
SDP20 – TEAM 25

1

Abstract—The GrowingGreen System is an indoor greenhouse

designed to grow fresh produce inside homes and apartments

with little to no user experience needed. The fully automated

enclosure will properly regulate all necessary growing conditions

in-order to deliver high-quality and healthy vegetation for user

consumption. The GrowingGreen System is built to be as energy

efficient as possible and to only consume power when needed in

order to cut down on environmental impact and lesson user

power costs. By working in conjunction with the real world and

only reacting when current environmental variables become

harmful to plant growth the system will consume less energy and

be able to deliver edible vegetation, even in regions without

environment conducive to growing.

I. INTRODUCTION

HE GrowingGreen System is a fully automated, energy

efficient, in-house grow site with focus on supplying the

grower edible vegetation with minimal effort. Our goal is

to increase the availability and desire of home growing by

simplifying the process through the automation of manual

processes, reducing power consumption, and use of a user

console with alerts to keep growers engaged and on schedule.

By growing in-house, users will decrease their environmental

impact by reducing their carbon footprint and pesticidal use on

plants.

A. Significance

Proximity to fresh produce is something taken for granted

every day. Fresh produce is not a commodity that is readily

available to everybody in the world, let alone everyone in the

United States. This problem is known as the grocery gap

across America and stems from low income and rural

communities. Low income communities have 25% fewer

supermarkets, which means a 25% decrease in fresh produce.

Low income neighborhoods have half as many supermarkets

as the wealthiest neighborhoods, and have four times as many

smaller grocery stores, which often do not stock fresh produce.

This is a big health issue as well, because access to a

supermarket with fresh produce is strictly correlated to healthy

diet habits. In a case study in Baltimore you can see how low-

income communities and food deserts correlate when viewing

Figure 1 and Figure 2 below [11]. Both low income

communities and food deserts are represented in dark red.

In order to counter the fact that produce is not readily

available everywhere, it is transported from out of region to

satisfy the demand. On average a typical meal in America will

travel over 1,500 miles from farm to plate [8]. This is a cause

for concern due to many reasons including a multitude of

environmental concerns. In fact, 10 Kilocalories of fossil fuels

are consumed per 1 Kilocalorie of energy we consume from

food due to the dependency long distance, large-scale

transportation has on fossil fuels [8]. Attributing to this high

carbon footprint is the demand for fresh produce in climates

that do not permit local growing; this causes faster, less CO2

efficient means of transport to be used to trek in produce from

out of state or even from a different continent. This demand

for fresh produce through transportation requires the produce

to be picked unripe for transport and then chemically treated

to ‘ripen’. The large cost of transportation and food waste due

to transport can account for over 15% of produce costs and

have an even greater toll on the environment [9]. The

transportation of produce has been a solution to the fact that

many places around the world do not have climates or space

conducive to growing locally as well as lack of knowledge and

time often prevents people from growing at home, which

would alleviate some of the environmental impact of our

current food system.

Figure 1: Baltimore City Grocery Gaps [12]

Figure 2: Baltimore City Household Income Map [12]

Nate Lemons, ECE, Jason Trainor, CSE, Matthew Sargeant, EE, and Austin Hiller, CSE

GrowingGreen

T

SDP20 – TEAM 25

2

B. Context and Existing Products

Our proposed problem is that there is currently a large tax

on the environment due to our current food system. Effects of

this problem have and continue to become increasingly worse

as time passes. We aim to bring the growth of produce closer

to the need as this will cut down immensely on the carbon

footprint of transportation. There are currently few methods

being used to solve the problem at a local level. This includes

a recent product of the name FarmBot and a more

conventional method of greenhouses. The similar problems to

both of these methods is that they both require outdoor space

and have large impacts from the outside environment. The

conventional greenhouse also requires a large level of

knowledge and time to be able to successfully produce

vegetation. However, the greenhouse can manage growing in

unconducive regions, unlike the FarmBot which cannot, but

this comes with a very high energy cost. Our solution aims to

allow growing in all regions without the high energy cost or

knowledge needed to grow.

