
SDP20 – TEAM 25 1

Abstract— Our senior design product, the GrowingGreen
System, is an indoor greenhouse designed to grow fresh produce
inside homes and apartments with little to no user experience
needed. The fully automated enclosure will properly regulate all
necessary growing conditions in-order to deliver high-quality and
healthy vegetation for user consumption. The GrowingGreen
System is built to be as energy efficient as possible and to only
consume power when needed in order to cut down on
environmental impact and lesson user power costs. By working in
conjunction with the real world and only reacting when current
environmental variables become harmful to plant growth the
system will consume less energy and be able to deliver edible
vegetation, even in regions without environments conducive to
growing.

I. INTRODUCTION

HE GrowingGreen System is a fully automated, energy
efficient, in-house grow site with focus on supplying the

grower edible vegetation with minimal effort. Our goal is to
increase the availability and desire of home growing by
simplifying the process through the automation of manual
processes, lessening of power consumption, and use of a user
console with alerts to keep growers engaged and on schedule.
By growing in-house, users will decrease their environmental
impact by reducing their carbon footprint and pesticidal use on
plants.

A. Significance

Proximity to fresh produce is something taken for granted
every day. Fresh produce is not a commodity that is readily
available to everybody in the world, let alone everyone in the
United States. This problem is known as the grocery gap
across America and stems from low income and rural
communities. In fact, low income communities have 25%
fewer supermarkets, which means a 25% decrease in fresh
produce. Low income neighborhoods have half as many
supermarkets as the wealthiest neighborhoods, and have four
times as many smaller grocery stores, which often do not stock
fresh produce. This is a big health issue as well, because
access to a supermarket with fresh produce is strictly
correlated to healthy diet habits. In a case study in Baltimore
you can see how low-income communities and food deserts
correlate when viewing Figure 1 and Figure 2 below. Both low
income communities and food deserts are represented in dark
red.

Figure 1: Baltimore City Food Map

Figure 2: Baltimore City Wealth Map

In order to counter the fact that produce is not readily
available everywhere, it is transported from out of the region
to satisfy the demand. In fact, on average a typical meal in
America will travel over 1,500 miles from farm to plate. This
is a cause for concern for many reasons impacting the
environment. In fact, 10 Kilocalories of fossil fuels are
consumed per 1 Kilocalorie of energy we consume from food
due to long distance, large-scale transportation dependency on
fossil fuels [8]. Contributing to this high carbon footprint is
the demand for fresh produce in climates that do not permit
local growing; this causes faster, less CO2 efficient means of
transport to be used to trek in produce from out of state or
even from a different continent. This demand for fresh
produce through transportation requires the produce to be
picked unripe for transport and then chemically treated to
‘ripen’. The large cost of transportation and food waste due to
transport can account for over 15% of produce costs and have

Nate Lemons, ECE, Jason Trainor, CSE, Matthew Sargeant, EE, and Austin Hiller, CSE

GrowingGreen

T

SDP20 – TEAM 25 2

an even greater toll on the environment [9]. The transportation
of produce has been a solution to the fact that many places
around the world do not have climates or space conducive to
growing locally as well as lack of knowledge and time often
prevents people from growing at home, which would alleviate
some of the environmental impact of our current food system.

B. Context and Existing Products

Our proposed problem is that there is currently a large tax
on the environment due to our current food system. Effects of
this problem have and continue to become increasingly worse
as time passes. We aim to bring the growth of produce closer
to the need as this will cut down immensely on the carbon
footprint of transportation. There are currently few methods
being used to solve the problem at a local level. This includes
a recent product of the name FarmBot and a more
conventional method of greenhouses. The similar problems to
both of these methods is that they both require outdoor space
and have large impacts from the outside environment. The
conventional greenhouse also requires a large level of
knowledge and time to be able to successfully produce
vegetation. However, the greenhouse can manage growing in
unconducive regions, unlike the FarmBot which cannot, but
this comes with a very high energy cost. Our solution aims to
allow growing in all regions without the high energy cost or
knowledge needed to grow.

C. Societal Impacts

Throughout design and production, a common constituency
was kept in mind, apartment and homeowners who do not
have the suitable regions or enough time to produce their own
produce. This would have a vast impact on not only
homeowner’s but also the environment as well. The
GrowingGreen System will be able to cut down on produce
cost and lessen the impact on the environment that the current
industry has. The constituency we choose caused choices to be
made with the goal of keeping overhead as well as running
costs down. Though we do not believe any of the negative
impacts to be that substantial, it is still worth mentioning that
there would be a slight impact on the transportation industry.
Also, the worst outcome for an owner in case of some
malfunction would be plants that did not grow, meaning they
would have to restart the growth cycle.

