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Abstract—The GrowingGreen System is an indoor greenhouse 

designed to grow fresh produce inside homes and apartments 

with little to no user experience needed. The fully automated 

enclosure will properly regulate all necessary growing conditions 

in-order to deliver high-quality and healthy vegetation for user 

consumption. The GrowingGreen System is built to be as energy 

efficient as possible and to only consume power when needed in 

order to cut down on environmental impact and lesson user 

power costs. By working in conjunction with the real world and 

only reacting when current environmental variables become 

harmful to plant growth the system will consume less energy and 

be able to deliver edible vegetation, even in regions without 

environment conducive to growing. 

I. INTRODUCTION 

HE GrowingGreen System is a fully automated, energy 

efficient, in-house grow site with focus on supplying the 

grower edible vegetation with minimal effort. Our goal is 

to increase the availability and desire of home growing by 

simplifying the process through the automation of manual 

processes, reducing power consumption, and use of a user 

console with alerts to keep growers engaged and on schedule. 

By growing in-house, users will decrease their environmental 

impact by reducing their carbon footprint and pesticidal use on 

plants.  

A. Significance 

Proximity to fresh produce is something taken for granted 

every day. Fresh produce is not a commodity that is readily 

available to everybody in the world, let alone everyone in the 

United States. This problem is known as the grocery gap 

across America and stems from low income and rural 

communities. Low income communities have 25% fewer 

supermarkets, which means a 25% decrease in fresh produce. 

Low income neighborhoods have half as many supermarkets 

as the wealthiest neighborhoods, and have four times as many 

smaller grocery stores, which often do not stock fresh produce. 

This is a big health issue as well, because access to a 

supermarket with fresh produce is strictly correlated to healthy 

diet habits. In a case study in Baltimore you can see how low-

income communities and food deserts correlate when viewing 

Figure 1 and Figure 2 below [11]. Both low income 

communities and food deserts are represented in dark red. 

In order to counter the fact that produce is not readily 

available everywhere, it is transported from out of region to 

satisfy the demand. On average a typical meal in America will 

travel over 1,500 miles from farm to plate [8]. This is a cause 

for concern due to many reasons including a multitude of 

environmental concerns. In fact, 10 Kilocalories of fossil fuels 

are consumed per 1 Kilocalorie of energy we consume from 

food due to the dependency long distance, large-scale 

transportation has on fossil fuels [8]. Attributing to this high 

carbon footprint is the demand for fresh produce in climates 

that do not permit local growing; this causes faster, less CO2 

efficient means of transport to be used to trek in produce from 

out of state or even from a different continent. This demand 

for fresh produce through transportation requires the produce 

to be picked unripe for transport and then chemically treated 

to ‘ripen’. The large cost of transportation and food waste due 

to transport can account for over 15% of produce costs and 

have an even greater toll on the environment [9]. The 

transportation of produce has been a solution to the fact that 

many places around the world do not have climates or space 

conducive to growing locally as well as lack of knowledge and 

time often prevents people from growing at home, which 

would alleviate some of the environmental impact of our 

current food system. 

Figure 1: Baltimore City Grocery Gaps [12] 

 
Figure 2: Baltimore City Household Income Map [12] 
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B. Context and Existing Products 

Our proposed problem is that there is currently a large tax 

on the environment due to our current food system. Effects of 

this problem have and continue to become increasingly worse 

as time passes. We aim to bring the growth of produce closer 

to the need as this will cut down immensely on the carbon 

footprint of transportation. There are currently few methods 

being used to solve the problem at a local level. This includes 

a recent product of the name FarmBot and a more 

conventional method of greenhouses. The similar problems to 

both of these methods is that they both require outdoor space 

and have large impacts from the outside environment. The 

conventional greenhouse also requires a large level of 

knowledge and time to be able to successfully produce 

vegetation. However, the greenhouse can manage growing in 

unconducive regions, unlike the FarmBot which cannot, but 

this comes with a very high energy cost. Our solution aims to 

allow growing in all regions without the high energy cost or 

knowledge needed to grow. 

