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Abstract— Our senior design product, the GrowingGreen 
System, is an indoor greenhouse designed to grow fresh produce 
inside homes and apartments with little to no user experience 
needed. The fully automated enclosure will properly regulate all 
necessary growing conditions in-order to deliver high-quality and 
healthy vegetation for user consumption. The GrowingGreen 
System is built to be as energy efficient as possible and to only 
consume power when needed in order to cut down on 
environmental impact and lesson user power costs. By working in 
conjunction with the real world and only reacting when current 
environmental variables become harmful to plant growth the 
system will consume less energy and be able to deliver edible 
vegetation, even in regions without environments conducive to 
growing. 

I. INTRODUCTION 

HE GrowingGreen System is a fully automated, energy 
efficient, in-house grow site with focus on supplying the 

grower edible vegetation with minimal effort. Our goal is to 
increase the availability and desire of home growing by 
simplifying the process through the automation of manual 
processes, lessening of power consumption, and use of a user 
console with alerts to keep growers engaged and on schedule. 
By growing in-house, users will decrease their environmental 
impact by reducing their carbon footprint and pesticidal use on 
plants. 

A. Significance 

Proximity to fresh produce is something taken for granted 
every day. Fresh produce is not a commodity that is readily 
available to everybody in the world, let alone everyone in the 
United States. This problem is known as the grocery gap 
across America and stems from low income and rural 
communities. In fact, low income communities have 25% 
fewer supermarkets, which means a 25% decrease in fresh 
produce. Low income neighborhoods have half as many 
supermarkets as the wealthiest neighborhoods, and have four 
times as many smaller grocery stores, which often do not stock 
fresh produce. This is a big health issue as well, because 
access to a supermarket with fresh produce is strictly 
correlated to healthy diet habits. In a case study in Baltimore 
you can see how low-income communities and food deserts 
correlate when viewing Figure 1 and Figure 2 below. Both low 
income communities and food deserts are represented in dark 
red. 

 
Figure 1: Baltimore City Food Map 

 
Figure 2: Baltimore City Wealth Map 

In order to counter the fact that produce is not readily 
available everywhere, it is transported from out of the region 
to satisfy the demand. In fact, on average a typical meal in 
America will travel over 1,500 miles from farm to plate. This 
is a cause for concern for many reasons impacting the 
environment. In fact, 10 Kilocalories of fossil fuels are 
consumed per 1 Kilocalorie of energy we consume from food 
due to long distance, large-scale transportation dependency on 
fossil fuels [8]. Contributing to this high carbon footprint is 
the demand for fresh produce in climates that do not permit 
local growing; this causes faster, less CO2 efficient means of 
transport to be used to trek in produce from out of state or 
even from a different continent. This demand for fresh 
produce through transportation requires the produce to be 
picked unripe for transport and then chemically treated to 
‘ripen’. The large cost of transportation and food waste due to 
transport can account for over 15% of produce costs and have 

Nate Lemons, ECE, Jason Trainor, CSE, Matthew Sargeant, EE, and Austin Hiller, CSE 

GrowingGreen 

T



SDP20 – TEAM 25 2

an even greater toll on the environment [9]. The transportation 
of produce has been a solution to the fact that many places 
around the world do not have climates or space conducive to 
growing locally as well as lack of knowledge and time often 
prevents people from growing at home, which would alleviate 
some of the environmental impact of our current food system. 

B. Context and Existing Products 

Our proposed problem is that there is currently a large tax 
on the environment due to our current food system. Effects of 
this problem have and continue to become increasingly worse 
as time passes. We aim to bring the growth of produce closer 
to the need as this will cut down immensely on the carbon 
footprint of transportation. There are currently few methods 
being used to solve the problem at a local level. This includes 
a recent product of the name FarmBot and a more 
conventional method of greenhouses. The similar problems to 
both of these methods is that they both require outdoor space 
and have large impacts from the outside environment. The 
conventional greenhouse also requires a large level of 
knowledge and time to be able to successfully produce 
vegetation. However, the greenhouse can manage growing in 
unconducive regions, unlike the FarmBot which cannot, but 
this comes with a very high energy cost. Our solution aims to 
allow growing in all regions without the high energy cost or 
knowledge needed to grow. 