D. System Requirements and Specifications

The requirements of our product can be seen detailed in
Table 1 below. The GG System will be fully automated
between planting and harvesting of produce. This involves
controlling the output luminosity levels, maintaining the inter-
related values of humidity and temperature, and providing
proper irrigation everyday. With this automation we expect to
harvest ~20 oz of microgreens every 2 weeks and successfully
grow year round. The final project will consume less than 200
W on average through automation of systems and will be
smaller than the framing of a typical window, the interior
dimensions will be 2’x1’x’3’ and the exterior will be
27”x15”x39”. We will also collect data from all sensors and
output controls and develop trends with the data for user

analysis. Both our final product and our prototype accomplish
these goals in some fashion. The function of how each goal is
met will be laid out in the rest of this paper.

Feature Specification

Reduce power by 3x
the standard

 <200W consumption

Functional all year R-value >5, 12 oz
microgreens/wk

Simplify growing
process

Environmental Automation

Data available to user Logs and trends updated
every 15 min

Must fit against a
typical window

39x27 in.

Table 1: Requirements and Specifications

II. DESIGN

A. Overview

Our solution is to build an automated indoor
greenhouse. The environment of the greenhouse is maintained
using a microcontroller wired with sensors and control of
various elements able to affect the conditioned space in a
quantifiable way. Enacting output controls will allow the
device to reduce the power needed to grow vegetables,
providing a financial benefit as well as being more
sustainable. Some discarded options were incorporating a soil
moisture sensor, a valve for irrigation, dampers to control air
flow, and watering via hydroponics, refer to Appendix A for
further information.

The control board is powered via a 5.2 V DC bus and
provides 3.3 V DC to power the light and float sensors, while
also providing 5 V DC to the temperature/humidity
sensor. These sensors input data into the control board to be
analyzed by the control code. This code will make calls to a
directory to verify which conditions are or are not being
met. Output commands will be sent to the environmental
subsystems. Environmentals consist of lighting, water pump,
heating cable, and fans. The lights are powered with a
4.5/3.5/2.5 V DC bus while the pump, heater, and fans are
powered using a 12 V DC bus. As these controls adjust the
environment of the shelter new data will be sent to the control
board to continue maintaining the desired environment.

The first specification set for this project was to reduce
power compared to other options. To do this we decided to
vary the lighting output as even with LEDs, lighting consumes
a lot of power. The requirement to function year round meant

SDP20 – TEAM 25 3

that heating would have to be maintained during a cold season,
necessitating the need for insulation to maintain the
temperature with a low power heating cable to promote the
desired production level. To simplify the growing process we
installed an array of sensors to monitor environmental levels
and inform a board mounted microcontroller of the
subsystems to turn on/off. In order to record the data our
system was monitoring, we built out logging functionality. We
used a raspberry pi as a logging file system and a serial
connection to our PCB. Our pcb used Tx/Rx transmission to
send the data to our raspberry pi to get logged. This data was
then used on our website and plotting features. The enclosure
was built to contain the growing area within most window
frames, exempting casement windows, while using typical
planting trays (10”x20”), this resulted in a 27”x15”x39”
structure, with interior dimensions of 24”x12x16.5'' per tier.

B. Irrigation System

Our irrigation system is a tray-in-tray bottom-watering
system, in which the microgreen’s root system absorbs water
through the holes at the bottom of the tray they are planted in
[2]. In order to implement this design, we used a float sensor
[15], two 12V submersible water pumps [16], and food grade
vinyl tubing [17]. We have a reservoir mounted onto the side
of the unit that contains one pump for each tier and a float
sensor aligned with the intake of the pump to ensure that the
pump is only running when there is adequate water in the
reservoir. The float sensor is wired to our output control
circuit, while the pumps are powered by the 12 V DC bus and
controlled with a TIP120 NPN BJT switch [10] between the
pumps and ground. The pumps are triggered to begin a
watering cycle once per day in the morning, and in the event
that the reservoir does not have enough water to complete the
watering cycle, the float sensor will trigger the system to turn
the pumps off to prevent it from burning out. The user will
also be notified that when the reservoir needs to be refilled via
a website hosted on the Raspberry Pi, as detailed in Appendix
H. The pumps are programmed to turn on for 3 seconds, which
we calculated was equal to roughly a half cup of water which
is enough to keep the soil moist until the next watering cycle
the following day. Our reservoir currently holds enough water
for roughly 12 watering cycles, which allows the system to
operate completely independent of its user for almost the
entirety of a microgreen’s growth cycle before the user would
have to refill it. Our pumps send the water from the reservoir
through food grade vinyl tubing into the enclosure, where the
tubing is mounted in the bottom tray below the edge of the
growing tray, to ensure that no water splashes any soil onto
the plants.