C. Societal Impacts 

Our proposed problem is that there is currently a large tax 

on the environment due to our current food system. Effects of 

this problem have and continue to become increasingly worse 

as time passes. We aim to bring the growth of produce closer 

to the need as this will cut down immensely on the carbon 

footprint of transportation. There are currently few methods 

being used to solve the problem at a local level. This includes 

a recent product of the name FarmBot, which automates the 

growing process in an outdoor flower bed, and a more 

conventional method of greenhouses [14]. The similar 

problems to both of these methods is that they both require 

outdoor space and have large impacts from the outside 

environment. The conventional greenhouse also requires a 

large level of knowledge and time to be able to successfully 

produce vegetation. However, the greenhouse can manage 

growing in unconducive regions, unlike the FarmBot which 

cannot, but this comes with a very high energy cost. Our 

solution aims to allow growing in all regions without the high 

energy cost or knowledge needed to grow. 

D. Requirements Analysis and Specifications 

The requirements of our product can be seen detailed in 

Table 1 below.  The GG System will be fully automated 

between planting and harvesting of produce.  This involves 

controlling the output luminosity levels, maintaining the inter-

related values of humidity and temperature, and providing 

proper irrigation everyday.  With this automation we expect to 

harvest ~20 oz of microgreens every 2 weeks and successfully 

grow year round.  The final project will consume less than 200 

W on average through automation of systems and will be 

smaller than the framing of a typical window, the interior 

dimensions will be 2’x1’x’3’ and the exterior will be 

27”x15”x39”.  We will also collect data from all sensors and 

output controls and develop trends with the data for user 

analysis.  Both our final product and our prototype accomplish 

these goals in some fashion. The function of how each goal is 

met will be laid out in the rest of this paper. 
 

 

Table 1: Requirements and Specifications 

 

II. DESIGN 

 
Figure 3: MDR Block Diagram 

A. Overview 

Our solution is to build an automated indoor greenhouse for 

microgreens.  The purpose of choosing microgreens is the 

speed of growth allowing for multiple grow cycles in a short 

time and will provide the most benefit during testing.  The 

environment of the greenhouse is maintained using a 

microcontroller wired with sensors and control of various 

elements able to affect the conditioned space in a quantifiable 

way.  Enacting output controls will allow the device to reduce 

the power needed to grow vegetables, providing a financial 

benefit as well as being more sustainable.  Some discarded 

options were incorporating a soil moisture sensor, a valve for 

irrigation, dampers to control air flow, and watering via 

hydroponics, refer to Appendix A for further information. 

As shown in our Block Diagram above, the control board is 

powered via a 5.2 V DC USB power supply and provides 3.3 

V DC to power the light and float sensors, while also 

providing 5 V DC to the temperature/humidity sensor.  These 

sensors input data into the control board to be analyzed by the 

control code.  This code will make calls to a directory to verify 

which conditions are or are not being met.  Output commands 

will then be sent to the environmental 

subsystems.  Environmental consist of lighting, water pump, 

heating cable, and fans.  The lights are powered off a 4.5 V 

DC PSU while the pump, heater, and fans are powered using 

the supply from a powered breadboard set to 12 V DC.  As 
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these controls adjust the environment of the shelter new data 

will be sent to the control board to continue maintaining the 

desired environment.  The display module allows the user to 

select the type of plant being grown to provide the correct 

parameters needed to grow the plant, while also collecting 

data from the control board and outputting it into an accessible 

format for analysis. 