C. Societal Impacts 

Throughout design and production, a common constituency 
was kept in mind, apartment and homeowners who do not 
have the suitable regions or enough time to produce their own 
produce. This would have a vast impact on not only 
homeowner’s but also the environment as well. The 
GrowingGreen System will be able to cut down on produce 
cost and lessen the impact on the environment that the current 
industry has. The constituency we choose caused choices to be 
made with the goal of keeping overhead as well as running 
costs down. Though we do not believe any of the negative 
impacts to be that substantial, it is still worth mentioning that 
there would be a slight impact on the transportation industry. 
Also, the worst outcome for an owner in case of some 
malfunction would be plants that did not grow, meaning they 
would have to restart the growth cycle. 

D. System Requirements and Specifications 

The requirements of our product can be seen detailed in 
Table 1 below.  The GG System will be fully automated 
between planting and harvesting of produce.  This involves 
controlling the output luminosity levels, maintaining the inter-
related values of humidity and temperature, and providing 
proper irrigation everyday.  With this automation we expect to 
harvest ~20 oz of microgreens every 2 weeks and successfully 
grow year round.  The final project will consume less than 200 
W on average through automation of systems and will be 
smaller than the framing of a typical window, the interior 
dimensions will be 2’x1’x’3’ and the exterior will be 
27”x15”x39”.  We will also collect data from all sensors and 
output controls and develop trends with the data for user 

analysis.  Both our final product and our prototype accomplish 
these goals in some fashion. The function of how each goal is 
met will be laid out in the rest of this paper. 

 

Feature Specification 

Reduce power by 3x 
the standard 

 <200W consumption 

Functional all year R-value >5, 12 oz 
microgreens/wk 

Simplify growing 
process 

Environmental Automation 

Data available to user Logs and trends updated 
every 15 min 

Must fit against a 
typical window 

39x27 in. 

Table 1: Requirements and Specifications 

II. DESIGN 

A. Overview 

Our solution is to build an automated indoor 
greenhouse.  The environment of the greenhouse is maintained 
using a microcontroller wired with sensors and control of 
various elements able to affect the conditioned space in a 
quantifiable way.  Enacting output controls will allow the 
device to reduce the power needed to grow vegetables, 
providing a financial benefit as well as being more 
sustainable.  Some discarded options were incorporating a soil 
moisture sensor, a valve for irrigation, dampers to control air 
flow, and watering via hydroponics, refer to Appendix A for 
further information. 

The control board is powered via a 5.2 V DC bus and 
provides 3.3 V DC to power the light and float sensors, while 
also providing 5 V DC to the temperature/humidity 
sensor.  These sensors input data into the control board to be 
analyzed by the control code.  This code will make calls to a 
directory to verify which conditions are or are not being 
met.  Output commands will be sent to the environmental 
subsystems.  Environmentals consist of lighting, water pump, 
heating cable, and fans.  The lights are powered with a 
4.5/3.5/2.5 V DC bus while the pump, heater, and fans are 
powered using a 12 V DC bus.  As these controls adjust the 
environment of the shelter new data will be sent to the control 
board to continue maintaining the desired environment. 

The first specification set for this project was to reduce 
power compared to other options. To do this we decided to 
vary the lighting output as even with LEDs, lighting consumes 
a lot of power.  The requirement to function year round meant 
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that heating would have to be maintained during a cold season, 
necessitating the need for insulation to maintain the 
temperature with a low power heating cable to promote the 
desired production level. To simplify the growing process we 
installed an array of sensors to monitor environmental levels 
and inform a board mounted microcontroller of the 
subsystems to turn on/off. In order to record the data our 
system was monitoring, we built out logging functionality. We 
used a raspberry pi as a logging file system and a serial 
connection to our PCB. Our pcb used Tx/Rx transmission to 
send the data to our raspberry pi to get logged. This data was 
then used on our website and plotting features. The enclosure 
was built to contain the growing area within most window 
frames, exempting casement windows, while using typical 
planting trays (10”x20”), this resulted in a 27”x15”x39” 
structure, with interior dimensions of 24”x12x16.5'' per tier.  