Through trial and error, we were able to verify that our
irrigation system design works by checking that no water was
left in the bottom tray by the end of daylight hours and that the
soil was still moist hours after that. This test tells us that we
were not overwatering and that the plants were getting plenty
of water.

Figure 3: View of front of reservoir showing both pumps with tubing
passed through PVC piping into the enclosure.

C. Lighting System

Lighting is controlled using 2 15-in LED strips per tier
outputting in the blue and red spectrum. The lights are
controlled using three transistor switches. When insolation is
too low, a signal will be sent to operate the desired bus. See
Appendix G for a full schematic of the lighting power circuit.

D. Air Flow System

Our air flow system is designed to regulate temperature and
humidity by cycling the air out of the enclosure when the
environment is too warm and/or humid which maintains the
health of the microgreens. For each tier, we have two 12V 3”
Square Axial Fans, one for air intake, and one for air outtake
as shown below in Figure 5. The fans are powered by the 12 V
DC bus and controlled with a TIP120[10] NPN BJT switch
between the fans and ground, as detailed in Appendix G.
These fans are controlled in a feedback loop which includes
the temperature/humidity sensor and the heating cables. When
our heat threshold of 70°F is exceeded, the outtake fan is
triggered to turn on, while the intake fan acts as a louvre to
allow air into the environment without disturbing the
microgreens [2].

As detailed in Appendix E, we tested the function of these
fans by observing our data logs to ensure that if the
temperature threshold was exceeded, the air flow system
would be efficient in circulating air to bring the environment
back to the desired threshold. Although this was a rare
occurrence due to lower than average ambient room
temperatures in these winter months, we tested the air flow
system’s function by reducing the temperature threshold and
observing the outputs of the temperature sensor that followed.
This verified that our design was functional because we first
observed that the air flow system was turned on when the
temperature threshold was exceeded. The fans were then
triggered on and we observed the temperature sensor’s
readings fall back to the desired threshold before the fans were
triggered to turn off.

SDP20 – TEAM 25 4

E. Heating System

The temperature of the enclosure is maintained using a
freeze stop insulated heating cable [4]. The cable is powered
off the 12 V DC bus and controlled with the switching circuit
shown in Appendix G, a TIP120[10] NPN BJT acting as a
switch between the component and ground. The cable is able
to output at 5 W/ft, it is approximately 16-in currently and
outputting at 6.25 W per tier.

F. Control Code

The final PCB code was done with C programming and is
responsible for automating outputs to regulate the enclosed
environment to specific setpoints. An important change
between the prototype code and the final code was the change
from checking the sensors every ten minutes to checking this
constantly. Originally the idea was to have the program only
check so often to avoid overcorrections, however it was found
more efficient to implement a threshold-based functionality.
The program package runs daily with different outputs calling
for different code implementations based on time of day. The
simplest command code is used to give the plant a specific
amount of water through turning on the pump for an allotted
amount of time which will be equated to a specific volume of
water. The next code is responsible for controlling the
temperature and humidity throughout the entire day. This code
takes in readings from temperature and humidity sensors and
compares the values read in against an ideal for each. If the
threshold ranges are not met, then the code will call outputs to
alert the state again until it can work its way back to the
threshold range. A similar idea is used for the light control
code, which runs starting at 6 a.m. every day for a set number
of hours (default 10 hours). This code will take in light
readings from both the front and back of the enclosure and
calculate a general light reading. This light reading can then be
used to compare against a threshold and set the lights on or off
depending on whether or not the plants needs more light
delivered to them. These three codes work together along with
data log calls, to provide control commands to output
components with the goal of influencing the environment to
reach the ideals that are currently stored in a plant directory
csv file. Another important aspect of the code is how
expandable it is due to structs being used rather than defining
pins specifically. This implementation allows for more
enclosures to be added or removed with ease, simply by
adding a line to the main with the enclosure name and plant of
choice.