B. Irrigation 

Our irrigation system is a tray-in-tray bottom-watering 

system, in which the microgreen’s root system absorbs water 

through the holes at the bottom of the tray they are planted in 

[2]. In order to implement this design, we used a float sensor 

[15], a 12V submersible water pump [16], and roughly 3 feet 

of food grade vinyl tubing [17]. We have a reservoir that 

contains our pump and float sensor, both of which are 

controlled by the Raspberry Pi [18]. The float sensor is wired 

to a GPIO pin on the Pi and ground, while the pump is 

powered by the 12 V DC supply of the breadboard, and 

controlled with the same switching circuit as the lights, 

heating cable, and fans, a S9018 BJT with the base connected 

to the control board.  The Pi controls when the pump is 

triggered to begin a watering cycle and turns the pump off 

when the float sensor is triggered as “empty.” The pump is 

programmed by the Raspberry Pi to turn on for 3 seconds, 

which we calculated was equal to roughly a half cup of water 

which is enough to keep the soil moist until the next watering 

cycle the following day. Our reservoir currently holds enough 

water to complete roughly eight watering cycles, which allows 

the system to operate completely independent of its user for 

more than half of the microgreen’s grow cycle before the user 

would have to refill it. For our final implementation of the 

irrigation system, we plan on having a reservoir that can hold 

enough water to complete at minimum one whole watering 

cycle. Our pump sends the water from the reservoir through 

food grade vinyl tubing to our prototype environment, where 

the tubing is angled into the bottom tray below the edge of the 

growing tray, to ensure that no water splashes any soil onto 

the plants.   

Through trial and error, we were able to verify that our 

irrigation system design works by checking that no water was 

left in the bottom tray by the end of daylight hours and that the 

soil was still moist hours after that. This test tells us that we 

were not overwatering and that the plants were getting plenty 

of water. 

C. Lighting 

Lighting is controlled with a 15-in LED strip outputting in 

the blue and red spectrum.  The bar is capable of cycling 

between red, blue, and red-blue lighting by biasing a switch 

referenced to ground [10].  It is currently set to ground, 

leaving the output in the red-blue configuration for the time 

being.  In the future work may be done to allow for spectrum 

control as well as controlling the lumens output.  The lights 

are controlled using a S2018 BJT with the base being 

connected to an output pin of the control board [5].  When 

insolation is too low, a signal will be sent to bias the BJT into 

saturation mode, in effect closing the circuit powering the 

lights at 4.5 V DC.  

D. Air Flow 

Our air flow system is designed to regulate temperature and 

humidity by cycling the air out of the enclosure when the 

environment is too warm and/or humid which maintains the 

health of the microgreens. We are currently using one fan for 

air intake, and one for air outtake, both of which are 12V 3” 

Square Axial Fans [19]. The fans are wired to GPIO pins and 

powered by the 12 V DC supply of the breadboard and 

controlled with the same switching circuit as the lights, pump, 

and heating cable, a S9018 BJT with the base connected to the 

control board. The Pi controls these fans in a feedback loop 

which includes the temperature/humidity sensor and the 

heating cables. When our heat threshold of 70°F is exceeded, 

the outtake fan is triggered to turn on, while the intake fan acts 

as a louvre to allow air into the environment without 

disturbing the microgreens [2].  

As detailed in Appendix E, we tested the function of these 

fans by observing our data logs to ensure that if the 

temperature threshold was exceeded, the air flow system 

would be efficient in circulating air to bring the environment 

back to the desired threshold. Although this was a rare 

occurrence due to lower than average ambient room 

temperatures in these winter months, we tested the air flow 

system’s function by reducing the temperature threshold and 

observing the outputs of the temperature sensor that followed. 

This verified that our design was functional because we first 

observed that the air flow system was turned on when the 

temperature threshold was exceeded. The fans were then 

triggered on by the Pi and we observed the temperature 

sensor’s readings fall back to the desired threshold before the 

Pi triggered the fans to turn off. 

E. Heating 

The temperature of the enclosure is maintained using a 

freeze stop insulated heating cable [4]. The cable is powered 

off the 12 V DC supply of the breadboard and controlled with 

the same switching circuit as the lights, pump, and fans, a 

S9018 BJT with the base connected to the control board [5]. 