C. Societal Impacts

Our proposed problem is that there is currently a large tax

on the environment due to our current food system. Effects of

this problem have and continue to become increasingly worse

as time passes. We aim to bring the growth of produce closer

to the need as this will cut down immensely on the carbon

footprint of transportation. There are currently few methods

being used to solve the problem at a local level. This includes

a recent product of the name FarmBot, which automates the

growing process in an outdoor flower bed, and a more

conventional method of greenhouses [14]. The similar

problems to both of these methods is that they both require

outdoor space and have large impacts from the outside

environment. The conventional greenhouse also requires a

large level of knowledge and time to be able to successfully

produce vegetation. However, the greenhouse can manage

growing in unconducive regions, unlike the FarmBot which

cannot, but this comes with a very high energy cost. Our

solution aims to allow growing in all regions without the high

energy cost or knowledge needed to grow.

D. Requirements Analysis and Specifications

The requirements of our product can be seen detailed in

Table 1 below. The GG System will be fully automated

between planting and harvesting of produce. This involves

controlling the output luminosity levels, maintaining the inter-

related values of humidity and temperature, and providing

proper irrigation everyday. With this automation we expect to

harvest ~20 oz of microgreens every 2 weeks and successfully

grow year round. The final project will consume less than 200

W on average through automation of systems and will be

smaller than the framing of a typical window, the interior

dimensions will be 2’x1’x’3’ and the exterior will be

27”x15”x39”. We will also collect data from all sensors and

output controls and develop trends with the data for user

analysis. Both our final product and our prototype accomplish

these goals in some fashion. The function of how each goal is

met will be laid out in the rest of this paper.

Table 1: Requirements and Specifications

II. DESIGN

Figure 3: MDR Block Diagram

A. Overview

Our solution is to build an automated indoor greenhouse for

microgreens. The purpose of choosing microgreens is the

speed of growth allowing for multiple grow cycles in a short

time and will provide the most benefit during testing. The

environment of the greenhouse is maintained using a

microcontroller wired with sensors and control of various

elements able to affect the conditioned space in a quantifiable

way. Enacting output controls will allow the device to reduce

the power needed to grow vegetables, providing a financial

benefit as well as being more sustainable. Some discarded

options were incorporating a soil moisture sensor, a valve for

irrigation, dampers to control air flow, and watering via

hydroponics, refer to Appendix A for further information.

As shown in our Block Diagram above, the control board is

powered via a 5.2 V DC USB power supply and provides 3.3

V DC to power the light and float sensors, while also

providing 5 V DC to the temperature/humidity sensor. These

sensors input data into the control board to be analyzed by the

control code. This code will make calls to a directory to verify

which conditions are or are not being met. Output commands

will then be sent to the environmental

subsystems. Environmental consist of lighting, water pump,

heating cable, and fans. The lights are powered off a 4.5 V

DC PSU while the pump, heater, and fans are powered using

the supply from a powered breadboard set to 12 V DC. As

SDP20 – TEAM 25

3

these controls adjust the environment of the shelter new data

will be sent to the control board to continue maintaining the

desired environment. The display module allows the user to

select the type of plant being grown to provide the correct

parameters needed to grow the plant, while also collecting

data from the control board and outputting it into an accessible

format for analysis.

B. Irrigation

Our irrigation system is a tray-in-tray bottom-watering

system, in which the microgreen’s root system absorbs water

through the holes at the bottom of the tray they are planted in

[2]. In order to implement this design, we used a float sensor

[15], a 12V submersible water pump [16], and roughly 3 feet

of food grade vinyl tubing [17]. We have a reservoir that

contains our pump and float sensor, both of which are

controlled by the Raspberry Pi [18]. The float sensor is wired

to a GPIO pin on the Pi and ground, while the pump is

powered by the 12 V DC supply of the breadboard, and

controlled with the same switching circuit as the lights,

heating cable, and fans, a S9018 BJT with the base connected

to the control board. The Pi controls when the pump is

triggered to begin a watering cycle and turns the pump off

when the float sensor is triggered as “empty.” The pump is

programmed by the Raspberry Pi to turn on for 3 seconds,

which we calculated was equal to roughly a half cup of water

which is enough to keep the soil moist until the next watering

cycle the following day. Our reservoir currently holds enough

water to complete roughly eight watering cycles, which allows

the system to operate completely independent of its user for

more than half of the microgreen’s grow cycle before the user

would have to refill it. For our final implementation of the

irrigation system, we plan on having a reservoir that can hold

enough water to complete at minimum one whole watering

cycle. Our pump sends the water from the reservoir through

food grade vinyl tubing to our prototype environment, where

the tubing is angled into the bottom tray below the edge of the

growing tray, to ensure that no water splashes any soil onto

the plants.