III. THE PRODUCT

A. Product Overview

Our project, as seen in the product sketch in the below
figure (Figure 4), is a fully automated greenhouse that uses
light dependent resistors in order to determine the correct
amount of artificial light to produce as well as regulates other
environmental variables to specific setpoints. The greenhouse
has two fans, two lights, one heater, one pump, one
temperature and humidity sensor, one float sensor, and two

light dependent resistors per tier of the enclosure. These input
components communicate back to the PCB in order to
determine the correct output levels for the various output
devices. This relates heavily to our block diagram (Figure 5)
as we have a sensor module that sends data to our control unit
which then sends the correct output signals to the output
module, there is also a power module that is responsible for
giving the correct power levels to the entire enclosure. The
correct components can also be found inside the appropriate
blocks on the diagram. Figure 6 represents a single tier of our
system with all of our inputs and outputs documented to
visualize what each tier holds.

Figure 4: Product Sketch

SDP20 – TEAM 25 5

Figure 5: Block Diagram

Figure 6: View of the top tier of the enclosure

B. Electronic Hardware Component

The design and fabrication of our electronic hardware
component evolved throughout the design of our system. Our
MDR prototype was functional through the use of a raspberry
pi, which gave us processing power through onboard
microprocessors and I/O control through GPIO pins. We
needed to migrate our design onto an electronic hardware
component by the time of CDR, so we decided to keep our
design simple and variablistic. We decided to choose the
Atmega328U microcontroller to provide analog and digital
I/O, and enough processing power to meet our needs. We also
knew this would be low power to meet our power
requirements. We also knew we would need extra I/O pins to
adequately meet our I/O demand, so we needed to add 2 TI
shift registers to integrate with our Atmega328U. Lastly, we
wanted to add enough female headers to support the
integration to all of our output components and data inputs.
We decided to use an academic license for Altium Designer to
design our a printed circuit board to meet these needs. Figure
6 shows the final design of our printed circuit board. The
female headers P2 and P3 correspond to the headers
supporting I/O functionality, while the headers P1 correspond
to the pins needed to program the Atmega328. In order to
power each IC and Microcontroller, we provide 5V and GND
to 2 pins to provide adequate voltage for every device. We
were able to manufacture the PCB with JLCPCB and ordered
5 different PCBs to make sure we had enough for testing and

failure. We hand soldered our PCB and tested with programs
that signal an LED on and off at each I/O pin. After each pin
was tested and our Atmega328 signature was read by our
programmer, we knew that we had successfully created a PCB
that we can use in our design.

Figure 7: PCB Schematic

C. Product Functionality

During CDR we had a fully functioning greenhouse with a
slight hiccup. Shortly before the presentation our PCB
received a short leaving it ineffective. We had a working video
of the enclosure, on a PCB, to show the reviewers that it was
working and that it was just an unforeseen issue. However, all
other components were working as expected: code
functionality checked out, all output and input devices were
responsive, everything was powered using our power network,
and the raspberry was successfully hosting a website to track
live data of the greenhouse.

D. Product Performance

To ensure the first specification was met, a 15V 13.4A PSU
[15] was used to provide a base DC voltage limited to 200W
as well as implementing variable lighting output dependent on
monitored insolation. To ensure year-round growth
temperature would have to be maintained at ~70 degrees
Fahrenheit while near a window. To do this during winter,
heating and insulation was needed, a heating cable per tier was
used to heat the enclosure, however no insulation had been
installed at the time of campus closure and data was unable to
be collected. If one cable per tier was insufficient, there was
room in the budget for 2 cables per tier. The Atmega328U was
used to control automation through sensor input and
subsystem control using a shift register for each tier to
organize controls. Our logging and plotting was functional as
we were collecting data and manipulating upon it. Our
Atmega328 was successfully sending the data to our raspberry
pi file system. Then custom programs were manipulating the
data into relevant charts and graphs for a strong user interface.
The frame of the enclosure was built to the needed
specifications with the desired grow space provided. The next
step in construction would have been developing a method to

SDP20 – TEAM 25 6

mount the enclosure to the window without the use of the top
of a piece of furniture.