 

B. Irrigation System 

Our irrigation system is a tray-in-tray bottom-watering 
system, in which the microgreen’s root system absorbs water 
through the holes at the bottom of the tray they are planted in 
[2]. In order to implement this design, we used a float sensor 
[15], two 12V submersible water pumps [16], and food grade 
vinyl tubing [17]. We have a reservoir mounted onto the side 
of the unit that contains one pump for each tier and a float 
sensor aligned with the intake of the pump to ensure that the 
pump is only running when there is adequate water in the 
reservoir. The float sensor is wired to our output control 
circuit, while the pumps are powered by the 12 V DC bus and 
controlled with a TIP120 NPN BJT switch [10] between the 
pumps and ground.  The pumps are triggered to begin a 
watering cycle once per day in the morning, and in the event 
that the reservoir does not have enough water to complete the 
watering cycle, the float sensor will trigger the system to turn 
the pumps off to prevent it from burning out. The user will 
also be notified that when the reservoir needs to be refilled via 
a website hosted on the Raspberry Pi, as detailed in Appendix 
H. The pumps are programmed to turn on for 3 seconds, which 
we calculated was equal to roughly a half cup of water which 
is enough to keep the soil moist until the next watering cycle 
the following day. Our reservoir currently holds enough water 
for roughly 12 watering cycles, which allows the system to 
operate completely independent of its user for almost the 
entirety of a microgreen’s growth cycle before the user would 
have to refill it. Our pumps send the water from the reservoir 
through food grade vinyl tubing into the enclosure, where the 
tubing is mounted in the bottom tray below the edge of the 
growing tray, to ensure that no water splashes any soil onto 
the plants.   

Through trial and error, we were able to verify that our 
irrigation system design works by checking that no water was 
left in the bottom tray by the end of daylight hours and that the 
soil was still moist hours after that. This test tells us that we 
were not overwatering and that the plants were getting plenty 
of water.  

 

 
Figure 3: View of front of reservoir showing both pumps with tubing 
passed through PVC piping into the enclosure. 

C. Lighting System 

Lighting is controlled using 2 15-in LED strips per tier 
outputting in the blue and red spectrum.  The lights are 
controlled using three transistor switches. When insolation is 
too low, a signal will be sent to operate the desired bus.  See 
Appendix G for a full schematic of the lighting power circuit.  

D. Air Flow System 

Our air flow system is designed to regulate temperature and 
humidity by cycling the air out of the enclosure when the 
environment is too warm and/or humid which maintains the 
health of the microgreens. For each tier, we have two 12V 3” 
Square Axial Fans, one for air intake, and one for air outtake 
as shown below in Figure 5. The fans are powered by the 12 V 
DC bus and controlled with a TIP120[10] NPN BJT switch 
between the fans and ground, as detailed in Appendix G. 
These fans are controlled in a feedback loop which includes 
the temperature/humidity sensor and the heating cables. When 
our heat threshold of 70°F is exceeded, the outtake fan is 
triggered to turn on, while the intake fan acts as a louvre to 
allow air into the environment without disturbing the 
microgreens [2].  

As detailed in Appendix E, we tested the function of these 
fans by observing our data logs to ensure that if the 
temperature threshold was exceeded, the air flow system 
would be efficient in circulating air to bring the environment 
back to the desired threshold. Although this was a rare 
occurrence due to lower than average ambient room 
temperatures in these winter months, we tested the air flow 
system’s function by reducing the temperature threshold and 
observing the outputs of the temperature sensor that followed. 
This verified that our design was functional because we first 
observed that the air flow system was turned on when the 
temperature threshold was exceeded. The fans were then 
triggered on and we observed the temperature sensor’s 
readings fall back to the desired threshold before the fans were 
triggered to turn off.   
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E. Heating System 

The temperature of the enclosure is maintained using a 
freeze stop insulated heating cable [4].  The cable is powered 
off the 12 V DC bus and controlled with the switching circuit 
shown in Appendix G, a TIP120[10] NPN BJT acting as a 
switch between the component and ground.  The cable is able 
to output at 5 W/ft, it is approximately 16-in currently and 
outputting at 6.25 W per tier. 

