigure the customer region. Thus, given the already existing

ICAP access in the shell, the cloud provider gains the ability to spy on or manipulate customers’

designs.

Stealthiness of Attack. The attack operates discreetly, remaining undetectable by the victim

tenant due to its communication with the configuration engine, which occurs under-the-hood. Any
readout of the configured design goes unnoticed, as it entails a mere extraction of the configured

frames without affecting ongoing operations. Furthermore, the extraction of register values remains

concealed since there’s no direct connection to the target register in the netlist — the readout

transpires through the frames via the configuration engine. While design alterations may become

apparent if they modify the design’s functionality, the act of manipulation itself is mostly covert,

as it involves frame reconfiguration under-the-hood. Undefined behaviour could occur during the
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time period in which the frame is configured. So only manipulations, not readout attempts, would

be noticeable by the tenant.

7 INCONSISTENCIES AND MISCONCEPTIONS IN USER GUIDES
In the following, we describe various discrepancies, inconsistencies, and misconceptions regarding

security and implementation details found in Xilinx user guides during our research. We want to

stress that the user guides provide misleading and false information in regards to ICAP possibilites.

We want to highlight that clear and concise security documentation is of particular importance as

any confusion may have devastating consequences in practice when designing (allegedly) secure

systems.

7.1 Dispersed Security Recommendations in Official User Guides.
Before we address documentation details, we emphasize the challenge of dispersing consistent

security documentation, cf. the Xilinx FPGA Security Design Hub [17]. The amount of documenta-

tion is not the deciding factor in creating complexity. Rather document inter-dependencies and

cross-references between old and new documents yield challenges in clarifying assumptions and

implementation details.

For instance, this issue is apparent in the documentation for the Starbleed attack [22, 21]. Older

specialized security user guides, such as [XCN15038] originall published in 2015, do not mention the

2020 and 2022 Starbleed attacks. Even comprehensive user guides such as [UG470] and [XAPP1084],

which have been updated since the attack’s publication, do not mention it. Starbleed is only

referenced in the Design Advisory 73541[80], which is linked only in the Xilinx Design Advisory
Master Answer Record [78]. However, to the best of our knowledge, none of the relevant documents

from the Security Hub link to these design advisory documents.

7.2 ICAP in a Dynamically Reconfigurable Region.
According to the Xilinx Vivado Dynamic Function eXchange User Guide [UG909] “[...] the con-
figuration components (such as BSCAN, STARTUP, ICAP, and FRAME ECC) must remain in the static
portion of the design” [UG909, p. 11]. While this statement is correct for 7-Series FPGAs, i.e., that

include the ICAPE2 primitive, this statement is not correct for UltraScale(+) FPGAs featuring the

ICAPE3 primitive. To this end, we implemented an ICAPE3 primitive in a dynamic portion of the

design on a VCU118 FPGA. A design rule check error is generated if an ICAPE2 primitive on a

7-Series FPGA is instantiated, whereas no error is generated for UltraScale(+) FPGAs using ICAPE3.
Hence, an ICAPE3 primitive can be instantiated in a dynamic region. We tested this by creating a

partial bitstream, that we configured after initial configuration via JTAG, which contains our ICAP

prototyping framework. The framework was operating as normal. To the best of our knowledge,

this capability is not mentioned in the user guides. Configuring another ICAP via ICAP, however,

can cause undefined behaviour, as this is probably the reason, why Xilinx generally rules out the

possibility of ICAP in partial reconfiguration.

7.3 Disabling Readback and Reconfiguration.
Xilinx provides numerous bitstream generation options, among others BITSTREAM.READBACK.SECURITY.
The definition in user guide [UG908] states:

“Specifies whether to disable Readback and Reconfiguration. Specifying Security Level1 dis-
ables Readback. Specifying Security Level2 disables Readback and Reconfiguration.” [UG908,
p.316]
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Based on this statement, one may assume that readback and/or reconfiguration cannot be performed

from any port when this option is enabled. However, Xilinx application note [XAPP1239] contradicts

this statement:

“Partial bitstreams can be delivered unencrypted to the ICAP, or encrypted (with the same
AES key) to any configuration port, so long as the latter has not been explicitly forbidden
by the designer. Setting Security Level2 [...] prevents partial reconfiguration over external
configuration ports.” [XAPP1239, p.13]

In addition, Xilinx application note [XAPP1098] states that the feature is insecure – only bitstream

encryption ensures readout prevention:

“A Vivado tools security option via a particular control bit in the bitstream provides a soft
means of enabling and disabling readback. This bit can be changed during configuration.
Therefore, readback disable is easy to defeat for devices that are not using an encrypted or
authenticated bitstream.” [XAPP1098, p.17]

The attack that Xilinx briefly describes in application note [XAPP1098] refers to the readout bit

in the header of the bitstream file, to be more precise, the SBITS[1:0] bits in the control register

0 CTL0 can be set to disable a readout. An attacker is indeed able to flip this bit in the bitstream

and can then enable the readout feature. To this end, they search for the write to the CTL0 register

in the bitstream header and change the two corresponding bits. Since the bitstream integrity is

protected by a CRC32 checksum, the attacker adjusts or deactivates it. Note that this checksum is

not a cryptographic checksum and can be calculated without any effort.