IV. CONCLUSION

We were able to meet most of the deliverables we set for
CDR, including having a completely built enclosure with two
tiers, a fully autonomous greenhouse with additional sensors
and controls to support the second tier, and functional serial
TX/RX data transfer for communication of data to the user.
However, we were unable to complete multiple grow cycles
by the time of CDR due to unexpected challenges with
populating and integrating our PCB. Because of the issues we
faced with our PCB, our system still partially relied on a
breadboard circuit along with many circuits soldered onto
perfboards. However, the system still functioned as planned
and would have only required some rewiring to integrate the
PCB once properly populated.

The bulk of our work to meet the specifications for FPR
would have come with fixing the issues we were having with
populating and integrating our PCB, but we had narrowed the
cause of the problem down to the programmer we were using
to populate the PCB. In addition, we were actively working on
providing continuous delivery of sensor data and output
control to the user via a website hosted on a Raspberry Pi, as
detailed in Appendix H. The rest of the work required to finish
our product would have been mostly cosmetic, as we were
planning on organizing all hardware, circuitry, and extra
wiring into a control box so that it was securely stored and out
of harm's way.

It is very unfortunate that SDP was stopped early due to
Covid-19 as our team was really invested in the project and
were looking forward to finalizing the project into a finished
product.

ACKNOWLEDGMENT

We would like to thank our Project Advisor, Professor
Kundu, for all his help and guidance on our project thus far.
We would also like to thank Professor Anderson, Professor
Krishna, Professor Hollot, and Professor Soules for their
useful feedback and evaluations during presentations and
benchside meetings. Also, we would like to thank Jason D.
Lanier, Angela Madeiras, and Geoffy Njue of the Stockbridge
School of Agriculture here at UMass for all of their valuable
advice and help thus far.

REFERENCES
[1] (). How to water microgreens in 3 easy steps, a super cool hack.
 Available: https://www.greensguru.com/how-to-water-microgreens-in-3-
 easy-steps-a-super-cool-hack/.
[2] (Aug 18, 2017). Growing Microgreens 101. Available:
 https://www.bootstrapfarmer.com/blogs/microgreens/how-to-grow-
 microgreens-101.
[3] (). Automated Microgreen Bottom Watering System – DIY.
 Available: https://www.7thgenerationdesign.com/automated-
 microgreen- bottom-watering-system-diy/.
[4] OEMHeaters, ‘FreezeStop Low VOltage Self Regulating-Heat Tape’,
 https://oemheaters.com/images/ProductDocuments/Heaters/Freezstop%2
 0FLV.pdf

[5] Jiangsu Changjiang Electronics Technology Co., LTD, ‘Plastic-
 Encapsulate Transistors’, S9018 datasheet, June 2011
 http://vakits.com/sites/default/files/S9018%20Transistor.pdf
[6] Department of Planning. (2019). Food Environment Maps. [online]
 Available at: https://planning.baltimorecity.gov/baltimore-food-policy-
 initiative/food-environment [Accessed 19 Dec. 2019].
[7] Proximityone.com. (2019). Maryland State GIS Project. [online]
 Available at:
 http://proximityone.com/dataresources/guide/k12_md_gis_project.htm
 [Accessed 19 Dec. 2019].
[8] “How Far Does Your Food Travel to Get to Your Plate?,” CUESA, 05-
 Feb-2018. [Online]. Available: https://cuesa.org/learn/how-far-does-
 your-food-travel-get-your-plate. [Accessed: 19-Dec-2019].
[9] “Transport Costs,” The Geography of Transport Systems, 17-Aug-2019.
 [Online]. Available: https://transportgeography.org/?page_id=5268.
 [Accessed: 19-Dec-2019].
[10] Full Spectrum led Strip, TBTeek Grow Light Strip Light with Auto ON
 & Off Function, 3/9/12H Timer, 5 Dimmable Levels and 3 Switch
 Modes for Indoor Plants, Red/Blue Spectrum
[11] The Grocery Gap. (2010) The Food Trust Organization. Available at:
 http://thefoodtrust.org/uploads/media_items/grocerygap.ogiginal.pdf
 [Accessed 01-Oct-2019]
[12] Baltimore City Food Deserts Map (2015) The Baltimore Sun. Available
 at: http://baltimoresun.com/maryland/baltimore-city/bal-bmorefoodmap-
 graphic-20150610-htmlstory.html [Accessed 01-Oct-2019]
[13] Maryland State Communities and K-12 Schools GIS Project. (2015)
 Available at:
 http://proximityone.com/dataresources/guide/k12_md_gis_project.htm
 [Accessed 01-Oct-2019]
[14] “Open-Source CNC Farming,” FarmBot. [Online]. Available:
 https://farm.bot/. [Accessed 08-Oct-2019]
[15] Anndason 6 Pieces Plastic PP Float Switch Fish Tank Liquid Water
 Level Sensor,Model: DP5200.
[16] Decdeal Submersible Water Pump DC 12V 5W Ultra-Quiet Pump for
 Pond, Aquarium, 280L/H Lift 300cm
[17] Learn To Brew LLC Food Grade Vinyl Tubing - 10 feet 5/16 ID - 7/16
 OD
[18] D. Ibrahim, Raspberry Pi 3. 2018.
[19] AVC 707015mm DE07015B12U 12V 0.7A 4Wire 7cm cooling Fan