F. Control Code 

The final PCB code was done with C programming and is 
responsible for automating outputs to regulate the enclosed 
environment to specific setpoints. An important change 
between the prototype code and the final code was the change 
from checking the sensors every ten minutes to checking this 
constantly. Originally the idea was to have the program only 
check so often to avoid overcorrections, however it was found 
more efficient to implement a threshold-based functionality. 
The program package runs daily with different outputs calling 
for different code implementations based on time of day. The 
simplest command code is used to give the plant a specific 
amount of water through turning on the pump for an allotted 
amount of time which will be equated to a specific volume of 
water. The next code is responsible for controlling the 
temperature and humidity throughout the entire day. This code 
takes in readings from temperature and humidity sensors and 
compares the values read in against an ideal for each. If the 
threshold ranges are not met, then the code will call outputs to 
alert the state again until it can work its way back to the 
threshold range. A similar idea is used for the light control 
code, which runs starting at 6 a.m. every day for a set number 
of hours (default 10 hours). This code will take in light 
readings from both the front and back of the enclosure and 
calculate a general light reading. This light reading can then be 
used to compare against a threshold and set the lights on or off 
depending on whether or not the plants needs more light 
delivered to them. These three codes work together along with 
data log calls, to provide control commands to output 
components with the goal of influencing the environment to 
reach the ideals that are currently stored in a plant directory 
csv file. Another important aspect of the code is how 
expandable it is due to structs being used rather than defining 
pins specifically. This implementation allows for more 
enclosures to be added or removed with ease, simply by 
adding a line to the main with the enclosure name and plant of 
choice. 

III. THE PRODUCT 

A.   Product Overview 

Our project, as seen in the product sketch in the below 
figure (Figure 4), is a fully automated greenhouse that uses 
light dependent resistors in order to determine the correct 
amount of artificial light to produce as well as regulates other 
environmental variables to specific setpoints. The greenhouse 
has two fans, two lights, one heater, one pump, one 
temperature and humidity sensor, one float sensor, and two 

light dependent resistors per tier of the enclosure. These input 
components communicate back to the PCB in order to 
determine the correct output levels for the various output 
devices. This relates heavily to our block diagram (Figure 5) 
as we have a sensor module that sends data to our control unit 
which then sends the correct output signals to the output 
module, there is also a power module that is responsible for 
giving the correct power levels to the entire enclosure. The 
correct components can also be found inside the appropriate 
blocks on the diagram. Figure 6 represents a single tier of our 
system with all of our inputs and outputs documented to 
visualize what each tier holds. 

 
Figure 4: Product Sketch 
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Figure 5: Block Diagram 

 
Figure 6: View of the top tier of the enclosure 

B.   Electronic Hardware Component  

The design and fabrication of our electronic hardware 
component evolved throughout the design of our system. Our 
MDR prototype was functional through the use of a raspberry 
pi, which gave us processing power through onboard 
microprocessors and I/O control through GPIO pins. We 
needed to migrate our design onto an electronic hardware 
component by the time of CDR, so we decided to keep our 
design simple and variablistic. We decided to choose the 
Atmega328U microcontroller to provide analog and digital 
I/O, and enough processing power to meet our needs. We also 
knew this would be low power to meet our power 
requirements. We also knew we would need extra I/O pins to 
adequately meet our I/O demand, so we needed to add 2 TI 
shift registers to integrate with our Atmega328U. Lastly, we 
wanted to add enough female headers to support the 
integration to all of our output components and data inputs. 
We decided to use an academic license for Altium Designer to 
design our a printed circuit board to meet these needs. Figure 
6 shows the final design of our printed circuit board. The 
female headers P2 and P3 correspond to the headers 
supporting I/O functionality, while the headers P1 correspond 
to the pins needed to program the Atmega328. In order to 
power each IC and Microcontroller, we provide 5V and GND 
to 2 pins to provide adequate voltage for every device. We 
were able to manufacture the PCB with JLCPCB and ordered 
5 different PCBs to make sure we had enough for testing and 

failure. We hand soldered our PCB and tested with programs 
that signal an LED on and off at each I/O pin. After each pin 
was tested and our Atmega328 signature was read by our 
programmer, we knew that we had successfully created a PCB 
that we can use in our design. 