Thus, if bitstream encryption is not used, Xilinx does not provide a safe way to circumvent read-

back and the BITSTREAM.READBACK.SECURITY option is rendered insecure, which is not mentioned

in the main user guide [UG908], where the option itself is defined.

7.4 Case-Study: Encrypted Bitstream Leakage
Conventionally, bitstream encryption serves as a deterrent against reverse engineering, manip-

ulation, and unauthorized duplication. These bitstream protection schemes are predominantly

instituted to safeguard Intellectual Property, achieved through the encryption and validation of

configuration data, as discussed in Section 2.1.3.

However, in our considered scenario, we postulate the presence of a backdoor embedded by

the attacker within a 3rd party malicious IP core. Should an attacker successfully integrate their

compromised design into a product that employs bitstream encryption, they can consequently

expose the entire encrypted layout. In the context of cloud infrastructures, where a customer

might have ICAP access, the provider may choose to encrypt the shell within the design. Yet, this

encryption is rendered moot if an attacker gains access to the ICAP, leading to a full exposure of

the design even with bitstream encryption activated.

While we recognize that Xilinx addresses this attack vector in their documentation [79], our

intention is twofold: (1) to illustrate the execution of such an attack and (2) to delineate the scenarios

where this attack poses a significant threat. Ultimately, this attack underscores our contention that

designs incorporating ICAP present considerable trust challenges.

High-Level Idea. The intuition of this attack is based on the readout of the currently configured

(decrypted) bitstream configuration data frame by frame. Note that upon FPGA start, the encrypted

bitstream is decrypted and stored in plaintext in fabric. While all external ports can be secured

when bitstream encryption is used, the internal ports, such as ICAP, have unrestricted access to

the device.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:22 Albartus et al.

FPGA

ICAP

Controller

Encrypted Bitstream

standard readout
not possible

leak unencrypted frame

request frame

retrieve frame
JTAG

SelectMap
1

2

3

Fig. 13. Leakage of Unencrypted Bitstream via ICAP.

When using encrypted bitstreams, the design is decrypted on the fly when the FPGA is booted.

Once the configuration is done, the design is stored in plaintext in fabric. With access to the ICAP,

an attacker can readout the bitstream as they normally would:

1 Request frame(s) The readback command for one or more frames is issued, requesting the

currently configured frame content.

2 Retrieve frame(s). The ICAP primitive sends back the regarding frame content in an unen-

crypted manner to the controller.

3 Leakage. The controller is then able to leak the unencrypted frame to the outside.

For a proof-of-concept, we implemented a design that includes ICAP access and enabled bitstream

encryption for the entire design. Hence the design cannot be leaked by performing a readback on

the external configuration interfaces.

Design & Implementation. The attacker can readout the decrypted bitstream at runtime using

our ICAP prototyping framework, see Figure 6, as the readback is not prohibited at the trusted

ICAP port. The readback bitstream can then be converted back to a gate-level netlist (e.g., using

project X-Ray tools) then to reverse engineering the FPGA design. To improve the attack and hide

the malicious intent, the malicious designer can use STRAT as introduced in Section 5.

8 DISCUSSION
We now discuss dynamic reconfiguration, our work’s security implications, and potential mitigation

strategies for designs requiring partial dynamic reconfiguration.

8.1 Dynamic Reconfiguration
Even though our analysis primarily focuses on Xilinx ICAP, our attack primitives can be applied

through any port that accesses the internal configuration engine, see Figure 1.

Other Families and Vendors. For example, on Xilinx Zynq devices, the ICAP is inaccessible after

initialization and has to be enabled from the software first. However, these devices feature a

Processor Configuration Access Port (PCAP) configuration port, so our proposed attack primitives

can be entirely realized from software and do not require an additional malicious hardware design or

IP core. Future research should examine the applicability of dynamic reconfiguration-based attacks

for other FPGA vendors such as Intel Altera and Lattice. However, the bitstream configuration file

format is still proprietary and open-source documentation through reverse engineering is sparse to

non-existent, challenging in-depth analysis.
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Xilinx Security Considerations on ICAP. Xilinx acknowledges that ICAP is a powerful tool and

potentially dangerous [XAPP1098]. While official documentation claims that ICAP is a trusted

channel since only the user can instantiate it, ourwork highlights typical FPGA application scenarios

where system designers may not have full control over the final configuration. Thus establishing

trust in a design that uses ICAP is virtually impossible.

8.2 Security Implications
We demonstrated various severe security implications of ICAP in malicious hardware designs

ranging from surreptitiously leaking cryptographic keys in third-party IP cores, leakage of allegedly

encrypted bitstreams, and snooping on sensitive key material in multi-tenant FPGA cloud systems.

