
SDP20 – TEAM 23 - Comprehensive Design Report

1

Abstract— Every day we come across the issue of having to

drive to work, but the biggest problem of them all has always

been parking. Worrying about where you must park? The

purpose of SPI is to provide a low-cost interface that allow you to

view live availability of parking spaces near your location.

Growing traffic volumes, increasing air pollution, rising costs: A

mobility solution cannot solve all your infrastructure challenges

on its own. But it will always contribute to making your city or

municipality even more modern, more attractive, and more

environmentally friendly.

I. INTRODUCTION

Daily drivers run into the daily problem when driving to a

public place, PARKING. Finding parking, especially remotely

is very difficult. Time spent wasted trying to find an open

spot, increased carbon dioxide emissions, and overall personal

stress are all main drawbacks of not having a smart parking

infrastructure in place. Our product is a sensor network that

offers an application with real time analysis of open and

occupied parking spaces. The system will allow you to see the

real time availability of the spots in the designated destination

and provide a timer/notification if you are running low on

your parking meter time. Our product, SPI, will be a fully

scalable solution with a robust infrastructure behind it,

offering a much-needed solution to parking services.

A. Significance

Wireless sensing networks have made great strides in recent

years in improving and refining current systems in place,

while also being incredibly diverse in their application. These

systems can include numerous sensing nodes to receive data,

and then subsequent actions can be acted upon that data with

accurate and efficient results. Increased population density in

growing communities also coincides with increased levels of

road vehicle congestion, reduced mobility, business access,

housing and leisure activities, as well as on-street parking

accessibility. According to a recent poll, motorists spend an

average of 17 hours a year searching for parking spots. This

adds up to around $345 per driver in wasted time, fuel, and

emissions [9]. With the use of this product, that congestion

and trouble can be curtailed with precise monitoring and by

allowing users to access this sensor information to better

traverse a parking lot. In fact, this data that these sensor nodes

are gathering can have more applications in evaluating a

variety of things such as distribution of cars, reserving parking

spots, billing, and more all for the benefit and ease of

customer and administrative use.

A.D. Author from Boston, MA (e-mail: emunguia@umass.edu).

E.M. Author from Providence, RI (e-mail: adonadio@umass.edu).

B. Context and Existing Products

There are already several solutions to this issue of enabling

smart parking using sensor technologies, such as the Siemens

Intelligent Parking Solution [5]. This technology utilizes in-

pavement and overhead detectors to monitor parking spaces.

The sensor uses an algorithm to calculate whether an object is

present and the size of the object. Compared to our design, this

design uses radar which can be expensive to build nodes out of.

Also, radar can over generate information that can prove

difficult to parse what is needed, especially when it is

transmitted wirelessly, and with are multiple signals vying for

the same space. All that data can become questionable with

little wave space, too much data, and so many signals.

Next, looking at the Inrix Ultrasonic Parking Availability

Technology, we see the use of ultrasonic sensors to detect

vehicle presence [4]. This technology is significantly more

expensive than other technologies, and the data itself is more

susceptible to error, since it requires a flush surface to bounce

off of and bounce back to, and cars so often are not parked well

at all.

This paper will propose a method using magnetometers, and

wirelessly transmitting that data in a power efficient and cost-

effective manner, with real world results demonstrated by

testing done in our very own university campus in real time.

With such little information needed to transmit, merely the

coordinates of the magnetic field surrounding each

magnetometer, there will be significantly less chances for error,

and an ease in transmitting unparalleled. Reducing our sensor

nodes to as little current being used as possible, we will ensure

a lengthy battery life to make it easy on the administrative side

of things. The goal here is to supply real time information to

users of an Android application of whether an individual

parking spot is open, to remotely access these spots ahead of

time.

C. Societal Impacts

The main group of people we would target as customers

would be universities, large corporate offices, or any owner

where parking is a main concern. The customers/people who

visit these places would benefit the most as they would know,

in real time where to park. Also, the owners themselves would

benefit because of increased traffic flow. Parking services

might see a decrease in employment as we aim to automate

parking services with our design. We made our design to be

easy to implement and portable. The owner should be able to

implement the system and then have the users reap the benefits.

While we aim to have a 100% accuracy rating, we may

D.P. Author, Jr., from Tyngsborough, Ma (e-mail: dperry@umass.edu).

M.S. Author from Franklin, Ma (e-mail: mskaza@umass.edu).

Edwin Munguia, EE, Michael Skaza, EE, Alexander Donadio, EE, and Daniel Perry, EE

Smart Parking Infrastructure (SPI)

SDP20 – TEAM 23 - Comprehensive Design Report

2

experience glitches in the system at certain times. A main

consequence if our system experiences one of these glitches

would be the false information given to the user. This in turn

may lead the user not to use the application, thus making the

application useless.

D. Requirements Analysis and Specifications

The requirements of our design can be summed up into two

categories: Accessibility and Accuracy. A crucial component to

our product is its ease of use and easy installation. We are

basing our design on a simple set up and practical user interface.

The second requirement, accuracy, pertains to the level of

precision that we are striving for when collecting data in order

to make the design feel reliable and accurate. Table 1 below will

provide our specifications for our design.