The cable is able to output at 5 W/ft, it is approximately 16-in 

currently and outputting at 6.25 W. The cable has been able to 

maintain a temperature of 65 F during the prototype phase. 

F. Code 

 
Figure 4: Code hierarchy as commanded by the Raspberry Pi 
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Currently we have a python driven code that is responsible 

for automating outputs to regulate the enclosed environment to 

specific setpoints. It is important to know that any code 

regarding sensors will react every ten minutes, this will allow 

for a lessened power consumption as well as a self-correcting 

environment. The program package runs daily with different 

python codes being called at various times throughout the day. 

The simplest command code is used to give the plant a 

specific amount of water through turning on the pump for an 

allotted amount of time which will be equated to a specific 

volume of water. The next code is responsible for controlling 

the temperature and humidity throughout the entire day. This 

code takes in readings from temperature and humidity sensors 

and compares the values read in against an ideal for each. If 

the threshold ranges are not met, then the code will call 

outputs to alert the state again until it can work its way back to 

the threshold range. A similar idea is used for the light control 

code, which runs starting at a.m. every day for a set number of 

hours (default 10 hours). This code will take in light readings 

from both the front and back of the enclosure and calculate a 

general light reading. This light reading can then be used to 

compare against a threshold and set the lights on or off 

depending on whether or not the plants needs more light 

delivered to them. These three codes work together along with 

data log calls, to provide control commands to output 

components with the goal of influencing the environment to 

reach the ideals that are currently stored in a plant directory 

csv file. 

III. PROJECT MANAGEMENT 

Figure 5: MDR Deliverables 

 

As outlined above in Figure 5, we made significant progress 

in our design and were able to complete and automate a 

functional prototype, and therefore successfully completed our 

MDR deliverables.  As a team we were able to meet our goals, 

which will only help us in our transition to a final product with 

PCB control. 

We were able to stick to our goals which is fully outlined 

and documented in our MDR Gannt chart which is shown 

below in Figure 6. In order to stick to our timeline and 

produce our final product we will stick to the schedule 

outlined in our future plans Gannt chart shown below in 

Figure 7. 

 

Figure 7: Gannt Chart for Spring Semester 
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IV. CONCLUSION 

We are excited to have a fully operational and functional 

MDR prototype at this time in our design process. We worked 

together as a functioning team to bring our design to life. We 

all took specific leads on the design process and worked 

together integrating the systems together. 

Our MDR prototype consists of a single tiered greenhouse 

with functioning automated control through a continuous 

feedback. The entire grow and life cycle of our plant is 

automated, so the user does not need to intervene on any 

process. We also integrated logging and plotting features to 

ensure our greenhouse is correctly automating our outputs. 

We plan to move our greenhouse to a 2-tiered greenhouse 

we assemble ourselves. We plan to integrate insulated plastic 

sides and create the greenhouse to elegantly house our PCB, 

sensors, and outputs. We believe the integration to a PCB will 

be a difficult step for us because we are currently fully 

operational from a development board with built in 

programming libraries to increase functionality. We will need 

to develop our control code in C, which is a transfer from 

python, and sync our control code onto a microprocessor. 

We are currently in the development stage of our 

application and are researching the idea of running our system 

through the cloud for data storage and to reduce issues when 

we develop system updates. If we move our storage and 

updates to the cloud, our application will also be able to access 

system data from anywhere, rather than from in range of 

Bluetooth, which was our first proposed design. This design 

process and research should conclude before February so we 

can integrate this design quickly. 

Lastly, we plan to integrate an LED dimming feature so we 

can accurately produce the correct sunlight, whether natural or 

not, to both tiers of our system. This will include a specific 

power regulation system that we will need to build so all of 

our sensors and outputs are receiving the correct power 

needed. We are 80% done with this system and are in our final 

testing phase. 