Through trial and error, we were able to verify that our

irrigation system design works by checking that no water was

left in the bottom tray by the end of daylight hours and that the

soil was still moist hours after that. This test tells us that we

were not overwatering and that the plants were getting plenty

of water.

C. Lighting

Lighting is controlled with a 15-in LED strip outputting in

the blue and red spectrum. The bar is capable of cycling

between red, blue, and red-blue lighting by biasing a switch

referenced to ground [10]. It is currently set to ground,

leaving the output in the red-blue configuration for the time

being. In the future work may be done to allow for spectrum

control as well as controlling the lumens output. The lights

are controlled using a S2018 BJT with the base being

connected to an output pin of the control board [5]. When

insolation is too low, a signal will be sent to bias the BJT into

saturation mode, in effect closing the circuit powering the

lights at 4.5 V DC.

D. Air Flow

Our air flow system is designed to regulate temperature and

humidity by cycling the air out of the enclosure when the

environment is too warm and/or humid which maintains the

health of the microgreens. We are currently using one fan for

air intake, and one for air outtake, both of which are 12V 3”

Square Axial Fans [19]. The fans are wired to GPIO pins and

powered by the 12 V DC supply of the breadboard and

controlled with the same switching circuit as the lights, pump,

and heating cable, a S9018 BJT with the base connected to the

control board. The Pi controls these fans in a feedback loop

which includes the temperature/humidity sensor and the

heating cables. When our heat threshold of 70°F is exceeded,

the outtake fan is triggered to turn on, while the intake fan acts

as a louvre to allow air into the environment without

disturbing the microgreens [2].

As detailed in Appendix E, we tested the function of these

fans by observing our data logs to ensure that if the

temperature threshold was exceeded, the air flow system

would be efficient in circulating air to bring the environment

back to the desired threshold. Although this was a rare

occurrence due to lower than average ambient room

temperatures in these winter months, we tested the air flow

system’s function by reducing the temperature threshold and

observing the outputs of the temperature sensor that followed.

This verified that our design was functional because we first

observed that the air flow system was turned on when the

temperature threshold was exceeded. The fans were then

triggered on by the Pi and we observed the temperature

sensor’s readings fall back to the desired threshold before the

Pi triggered the fans to turn off.

E. Heating

The temperature of the enclosure is maintained using a

freeze stop insulated heating cable [4]. The cable is powered

off the 12 V DC supply of the breadboard and controlled with

the same switching circuit as the lights, pump, and fans, a

S9018 BJT with the base connected to the control board [5].

The cable is able to output at 5 W/ft, it is approximately 16-in

currently and outputting at 6.25 W. The cable has been able to

maintain a temperature of 65 F during the prototype phase.

F. Code

Figure 4: Code hierarchy as commanded by the Raspberry Pi

SDP20 – TEAM 25

4

Currently we have a python driven code that is responsible

for automating outputs to regulate the enclosed environment to

specific setpoints. It is important to know that any code

regarding sensors will react every ten minutes, this will allow

for a lessened power consumption as well as a self-correcting

environment. The program package runs daily with different

python codes being called at various times throughout the day.

The simplest command code is used to give the plant a

specific amount of water through turning on the pump for an

allotted amount of time which will be equated to a specific

volume of water. The next code is responsible for controlling

the temperature and humidity throughout the entire day. This

code takes in readings from temperature and humidity sensors

and compares the values read in against an ideal for each. If

the threshold ranges are not met, then the code will call

outputs to alert the state again until it can work its way back to

the threshold range. A similar idea is used for the light control

code, which runs starting at a.m. every day for a set number of

hours (default 10 hours). This code will take in light readings

from both the front and back of the enclosure and calculate a

general light reading. This light reading can then be used to

compare against a threshold and set the lights on or off

depending on whether or not the plants needs more light

delivered to them. These three codes work together along with

data log calls, to provide control commands to output

components with the goal of influencing the environment to

reach the ideals that are currently stored in a plant directory

csv file.

III. PROJECT MANAGEMENT

Figure 5: MDR Deliverables

As outlined above in Figure 5, we made significant progress

in our design and were able to complete and automate a

functional prototype, and therefore successfully completed our

MDR deliverables. As a team we were able to meet our goals,

which will only help us in our transition to a final product with

PCB control.