Insights on Attack Vectors. In this article, we investigate ICAP as an attack vector from the per-

spective of malicious designers and (multi-tenant) FPGA cloud systems. While malicious designers

represent a significant threat in their own right, it is imperative to understand all potential attack

vectors in detail. Such understanding serves a dual purpose: (1) it furnishes insights that can be

instrumental in the design of sound defenses and proactive countermeasures, and (2) it amplifies

awareness, ensuring that stakeholders are well-informed about emerging attack threats, thereby

fortifying the larger ecosystem against potential vulnerabilities.

On Detection of Dynamic Reconfiguration Trojans using ICAP. As noted before, no static analysis

technique can effectively detect our proposed hardware Trojans since we do not employ known

partial bitstreams but rather a custom configuration format that can be flexibly adapted. However,

dynamic analysis techniques are currently limited to both simulation and on-chip debugging:

Simulation of dynamic reconfiguration is challenging to support since the entire FPGA fabric,

including the configuration plane, has to be mimicked. On-chip debugging requires trust in the

execution environment, i.e., that the readout mechanismworks as intended and is not surreptitiously

manipulated. However, our readout detection and response engine demonstrated how such trust

could be significantly reduced.

On Security Documentation. Based on the dispersion and inconsistency of security-related docu-

mentation across multiple user guides, application notes, and design advisories, we recommend

enhancing and simplifying security documentation. This recommendation does not only hold for

Xilinx themselves. Therefore, we advocate for the research (security) community to actively engage

in such documentation approaches to enable users to fully understand the security features and

potential vulnerabilities of all FPGAs to dynamic partial reconfiguration.

8.3 Mitigations
A straightforward approach to mitigate threats associated with the ICAP interface is to completely

restrict its usage in user devices. However, this is not feasible for applications that rely on partial

reconfiguration. In such cases, we propose an ICAP firewall that restricts and monitors access to

the ICAP interface.

8.3.1 ICAP Firewall. Instead of granting users direct access to the ICAP interface, a parameterized

filtering system can be designed to mediate access. This ICAP firewall analyzes incoming commands

and only allows access to a predefined fabric region.

Note that Xilinx offers a Security Monitor IP, which can be used to monitor partial reconfiguration

[81]. However, exact functionality remains unclear, since most information seem to be available

after signing an Non-Disclosure Agreement (NDA).
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Design. To limit access, users are only granted access to an ICAP firewall primitive managed by

a shell. Access restrictions can be easily enforced by providing an address range based on FPGA

frame coordinates. If the user wants to access the ICAP, they must go through the ICAP firewall.

ICAP

ICAP Firewall

Controller

FPGA

data request

statuscontrol

User

sends request
to change
frame

Fig. 14. ICAP Firewall Overview.

The firewall could support frame-based read and write access. For example, if a user wants to

re-configure the frame at address 0x01234567, a potential command sequence could appear as

follows:

0𝑥00000001 read = 0𝑥0, write = 0𝑥1

0𝑥01234567 frame address

frame content frame content in case of write

The firewall would conduct checks on each incoming frame address. If the requested frame address

is in the allowed frame region of the tenant, the operation is executed. The ICAP firewall can than

craft the exact ICAP command sequence to execute the request.

Generally, dynamic configuration would become slower, as normally frames can be written much

quicker, since a special bitstream compression format is typically used by Xilinx.

Deployment. In a multi-tenant cloud environment, the cloud provider can employ such a firewall

to limit user requests to their assigned frame regions. Similarly, when integrating third-party

IP cores, designers can restrict access to the region where the IP core is placed. However, in a

cloud scenario, a malicious tenant may still be able to configure malicious circuitry within their

own region, e.g., drawing excessive power to harm the cloud provider. Identifying such requests

is challenging since it requires an in-depth analysis of the dynamic reconfiguration changes at

run-time, e.g., to detect that a reconfiguration change realizes a circuit that draws excessive power.

One idea would be to integrate the FPGA virus scanner as introduced by La et al. [42]. However,
this still presents a significant engineering effort and would probably exceed on-chip compute

capabilities. The most secure way to address the issue is to disallow ICAP access.

9 CONCLUSION
We presented a comprehensive security analysis of the Xilinx FPGA (re-)configuration process,

with a focus on the Internal Configuration Access Port (ICAP). Based on prior bitstream reverse
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engineering, we investigated novel and generic (attack) primitives that exploit dynamic reconfigu-

ration to spy on and manipulate FPGA hardware design circuitry at runtime. Our novel framework

STRAT simplifies development of such malicious circuitry, including features to even evade readout

detection efforts, as demonstrated in our AES key leakage case study. Moreover, we investigated

the risk in (multi-tenant) FPGA cloud environments.

In summary, we demonstrated that designs with ICAP are inherently hard to trust with current

analysis methods, thus necessitating a paradigm shift from conventional static analysis methods

to dynamic approaches, however, required dynamic approaches are currently not supported by

available tools.
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