Next semester we expect to face many challenges, but we 

believe that after what we learned this semester, we will be 

able to handle them as a team and produce a robust and 

interesting final design. 

APPENDIX 

A. Design Alternatives 

Much of the discarded technology was related to irrigation. 

The two main factors that lead us to our irrigation system 

design were the overall health of the plant, and the ease of 

automation of the system. Specifically, for microgreens, 

irrigation can be very difficult, as one has to make sure that 

the soil stays damp enough between watering cycles without 

overwatering, while also keeping the plant and its leaves clean 

to ensure its health [3]. This makes conventional top-watering 

methods much more difficult to implement as one would have 

to be certain that no soil is contaminating the microgreens at 

any point in the growing cycle. Although this may be realistic 

for someone to do manually, it was not reasonable for us to 

implement as an automated irrigation system. Two other 

irrigation designs were originally looked at, hydroponics and 

gravity fed watering. Hydroponics was discarded to increase 

accessibility for the customer. Gravity fed originally 

incorporated the use of a valve to control the water flow; this 

would require the water reservoir to be above the enclosure, 

making it more difficult to change out and also increasing the 

chance a water leak could cause damage to electronic 

equipment located below the reservoir.  The soil moisture 

sensor was to be used in determining when to water the plant, 

however scheduled watering provides adequate water supply 

to plants. We originally were planning on using a louvre for 

air intake and fan for air outtake to design our air flow system. 

However, we decided to discard the louvre because the fan 

used for air outtake was not powerful enough to open the 

louvre on the opposite side of the enclosure. We ended up 

deciding to use an intake fan to replace the louvre, which 

allows for the amount of air intake we originally desired. 

B. Testing Methods 

In order to test our system as a whole, we first needed to 

test each part separately. We first had to test that our sensors 

were collecting adequate and correct data. We tested out 

humidity/temp sensor by placing it in a container with a 

working thermometer and humidity reader. We then collected 

values and made sure our sensor was reporting with +/- 5%. 

We then tested our LDR’s (Light Dependent Resistor) by 

taking readings of resistance across the LDR in low, medium, 

and high light conditions. We were then able to correlate 

resistance values with light conditions which we use in the 

control of our program. We lastly tested our float sensor by 

placing it in a full tub of water, and empty one and found at 

exactly what amount of water the float sensor will trigger an 

empty container. We then needed to test our output controls 

starting with the fans. To test these, we first plugged them into 

12V voltage buses to make sure they have adequate airflow. 

We then tested them connected to a switch controlled by the 

Raspberry Pi. We would trigger an on signal from the 

Raspberry Pi, and then check to see if the fans were on or off. 

We then did the same experiment for the LED. We connected 

the LED to a 4.5V bus and made sure it was functioning. Then 

we added a switch to the Raspberry Pi and sent an on/off 

signal to the LED to make sure it was turning off through a 

condition set on the Raspberry Pi. We followed the same steps 

for the water pump and the heating cable, both connected to 

12V buses and a switch. Once we knew that our sensors were 

collecting proper data and we could control our outputs with 

the Raspberry Pi, we needed to test everything together in our 

main logic flow. In order to do this, we needed correct logging 

functionality because we could check our system working 

with the logs. Below are 2 examples of our logging working, 

which in turn shows our system working as a whole. 

Figure 8: Threshold Testing Results 
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Above, Figure 8 shows two different scenarios and the 

outputs working correctly in comparison to the threshold 

values set. We would also make sure that the devices are 

actually on and that the logging is not reporting erroneous 

data. Our testing methods were simple when testing each unit 

and made simple through our logging feature. We are 

constantly testing for our greenhouse is always on, and we can 

make sure our greenhouse is functioning through our logs. 

C. Team Organization 

Our team has shown great chemistry and comradery when 

working together to complete this project.  Our project 

manager is Austin, and everyone has taken leads on separate 

parts of the project, which are listed below. Though we have 

separate leads, we have all worked together to complete tasks. 