 
Figure 7: PCB Schematic 

C.   Product Functionality 

During CDR we had a fully functioning greenhouse with a 
slight hiccup. Shortly before the presentation our PCB 
received a short leaving it ineffective. We had a working video 
of the enclosure, on a PCB, to show the reviewers that it was 
working and that it was just an unforeseen issue. However, all 
other components were working as expected: code 
functionality checked out, all output and input devices were 
responsive, everything was powered using our power network, 
and the raspberry was successfully hosting a website to track 
live data of the greenhouse. 
 
D.  Product Performance 

To ensure the first specification was met, a 15V 13.4A PSU 
[15] was used to provide a base DC voltage limited to 200W 
as well as implementing variable lighting output dependent on 
monitored insolation.  To ensure year-round growth 
temperature would have to be maintained at ~70 degrees 
Fahrenheit while near a window.  To do this during winter, 
heating and insulation was needed, a heating cable per tier was 
used to heat the enclosure, however no insulation had been 
installed at the time of campus closure and data was unable to 
be collected.  If one cable per tier was insufficient, there was 
room in the budget for 2 cables per tier. The Atmega328U was 
used to control automation through sensor input and 
subsystem control using a shift register for each tier to 
organize controls. Our logging and plotting was functional as 
we were collecting data and manipulating upon it. Our 
Atmega328 was successfully sending the data to our raspberry 
pi file system. Then custom programs were manipulating the 
data into relevant charts and graphs for a strong user interface. 
The frame of the enclosure was built to the needed 
specifications with the desired grow space provided.  The next 
step in construction would have been developing a method to 
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mount the enclosure to the window without the use of the top 
of a piece of furniture. 

IV. CONCLUSION 

We were able to meet most of the deliverables we set for 
CDR, including having a completely built enclosure with two 
tiers, a fully autonomous greenhouse with additional sensors 
and controls to support the second tier, and functional serial 
TX/RX data transfer for communication of data to the user. 
However, we were unable to complete multiple grow cycles 
by the time of CDR due to unexpected challenges with 
populating and integrating our PCB. Because of the issues we 
faced with our PCB, our system still partially relied on a 
breadboard circuit along with many circuits soldered onto 
perfboards. However, the system still functioned as planned 
and would have only required some rewiring to integrate the 
PCB once properly populated.  

The bulk of our work to meet the specifications for FPR 
would have come with fixing the issues we were having with 
populating and integrating our PCB, but we had narrowed the 
cause of the problem down to the programmer we were using 
to populate the PCB. In addition, we were actively working on 
providing continuous delivery of sensor data and output 
control to the user via a website hosted on a Raspberry Pi, as 
detailed in Appendix H. The rest of the work required to finish 
our product would have been mostly cosmetic, as we were 
planning on organizing all hardware, circuitry, and extra 
wiring into a control box so that it was securely stored and out 
of harm's way.  

It is very unfortunate that SDP was stopped early due to 
Covid-19 as our team was really invested in the project and 
were looking forward to finalizing the project into a finished 
product.   
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APPENDIX 

A. Design Alternatives 

Much of the discarded technology was related to irrigation. 
The two main factors that lead us to our irrigation system 
design were the overall health of the plant, and the ease of 
automation of the system. Specifically, for microgreens, 
irrigation can be very difficult, as one has to make sure that 
the soil stays damp enough between watering cycles without 
overwatering, while also keeping the plant and its leaves clean 
to ensure its health [3]. This makes conventional top-watering 
methods much more difficult to implement as one would have 
to be certain that no soil is contaminating the microgreens at 
any point in the growing cycle. Although this may be realistic 
for someone to do manually, it was not reasonable for us to 
implement as an automated irrigation system. Two other 
irrigation designs were originally looked at, hydroponics and 
gravity fed watering. Hydroponics was discarded to increase 
accessibility for the customer. Gravity fed originally 
incorporated the use of a valve to control the water flow; this 
would require the water reservoir to be above the enclosure, 
making it more difficult to change out and also increasing the 
chance a water leak could cause damage to electronic 
equipment located below the reservoir.  The soil moisture 
sensor was to be used in determining when to water the plant, 
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however scheduled watering provides adequate water supply 
to plants. We originally were planning on using a louvre for 
air intake and fan for air outtake to design our air flow system. 
However, we decided to discard the louvre because the fan 
used for air outtake was not powerful enough to open the 
louvre on the opposite side of the enclosure. We ended up 
deciding to use an intake fan to replace the louvre, which 
allows for the amount of air intake we originally desired. 