We were able to stick to our goals which is fully outlined

and documented in our MDR Gannt chart which is shown

below in Figure 6. In order to stick to our timeline and

produce our final product we will stick to the schedule

outlined in our future plans Gannt chart shown below in

Figure 7.

Figure 7: Gannt Chart for Spring Semester

SDP20 – TEAM 25

5

IV. CONCLUSION

We are excited to have a fully operational and functional

MDR prototype at this time in our design process. We worked

together as a functioning team to bring our design to life. We

all took specific leads on the design process and worked

together integrating the systems together.

Our MDR prototype consists of a single tiered greenhouse

with functioning automated control through a continuous

feedback. The entire grow and life cycle of our plant is

automated, so the user does not need to intervene on any

process. We also integrated logging and plotting features to

ensure our greenhouse is correctly automating our outputs.

We plan to move our greenhouse to a 2-tiered greenhouse

we assemble ourselves. We plan to integrate insulated plastic

sides and create the greenhouse to elegantly house our PCB,

sensors, and outputs. We believe the integration to a PCB will

be a difficult step for us because we are currently fully

operational from a development board with built in

programming libraries to increase functionality. We will need

to develop our control code in C, which is a transfer from

python, and sync our control code onto a microprocessor.

We are currently in the development stage of our

application and are researching the idea of running our system

through the cloud for data storage and to reduce issues when

we develop system updates. If we move our storage and

updates to the cloud, our application will also be able to access

system data from anywhere, rather than from in range of

Bluetooth, which was our first proposed design. This design

process and research should conclude before February so we

can integrate this design quickly.

Lastly, we plan to integrate an LED dimming feature so we

can accurately produce the correct sunlight, whether natural or

not, to both tiers of our system. This will include a specific

power regulation system that we will need to build so all of

our sensors and outputs are receiving the correct power

needed. We are 80% done with this system and are in our final

testing phase.

Next semester we expect to face many challenges, but we

believe that after what we learned this semester, we will be

able to handle them as a team and produce a robust and

interesting final design.

APPENDIX

A. Design Alternatives

Much of the discarded technology was related to irrigation.

The two main factors that lead us to our irrigation system

design were the overall health of the plant, and the ease of

automation of the system. Specifically, for microgreens,

irrigation can be very difficult, as one has to make sure that

the soil stays damp enough between watering cycles without

overwatering, while also keeping the plant and its leaves clean

to ensure its health [3]. This makes conventional top-watering

methods much more difficult to implement as one would have

to be certain that no soil is contaminating the microgreens at

any point in the growing cycle. Although this may be realistic

for someone to do manually, it was not reasonable for us to

implement as an automated irrigation system. Two other

irrigation designs were originally looked at, hydroponics and

gravity fed watering. Hydroponics was discarded to increase

accessibility for the customer. Gravity fed originally

incorporated the use of a valve to control the water flow; this

would require the water reservoir to be above the enclosure,

making it more difficult to change out and also increasing the

chance a water leak could cause damage to electronic

equipment located below the reservoir. The soil moisture

sensor was to be used in determining when to water the plant,

however scheduled watering provides adequate water supply

to plants. We originally were planning on using a louvre for

air intake and fan for air outtake to design our air flow system.

However, we decided to discard the louvre because the fan

used for air outtake was not powerful enough to open the

louvre on the opposite side of the enclosure. We ended up

deciding to use an intake fan to replace the louvre, which

allows for the amount of air intake we originally desired.

B. Testing Methods

In order to test our system as a whole, we first needed to

test each part separately. We first had to test that our sensors

were collecting adequate and correct data. We tested out

humidity/temp sensor by placing it in a container with a

working thermometer and humidity reader. We then collected

values and made sure our sensor was reporting with +/- 5%.

We then tested our LDR’s (Light Dependent Resistor) by

taking readings of resistance across the LDR in low, medium,

and high light conditions. We were then able to correlate

resistance values with light conditions which we use in the

control of our program. We lastly tested our float sensor by

placing it in a full tub of water, and empty one and found at

exactly what amount of water the float sensor will trigger an

empty container. We then needed to test our output controls

starting with the fans. To test these, we first plugged them into

12V voltage buses to make sure they have adequate airflow.

We then tested them connected to a switch controlled by the

Raspberry Pi. We would trigger an on signal from the

Raspberry Pi, and then check to see if the fans were on or off.