APPENDIX

A. Design Alternatives

Much of the discarded technology was related to irrigation.
The two main factors that lead us to our irrigation system
design were the overall health of the plant, and the ease of
automation of the system. Specifically, for microgreens,
irrigation can be very difficult, as one has to make sure that
the soil stays damp enough between watering cycles without
overwatering, while also keeping the plant and its leaves clean
to ensure its health [3]. This makes conventional top-watering
methods much more difficult to implement as one would have
to be certain that no soil is contaminating the microgreens at
any point in the growing cycle. Although this may be realistic
for someone to do manually, it was not reasonable for us to
implement as an automated irrigation system. Two other
irrigation designs were originally looked at, hydroponics and
gravity fed watering. Hydroponics was discarded to increase
accessibility for the customer. Gravity fed originally
incorporated the use of a valve to control the water flow; this
would require the water reservoir to be above the enclosure,
making it more difficult to change out and also increasing the
chance a water leak could cause damage to electronic
equipment located below the reservoir. The soil moisture
sensor was to be used in determining when to water the plant,

SDP20 – TEAM 25 7

however scheduled watering provides adequate water supply
to plants. We originally were planning on using a louvre for
air intake and fan for air outtake to design our air flow system.
However, we decided to discard the louvre because the fan
used for air outtake was not powerful enough to open the
louvre on the opposite side of the enclosure. We ended up
deciding to use an intake fan to replace the louvre, which
allows for the amount of air intake we originally desired.

B. Technical Standards

Due to the cancellation of final product reviews, our
functioning product at the time of CDR did not meet any
technical IEEE standards as it was still under final
developments.

C. Testing Methods

In order to test our system as a whole, we first needed to
test each part separately. We first had to test that our sensors
were collecting adequate and correct data. We tested out
humidity/temp sensor by placing it in a container with a
working thermometer and humidity reader. We then collected
values and made sure our sensor was reporting with +/- 5%.
We then tested our LDR’s by getting readings of resistance
across the LDR in low, medium, and high light conditions. We
were then able to correlate resistance values with light
conditions which we use in the control of our program. We
lastly tested our float sensor by placing it in a full tub of water,
and empty one and found at exactly what amount of water the
float sensor will trigger an empty container. We then needed
to test our output controls starting with the fans. To test these,
we first plugged them into 12V voltage buses to make sure
they have adequate airflow. We then tested them connected to
a switch controlled by the Raspberry Pi. We would trigger an
on signal from the Raspberry Pi, and then check to see if the
fans were on or off. We then did the same experiment for the
LED. We connected the LED to a 4.5V bus and made sure it
was functioning. Then we added a switch to the Raspberry Pi
and sent an on/off signal to the LED to make sure it was
turning off through a condition set on the Raspberry Pi. We
followed the same steps for the water pump and the heating
cable, both connected to 12V buses and a switch. Once we
knew that our sensors were collecting proper data and we
could control our outputs with the Raspberry Pi, we needed to
test everything together in our main logic flow. In order to do
this, we needed correct logging functionality because we could
check our system working with the logs.

 After our MDR, we knew that we had functioning
outputs and functioning inputs, so we needed to migrate the
design to a PCB and test complete functionality. With our
PCB under design and fabrication, we built our PCB on a
breadboard for initial testing, shown on Figure 8. We needed
to build a testing center with our new microcontroller, so we
decided to use an AVR programmer to download code onto
the Atmega328. For this, we built a header for our
programmer to download onto, and a breadboard to hold our
parts. We tested our output controls through the signalling of
our Atmega I/O pins and the signalling of our shift register I/O

pins. We tested the signal to a BJT, which would turn a LED
on and off. Once we were able to control an LED, we knew
that we needed to build a functional main control code and
treat the LED’s as our outputs. Once we were able to build this
to test our outputs, we needed to make sure that our
Atmega328 was collecting data from our DHT11 and LDRs.
Without a console, we decided to interface an LCD screen in
order to see data collected by the Atmega, which is shown in
Figure 9. Once we knew that our sensors were integrated to
our microcontroller and our outputs could be controlled, we
knew that we could continue. The last test we needed was to
confirm data was being sent to the raspberry pi. We tested this
using a serial listener on the raspberry pi and sent controlled
variables from the Atmega328. Once we confirmed this was
working, we needed to integrate the design to our PCB, which
was fully tested before on the breadboard.