B. Technical Standards 

Due to the cancellation of final product reviews, our 
functioning product at the time of CDR did not meet any 
technical IEEE standards as it was still under final 
developments. 

C. Testing Methods 

In order to test our system as a whole, we first needed to 
test each part separately. We first had to test that our sensors 
were collecting adequate and correct data. We tested out 
humidity/temp sensor by placing it in a container with a 
working thermometer and humidity reader. We then collected 
values and made sure our sensor was reporting with +/- 5%. 
We then tested our LDR’s by getting readings of resistance 
across the LDR in low, medium, and high light conditions. We 
were then able to correlate resistance values with light 
conditions which we use in the control of our program. We 
lastly tested our float sensor by placing it in a full tub of water, 
and empty one and found at exactly what amount of water the 
float sensor will trigger an empty container. We then needed 
to test our output controls starting with the fans. To test these, 
we first plugged them into 12V voltage buses to make sure 
they have adequate airflow. We then tested them connected to 
a switch controlled by the Raspberry Pi. We would trigger an 
on signal from the Raspberry Pi, and then check to see if the 
fans were on or off. We then did the same experiment for the 
LED. We connected the LED to a 4.5V bus and made sure it 
was functioning. Then we added a switch to the Raspberry Pi 
and sent an on/off signal to the LED to make sure it was 
turning off through a condition set on the Raspberry Pi. We 
followed the same steps for the water pump and the heating 
cable, both connected to 12V buses and a switch. Once we 
knew that our sensors were collecting proper data and we 
could control our outputs with the Raspberry Pi, we needed to 
test everything together in our main logic flow. In order to do 
this, we needed correct logging functionality because we could 
check our system working with the logs.  

 After our MDR, we knew that we had functioning 
outputs and functioning inputs, so we needed to migrate the 
design to a PCB and test complete functionality. With our 
PCB under design and fabrication, we built our PCB on a 
breadboard for initial testing, shown on Figure 8. We needed 
to build a testing center with our new microcontroller, so we 
decided to use an AVR programmer to download code onto 
the Atmega328. For this, we built a header for our 
programmer to download onto, and a breadboard to hold our 
parts. We tested our output controls through the signalling of 
our Atmega I/O pins and the signalling of our shift register I/O 

pins. We tested the signal to a BJT, which would turn a LED 
on and off. Once we were able to control an LED, we knew 
that we needed to build a functional main control code and 
treat the LED’s as our outputs. Once we were able to build this 
to test our outputs, we needed to make sure that our 
Atmega328 was collecting data from our DHT11 and LDRs. 
Without a console, we decided to interface an LCD screen in 
order to see data collected by the Atmega, which is shown in 
Figure 9. Once we knew that our sensors were integrated to 
our microcontroller and our outputs could be controlled, we 
knew that we could continue. The last test we needed was to 
confirm data was being sent to the raspberry pi. We tested this 
using a serial listener on the raspberry pi and sent controlled 
variables from the Atmega328. Once we confirmed this was 
working, we needed to integrate the design to our PCB, which 
was fully tested before on the breadboard.  

 Because we tested everything on our own breadboard, the 
integration to PCB was easier than expected. We just used the 
connection test to confirm strong solders, and then began 
using some testing methods to control out I/O components. 
Then we needed to integrate out power buses, which were 
tested from our PCU, and connect everything together. 
Isolated testing made debugging much easier, for as we 
connected devices, we knew they worked separately. 