We then did the same experiment for the LED. We connected

the LED to a 4.5V bus and made sure it was functioning. Then

we added a switch to the Raspberry Pi and sent an on/off

signal to the LED to make sure it was turning off through a

condition set on the Raspberry Pi. We followed the same steps

for the water pump and the heating cable, both connected to

12V buses and a switch. Once we knew that our sensors were

collecting proper data and we could control our outputs with

the Raspberry Pi, we needed to test everything together in our

main logic flow. In order to do this, we needed correct logging

functionality because we could check our system working

with the logs. Below are 2 examples of our logging working,

which in turn shows our system working as a whole.

Figure 8: Threshold Testing Results

SDP20 – TEAM 25

6

Above, Figure 8 shows two different scenarios and the

outputs working correctly in comparison to the threshold

values set. We would also make sure that the devices are

actually on and that the logging is not reporting erroneous

data. Our testing methods were simple when testing each unit

and made simple through our logging feature. We are

constantly testing for our greenhouse is always on, and we can

make sure our greenhouse is functioning through our logs.

C. Team Organization

Our team has shown great chemistry and comradery when

working together to complete this project. Our project

manager is Austin, and everyone has taken leads on separate

parts of the project, which are listed below. Though we have

separate leads, we have all worked together to complete tasks.

Jason and Austin worked together to send a signal from the

raspberry pi to switch voltage buses that Matt created. Austin

must work together with Jason to implement logging inside

the main control code that Jason wrote. Our prototype is

installed at Matt’s home in order to obtain sufficient sunlight,

and Jason has needed to implement new design features

remotely which means Jason and Matt had to work closely

together to make the proper changes on the prototype itself.

Nate did most of the plant research and product research, so he

worked together with everyone to make sure the right parts

and conditions were set. We have a communication server set

up in order to work together efficiently, even when we are not

together in person. Communication can break down, but the

way we are constantly able to come together in person to solve

issues is in person.

Table 2: Team Member Roles

D. Beyond the Classroom

A lot of information had to be acquired in relation to

growing plants. For this project to be successful we had to

learn about watering for example. Learning that temperature is

the most critical parameter to control in microgreen growth

was very important to create the proper environment in the

enclosure.

E. Data

In order to show that our design is working, we needed to

implement a way to track temperature, humidity, and

resistance across our LDR’s. We also needed to track the

states of our outputs, i.e. fan, light, pump, in order to correlate

our output states to our greenhouse conditions. We chose to

implement a logging feature in our code that stores logs on our

Raspberry Pi. Every 10 minutes our logs are updated with the

current conditions of the greenhouse and the states of our

outputs are logged as well. The logs are stored on our system

and accessed when we want to display and plot our data or

check on system functionality.

We use our logs to create plots on our own computers in

order to represent our data in a visual format. Figure 9 shows

our plots after 3.5 days and shows really strong data in regard

to the conditions we set. The temperature plot is significant for

we set a 60-degree Fahrenheit condition, and we were able to

maintain that condition for almost 4 days. Our light readings

show really strong data as well, for when the reading is at 10k

ohms, it is nighttime, and we are able to track that through

data. When the reading is below 1k ohms, it is day time and

we do not need to trigger any of our own LED’s, so we can

determine that by placing the box on a window sill, the sun

can produce enough light to grow our plants.

Figure 9: Sensor Data Over Time

We decided to set our temperature control to 70 degrees

after 4 days to see if our heating system will be strong enough

to heat the greenhouse sufficiently. In Figure 10, you can see

the jump in temperature, but we were only able to reach an

average of 67 degrees. This proves that we can change the

conditions in the box with our variable controls, but we will

need to add in more heating unit to provide sufficient heat. We

are impressed with this result because it is now wintertime and

we are using a container with negligible insulation. Another

key data trend to notice is the increase in humidity after we set

the new temperature condition. Because the 70-degree

conditional was never met, our system was in constant heating

mode, which is heaters on, and fans off. This should

theoretically increase humidity, which is shown in Figure 11.

This is a strong data trend line because we believe humidity

will be the hardest variable to control and we were able to

control and measure a change.

SDP20 – TEAM 25

7

Figure 10: Temperature Sensor Data Over Time

Figure 11: Humidity Sensor Data Over Time

The last strong set of data we collected is Figure 12, our

light resistance over time. This plot shows light resistance

over 12 days. When the plot is at 10k resistance it is nighttime,

and when it is low, it is daytime and transitional time. During

this time, our light system got stuck in an always on state,

which is represented by the middle of the plot, where when it

is nighttime, the ohm readings stayed around 1k. This

conditional mistake was actually able to show us that our

single LED is able to produce around 1k of light resistance,

which is our ideal value for growing microgreens. During this

time our plants got too much sunlight, but the data is able to

prove to us that we can simulate enough sunlight to grow our

plants.