 Because we tested everything on our own breadboard, the
integration to PCB was easier than expected. We just used the
connection test to confirm strong solders, and then began
using some testing methods to control out I/O components.
Then we needed to integrate out power buses, which were
tested from our PCU, and connect everything together.
Isolated testing made debugging much easier, for as we
connected devices, we knew they worked separately.

Figure 8: Breadboard Circuit

Figure 9: LCD integration for data integrity

D. Team Organization

Our team has shown great chemistry and comradery when
working together to complete this project. Our project

SDP20 – TEAM 25 8

manager is Austin, and everyone has taken leads on separate
parts of the project, which are listed below. Though we have
separate leads, we have all worked together to complete tasks.
Jason and Austin worked together to send a signal from the
raspberry pi to switch voltage buses that Matt created. Austin
must work together with Jason to implement logging inside
the main control code that Jason wrote. Our prototype is
installed at Matt’s home in order to obtain sufficient sunlight,
and Jason has needed to implement new design features
remotely which means Jason and Matt had to work closely
together to make the proper changes on the prototype itself.
Nate did most of the plant research and product research, so he
worked together with everyone to make sure the right parts
and conditions were set. We have a communication server set
up in order to work together efficiently, even when we are not
together in person. Communication can break down, but the
way we are constantly able to come together in person to solve
issues is in person.

After MDR our team came together to work on issues as a
group more so as our product was coming together and needed
parts to integrate. Matt worked on getting our power buses
controlled to specific power requirements from a 250W PSU.
Jason worked on the integration of our python code to C, and
then built the testing systems on the Atmega328. Austin
focused on building the PCB, so he worked closely with Jason
as the breadboard controlled the design of the PCB. Austin
also worked on integrating the sensors with the Atmega328
and data transmission to the raspberry pi. Matt, Jason, and
Nate built the box itself, while Nate designed the irrigation
and air flow systems. We all came together to integrate parts
and test the systems built out together. Nate worked on
soldering breakout boards to handle the BJTs and MOFSETS
used for switching mechanisms, while Matt helped with the
fine-tuned soldering. Nate built the website that will be hosted
by the raspberry pi and worked on data collection as well. All
in all, our team came together in the end to build a great
product that was driven through teamwork, as we all had to
work together to integrate our final parts. It is a bummer we
cannot present together as a team.

Team Member Responsibilities

Austin Hiller
(Manager)

PCB, Sensor integration, Data,
serial transmission

Nate Lemons Irrigation, airflow, breakout board
soldering, website

Matt Sargeant Power buses, power management,
final soldering

Jason Trainor Control code, testing systems,
Sensor integration, lead developer

Table 2: Team Member Roles and Responsibilities

E. Beyond the Classroom

For this project to be successful we had to learn a lot in
relation to growing plants. For example, we learned that
temperature is the most critical parameter to control
microgreen growth, and that the watering of microgreens has
to be done much more carefully than most plants to ensure that
the plants are not contaminated in the process. We can
attribute the majority of our gained knowledge to research
done on the growth of microgreens specifically, but we also
learned a lot thanks to communication with various professors
from the Stockbridge School of Agriculture here at UMass.

F. Data

In order to show that our design is working, we needed to
implement a way to track temperature, humidity, and
resistance across our LDR’s. We also needed to track the
states of our outputs, i.e. fan, light, pump, in order to correlate
our output states to our greenhouse conditions. We chose to
implement a logging feature in our code that stores logs on our
Raspberry Pi. Every 10 minutes our logs are updated with the
current conditions of the greenhouse and the states of our
outputs are logged as well. The logs are stored on our system
and accessed when we want to display and plot our data or
check on system functionality.