Jason and Austin worked together to send a signal from the 

raspberry pi to switch voltage buses that Matt created. Austin 

must work together with Jason to implement logging inside 

the main control code that Jason wrote. Our prototype is 

installed at Matt’s home in order to obtain sufficient sunlight, 

and Jason has needed to implement new design features 

remotely which means Jason and Matt had to work closely 

together to make the proper changes on the prototype itself. 

Nate did most of the plant research and product research, so he 

worked together with everyone to make sure the right parts 

and conditions were set. We have a communication server set 

up in order to work together efficiently, even when we are not 

together in person. Communication can break down, but the 

way we are constantly able to come together in person to solve 

issues is in person. 
 

Table 2: Team Member Roles 

 

D. Beyond the Classroom 

A lot of information had to be acquired in relation to 

growing plants.  For this project to be successful we had to 

learn about watering for example. Learning that temperature is 

the most critical parameter to control in microgreen growth 

was very important to create the proper environment in the 

enclosure. 

E. Data 

In order to show that our design is working, we needed to 

implement a way to track temperature, humidity, and 

resistance across our LDR’s. We also needed to track the 

states of our outputs, i.e. fan, light, pump, in order to correlate 

our output states to our greenhouse conditions. We chose to 

implement a logging feature in our code that stores logs on our 

Raspberry Pi. Every 10 minutes our logs are updated with the 

current conditions of the greenhouse and the states of our 

outputs are logged as well. The logs are stored on our system 

and accessed when we want to display and plot our data or 

check on system functionality. 

We use our logs to create plots on our own computers in 

order to represent our data in a visual format. Figure 9 shows 

our plots after 3.5 days and shows really strong data in regard 

to the conditions we set. The temperature plot is significant for 

we set a 60-degree Fahrenheit condition, and we were able to 

maintain that condition for almost 4 days. Our light readings 

show really strong data as well, for when the reading is at 10k 

ohms, it is nighttime, and we are able to track that through 

data. When the reading is below 1k ohms, it is day time and 

we do not need to trigger any of our own LED’s, so we can 

determine that by placing the box on a window sill, the sun 

can produce enough light to grow our plants. 

Figure 9: Sensor Data Over Time 

 

We decided to set our temperature control to 70 degrees 

after 4 days to see if our heating system will be strong enough 

to heat the greenhouse sufficiently. In Figure 10, you can see  

the jump in temperature, but we were only able to reach an 

average of 67 degrees. This proves that we can change the 

conditions in the box with our variable controls, but we will 

need to add in more heating unit to provide sufficient heat. We 

are impressed with this result because it is now wintertime and 

we are using a container with negligible insulation. Another 

key data trend to notice is the increase in humidity after we set 

the new temperature condition. Because the 70-degree 

conditional was never met, our system was in constant heating 

mode, which is heaters on, and fans off. This should 

theoretically increase humidity, which is shown in Figure 11. 

This is a strong data trend line because we believe humidity 

will be the hardest variable to control and we were able to 

control and measure a change. 
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Figure 10: Temperature Sensor Data Over Time 

 
Figure 11: Humidity Sensor Data Over Time 

 

The last strong set of data we collected is Figure 12, our 

light resistance over time. This plot shows light resistance 

over 12 days. When the plot is at 10k resistance it is nighttime, 

and when it is low, it is daytime and transitional time. During 

this time, our light system got stuck in an always on state, 

which is represented by the middle of the plot, where when it 

is nighttime, the ohm readings stayed around 1k. This 

conditional mistake was actually able to show us that our 

single LED is able to produce around 1k of light resistance, 

which is our ideal value for growing microgreens. During this 

time our plants got too much sunlight, but the data is able to 

prove to us that we can simulate enough sunlight to grow our 

plants. 

Figure 12: Light Received at Window Over Time 
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