Figure 12: Light Received at Window Over Time

ACKNOWLEDGMENT

We would like to thank our Project Advisor, Professor

Kundu, for all his help and guidance on our project thus far.

We would also like to thank Professor Anderson, Professor

Krishna, Professor Hollot, and Professor Soules for their

useful feedback and evaluations during presentations and

benchside meetings. Also, we would like to thank Jason D.

Lanier, Angela Madeiras, and Geoffy Njue of the Stockbridge

School of Agriculture here at UMass for all of their valuable

advice and help thus far.

REFERENCES

[1] (). How to water microgreens in 3 easy steps, a super cool hack.

Available: https://www.greensguru.com/how-to-water-microgreens-in-3-

easy-steps-a-super-cool-hack/.
[2] (Aug 18, 2017). Growing Microgreens 101. Available:

https://www.bootstrapfarmer.com/blogs/microgreens/how-to-grow-

microgreens-101.
[3] (). Automated Microgreen Bottom Watering System – DIY.

Available: https://www.7thgenerationdesign.com/automated-

microgreen-bottom-watering-system-diy/.
[4] OEMHeaters, ‘FreezeStop Low VOltage Self Regulating-Heat Tape’,

https://oemheaters.com/images/ProductDocuments/Heaters/Freezstop%2

0FLV.pdf
[5] Jiangsu Changjiang Electronics Technology Co., LTD, ‘Plastic-

Encapsulate Transistors’, S9018 datasheet, June 2011

http://vakits.com/sites/default/files/S9018%20Transistor.pdf
[6] Department of Planning. (2019). Food Environment Maps. [online]

Available at: https://planning.baltimorecity.gov/baltimore-food-policy-

initiative/food-environment [Accessed 19 Dec. 2019].
[7] Proximityone.com. (2019). Maryland State GIS Project. [online]

Available at:

http://proximityone.com/dataresources/guide/k12_md_gis_project.htm
[Accessed 19 Dec. 2019].

[8] “How Far Does Your Food Travel to Get to Your Plate?,” CUESA, 05-

Feb-2018. [Online]. Available: https://cuesa.org/learn/how-far-does-
your-food-travel-get-your-plate. [Accessed: 19-Dec-2019].

[9] “Transport Costs,” The Geography of Transport Systems, 17-Aug-2019.

[Online]. Available: https://transportgeography.org/?page_id=5268.
[Accessed: 19-Dec-2019].

[10] Full Spectrum led Strip, TBTeek Grow Light Strip Light with Auto ON

& Off Function, 3/9/12H Timer, 5 Dimmable Levels and 3 Switch
Modes for Indoor Plants, Red/Blue Spectrum

[11] The Grocery Gap. (2010) The Food Trust Organization. Available at:

http://thefoodtrust.org/uploads/media_items/grocerygap.ogiginal.pdf
[Accessed 01-Oct-2019]

[12] Baltimore City Food Deserts Map (2015) The Baltimore Sun. Available

at: http://baltimoresun.com/maryland/baltimore-city/bal-bmorefoodmap-
graphic-20150610-htmlstory.html [Accessed 01-Oct-2019]

[13] Maryland State Communities and K-12 Schools GIS Project. (2015)
Available at:

http://proximityone.com/dataresources/guide/k12_md_gis_project.htm

[Accessed 01-Oct-2019]

[14] “Open-Source CNC Farming,” FarmBot. [Online]. Available:

https://farm.bot/. [Accessed 08-Oct-2019]

[15] Anndason 6 Pieces Plastic PP Float Switch Fish Tank Liquid Water
Level Sensor,Model: DP5200.

[16] Decdeal Submersible Water Pump DC 12V 5W Ultra-Quiet Pump for

Pond, Aquarium, 280L/H Lift 300cm
[17] Learn To Brew LLC Food Grade Vinyl Tubing - 10 feet 5/16 ID - 7/16

OD

[18] D. Ibrahim, Raspberry Pi 3. 2018.
[19] AVC 707015mm DE07015B12U 12V 0.7A 4Wire 7cm cooling Fan