We use our logs to create plots on our own computers in
order to represent our data in a visual format. Figure 9 shows
our plots after 3.5 days and shows really strong data in regard
to the conditions we set. The temperature plot is significant for
we set a 60-degree Fahrenheit condition, and we were able to
maintain that condition for almost 4 days. Our light readings
show really strong data as well, for when the reading is at 10k
ohms, it is nighttime, and we are able to track that through
data. When the reading is below 1k ohms, it is day time and
we do not need to trigger any of our own LED’s, so we can
determine that by placing the box on a window sill, the sun
can produce enough light to grow our plants.

Figure 10: Data plots for temperature, humidity, and LDR values

We decided to set our temperature control to 70 degrees
after 4 days to see if our heating system will be strong enough
to heat the greenhouse sufficiently. In Figure 11, you can see
the jump in temperature, but we were only able to reach an
average of 67 degrees. This proves that we can change the
conditions in the box with our variable controls, but we will
need to add in more heating unit to provide sufficient heat. We

SDP20 – TEAM 25 9

are impressed with this result because it is now wintertime and
we are using a container with negligible insulation. Another
key data trend to notice is the increase in humidity (Figure
12), after we set the new temperature condition. Because the
70-degree conditional was never met, our system was in
constant heating mode, which is heaters on, and fans off. This
should theoretically increase humidity, which we were able to
measure in Figure 12. This is a strong data trend line because
we believe humidity will be the hardest variable to control and
we were able to control and measure a change.

Figure 11: Temperature plot over time

Figure 12: Humidity plot over time

The last strong set of data we collected is Figure 13, our
light resistance over time. This plot shows light resistance
over 12 days. When the plot is at 10k resistance it is nighttime,
and when it is low, it is daytime and transitional time. During
this time, our light system got stuck in an always on state,
which is represented by the middle of the plot, where when it
is nighttime, the ohm readings stayed around 1k. This
conditional mistake was actually able to show us that our
single LED is able to produce around 1k of light resistance,
which is our ideal value for growing microgreens. During this
time our plants got too much sunlight, but the data is able to
prove to us that we can simulate enough sunlight to grow our

plants.

Figure 13: LDR value over time

This data shows that we were able to optimize and alter
environmental data in a small plastic container. This also
shows that we are able to collect, log, and plot environmental
conditions of our greenhouse that we can translate to our final
greenhouse. After MDR, we wanted to focus our experiments
and data in controlling temperature in our greenhouse
structure, as we were increasing the size of the container by 3,
and not changing the size of our heating element. We believed
that the heating element would be able to control temperature
as the new structure had an optimized cooling system and
stronger insulating elements. We decided to conduct the same
experiments to control heating and cooling of our new
greenhouse. We conducted the following experiments outlined
in the graphs below.

- Maintain temperature at 60 degrees, starting at a
higher temperature so our cooling system will be
strained and utilized. Figure 14

- Maintain temperature at 65 degrees, starting at a
cooler temperature so our heating system will be
strained and utilized. Figure 15

- Maintain temperature at 70 degrees, starting at a
cooler temperature so our heating system will be
strained and utilized. Figure 16

These experiments range between 60 and 70 degrees
Fahrenheit, which is the optimal temperatures that most
microgreens grow at. These experiments show strong data that
our system is able to control and maintain temperatures
throughout the conditions we will be setting. This also tested
out heating and cooling systems as we started at different
temperatures than those that will be maintained.

SDP20 – TEAM 25 10

Figure 14: Maintaining temperature at 60 degrees Fahrenheit

Figure 15: Maintaining temperature at 65 degrees Fahrenheit

Figure 16: Maintaining temperature at 70 degrees Fahrenheit

G. Power Distribution Schematic

Figure 17: Power distribution schematic

H. Website Hosting and UI Design

In order to provide useful data and information about
different components of our system to the user, we set up a
website hosted on the Raspberry Pi to provide real time data
from the greenhouse. As shown in Figure 18 below, the user
interface included real time values for environmental
conditions such temperature, humidity, LDR sensor output,
and reservoir status. Because this data is gathered and stored
on the Raspberry Pi in our system, the website also included
plots for temperature, humidity, and LDR sensor data
computed with real time values so the user can confirm that
the system is operating as expected. This user interface would
be incredibly useful because it also serves as a medium for our
system to notify the user of important events that require user
intervention such as when the reservoir requires a refill in
order for the plants to continue to receive watering cycles.
Overall, this website provided a useful and convenient way for
a user to monitor the growth of their microgreens.

Figure 18: Website user interface