 
Figure 8: Breadboard Circuit 

 
Figure 9: LCD integration for data integrity 

D. Team Organization 

Our team has shown great chemistry and comradery when 
working together to complete this project. Our project 
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manager is Austin, and everyone has taken leads on separate 
parts of the project, which are listed below. Though we have 
separate leads, we have all worked together to complete tasks. 
Jason and Austin worked together to send a signal from the 
raspberry pi to switch voltage buses that Matt created. Austin 
must work together with Jason to implement logging inside 
the main control code that Jason wrote. Our prototype is 
installed at Matt’s home in order to obtain sufficient sunlight, 
and Jason has needed to implement new design features 
remotely which means Jason and Matt had to work closely 
together to make the proper changes on the prototype itself. 
Nate did most of the plant research and product research, so he 
worked together with everyone to make sure the right parts 
and conditions were set. We have a communication server set 
up in order to work together efficiently, even when we are not 
together in person. Communication can break down, but the 
way we are constantly able to come together in person to solve 
issues is in person. 

After MDR our team came together to work on issues as a 
group more so as our product was coming together and needed 
parts to integrate. Matt worked on getting our power buses 
controlled to specific power requirements from a 250W PSU. 
Jason worked on the integration of our python code to C, and 
then built the testing systems on the Atmega328. Austin 
focused on building the PCB, so he worked closely with Jason 
as the breadboard controlled the design of the PCB. Austin 
also worked on integrating the sensors with the Atmega328 
and data transmission to the raspberry pi. Matt, Jason, and 
Nate built the box itself, while Nate designed the irrigation 
and air flow systems. We all came together to integrate parts 
and test the systems built out together. Nate worked on 
soldering breakout boards to handle the BJTs and MOFSETS 
used for switching mechanisms, while Matt helped with the 
fine-tuned soldering. Nate built the website that will be hosted 
by the raspberry pi and worked on data collection as well. All 
in all, our team came together in the end to build a great 
product that was driven through teamwork, as we all had to 
work together to integrate our final parts. It is a bummer we 
cannot present together as a team. 

 

Team Member Responsibilities 

Austin Hiller 
(Manager) 

PCB, Sensor integration, Data, 
serial transmission 

Nate Lemons Irrigation, airflow, breakout board 
soldering, website 

Matt Sargeant Power buses, power management, 
final soldering 

Jason Trainor Control code, testing systems, 
Sensor integration, lead developer 

Table 2: Team Member Roles and Responsibilities 

E. Beyond the Classroom 

For this project to be successful we had to learn a lot in 
relation to growing plants. For example, we learned that 
temperature is the most critical parameter to control 
microgreen growth, and that the watering of microgreens has 
to be done much more carefully than most plants to ensure that 
the plants are not contaminated in the process. We can 
attribute the majority of our gained knowledge to research 
done on the growth of microgreens specifically, but we also 
learned a lot thanks to communication with various professors 
from the Stockbridge School of Agriculture here at UMass. 

F. Data 

In order to show that our design is working, we needed to 
implement a way to track temperature, humidity, and 
resistance across our LDR’s. We also needed to track the 
states of our outputs, i.e. fan, light, pump, in order to correlate 
our output states to our greenhouse conditions. We chose to 
implement a logging feature in our code that stores logs on our 
Raspberry Pi. Every 10 minutes our logs are updated with the 
current conditions of the greenhouse and the states of our 
outputs are logged as well. The logs are stored on our system 
and accessed when we want to display and plot our data or 
check on system functionality. 

We use our logs to create plots on our own computers in 
order to represent our data in a visual format. Figure 9 shows 
our plots after 3.5 days and shows really strong data in regard 
to the conditions we set. The temperature plot is significant for 
we set a 60-degree Fahrenheit condition, and we were able to 
maintain that condition for almost 4 days. Our light readings 
show really strong data as well, for when the reading is at 10k 
ohms, it is nighttime, and we are able to track that through 
data. When the reading is below 1k ohms, it is day time and 
we do not need to trigger any of our own LED’s, so we can 
determine that by placing the box on a window sill, the sun 
can produce enough light to grow our plants. 

 
Figure 10: Data plots for temperature, humidity, and LDR values 

We decided to set our temperature control to 70 degrees 
after 4 days to see if our heating system will be strong enough 
to heat the greenhouse sufficiently. In Figure 11, you can see 
the jump in temperature, but we were only able to reach an 
average of 67 degrees. This proves that we can change the 
conditions in the box with our variable controls, but we will 
need to add in more heating unit to provide sufficient heat. We 
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are impressed with this result because it is now wintertime and 
we are using a container with negligible insulation. Another 
key data trend to notice is the increase in humidity (Figure 
12), after we set the new temperature condition. Because the 
70-degree conditional was never met, our system was in 
constant heating mode, which is heaters on, and fans off. This 
should theoretically increase humidity, which we were able to 
measure in Figure 12. This is a strong data trend line because 
we believe humidity will be the hardest variable to control and 
we were able to control and measure a change. 

 
Figure 11: Temperature plot over time 

 
Figure 12: Humidity plot over time 

The last strong set of data we collected is Figure 13, our 
light resistance over time. This plot shows light resistance 
over 12 days. When the plot is at 10k resistance it is nighttime, 
and when it is low, it is daytime and transitional time. During 
this time, our light system got stuck in an always on state, 
which is represented by the middle of the plot, where when it 
is nighttime, the ohm readings stayed around 1k. This 
conditional mistake was actually able to show us that our 
single LED is able to produce around 1k of light resistance, 
which is our ideal value for growing microgreens. During this 
time our plants got too much sunlight, but the data is able to 
prove to us that we can simulate enough sunlight to grow our 

plants. 

 
Figure 13: LDR value over time 

This data shows that we were able to optimize and alter 
environmental data in a small plastic container. This also 
shows that we are able to collect, log, and plot environmental 
conditions of our greenhouse that we can translate to our final 
greenhouse. After MDR, we wanted to focus our experiments 
and data in controlling temperature in our greenhouse 
structure, as we were increasing the size of the container by 3, 
and not changing the size of our heating element. We believed 
that the heating element would be able to control temperature 
as the new structure had an optimized cooling system and 
stronger insulating elements. We decided to conduct the same 
experiments to control heating and cooling of our new 
greenhouse. We conducted the following experiments outlined 
in the graphs below.  

- Maintain temperature at 60 degrees, starting at a 
higher temperature so our cooling system will be 
strained and utilized. Figure 14 

- Maintain temperature at 65 degrees, starting at a 
cooler temperature so our heating system will be 
strained and utilized. Figure 15 

- Maintain temperature at 70 degrees, starting at a 
cooler temperature so our heating system will be 
strained and utilized. Figure 16 

These experiments range between 60 and 70 degrees 
Fahrenheit, which is the optimal temperatures that most 
microgreens grow at. These experiments show strong data that 
our system is able to control and maintain temperatures 
throughout the conditions we will be setting. This also tested 
out heating and cooling systems as we started at different 
temperatures than those that will be maintained. 
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Figure 14: Maintaining temperature at 60 degrees Fahrenheit  

 
Figure 15: Maintaining temperature at 65 degrees Fahrenheit  

 

 
Figure 16: Maintaining temperature at 70 degrees Fahrenheit  

 
 
 
 
 
 
 
 
 
 
 

G. Power Distribution Schematic 

 

 
Figure 17: Power distribution schematic 

H. Website Hosting and UI Design 

In order to provide useful data and information about 
different components of our system to the user, we set up a 
website hosted on the Raspberry Pi to provide real time data 
from the greenhouse. As shown in Figure 18 below, the user 
interface included real time values for environmental 
conditions such temperature, humidity, LDR sensor output, 
and reservoir status. Because this data is gathered and stored 
on the Raspberry Pi in our system, the website also included 
plots for temperature, humidity, and LDR sensor data 
computed with real time values so the user can confirm that 
the system is operating as expected. This user interface would 
be incredibly useful because it also serves as a medium for our 
system to notify the user of important events that require user 
intervention such as when the reservoir requires a refill in 
order for the plants to continue to receive watering cycles. 
Overall, this website provided a useful and convenient way for 
a user to monitor the growth of their microgreens. 

 
Figure 18: Website user interface 