Requirement Specification Value

Accuracy Presence of

vehicle

> 90%

Battery Life expectancy At least 6

months

Portable Application

show parking

status

None

Weather Operable in all-

weather

conditions

-20 F to 140 F

Responsive Latency Every 1 min

Table 1: Requirements and Specifications

II. DESIGN

A. Overview

Now that we have explored the goals of our system, we can

examine the system that we are developing to deliver these

features. We will work from a high level down to explore each

piece that composes our system. Our system is comprised of

four main components: the enclosure sensors, the gateway, the

cloud computing, and the application. A visual representation

of these subsystems and their interactions involving inputs and

outputs can be viewed in our block diagram in Figure 1.

After converging on the idea for this system, the next step

was to discuss its implementation. The question was asked:

“How can we create a low-powered and low-cost device?”

After conducting some research, we discovered a device called

a magnetometer [10]. A magnetometer measures the strength

of the magnetic field at a position in space. An example of a

magnetometer is a compass, which measures the direction of

Earth’s magnetic field. In our project, we will utilize the

magnetometer to sample coordinates of Earth’s magnetic field

in the X, Y, and Z direction. We needed to think of a

multitude of scenarios of which our device can fail and make

sure that our system would work under all these scenarios.

We were really worried about was temperature and what

type of enclosure it should be in. If you refer to system

specification, we want it to work under all weather conditions.

We had to research an enclosure that allowed this while not

interfering with our electronic system it was contained in.

After some extensive research we found an IP67 rating

enclosure which would not interfere with our electronics and

can withstand the all sorts of weather in temperatures rating

from -20 F to 140 F.

Our next concern was how are we going to detect a car

accurately every time it parks over the parking spot. Our first

proposed concept was to use an ultrasonic sensor [6] which

uses basic principle of sound propagation and reflection by

material in the ultrasonic frequency range. By applying this

principle, ultrasonic sensors can still function well in

conditions where light intensity is low or dark. This was

considered because it was such a great sensor that was low

powered and could provide great reliability. However, the

downside to using such sensor is that if we park the car at an

angle the wave will not be able to reflect of the car and go into

the receiver. Refer to Figure 2 for a visual. This led us to find

the magnetometer, a sensor which is reliable and detects the

magnetic field around it allowing us to detect a vehicle

presence.

Figure 2:Reflection of Objects using Ultrasonic Sensor

B. Sensor

In order to detect the magnetic field of the earth, we utilize

the MAG3110 [1], which is a magnetometer that detects the X,

Y, and Z coordinates of the earth’s magnetic field. The sensor

is ultra-small having dimensions of 2 mm x 2 mm x 0.85 mm,

0.4 mm pitch, in a 10-pin package [1]. It has sensitivities down

to 0.10 microTesla, meaning we will able to detect earth’s

magnetic field (which is usually around 50 microTesla) [2]. A

car can be modeled as a large, concentrated piece of metal,

which disrupts the magnetic field. Once a vehicle drives over

the sensor, the magnetometer senses a disruption in the

magnetic field, and can perform the required action.

Throughout the semester, many tests were performed to test the

Figure 1: Block diagram

SDP20 – TEAM 23 - Comprehensive Design Report

3

magnetometer. We performed tests in open fields and parking

lots to get accurate readings of earth’s magnetic field when no

vehicle was present. Also, tests were performed in parking lots

with vehicles surrounding an empty spot.

C. Control and Transmission

For our sensor network to be effective and efficient, we need

it to last for a long time. In order to conserve power, we decided

to only transmit our sensor data (which is the most power

hungry) every time a drastic change in the magnetic field is

sensed. In order to do this, we utilize deep sleep algorithms

embedded in the Arduino and Xbee Series 3 transceiver [3].

This allows the network to only transmit a few times a day,

because only a few changes in parking lot status happen every

day. The Xbee Series 3 utilizes the Zigbee protocol which

operates on the IEEE 802.15. 4 physical radio specification and

operates in unlicensed bands including 2.4 GHz, 900 MHz and

868 MHz [3]. The Arduino awakes the MAG3110 everyone

minute, samples the magnetic field, and if a drastic change

(which is programmed to be a difference greater than 2 standard

deviations of testing data) is present, then the Xbee transmits

the data to the gateway.

D. Gateway

The gateway consists of an ESP8266 [7] and another Xbee

Series 3 transceiver. The gateway does no computing, it rather

serves as a path to receive data from the sensor network to the

cloud. Once again, low power modes are implemented on both

the ESP8266 and the Xbee transceiver. The gateway is plugged

in to an outdoor power outlet.

E. Cloud Computing

Once we receive the raw XYZ measurements from the

magnetometer [1] data relayed from the wireless gateway, it is

then the responsibility of our cloud application to determine if

the spot is currently occupied, where the server will then

update the database accordingly. To see if a sensor has a car

above it, our currently implementation is to see if the Z

direction of the magnetic field is above a certain threshold, we

obtained from average car sensor readings. Our rationale for

doing this calculation on the cloud rather than the physical

device was so the car detection algorithm would be easier to

change in this future. These changes would affect the entire

system independent of updating each individual parking

sensor’s firmware, which would be very difficult given a large

number of sensors. Once we determine if there is a car present,

we then update our database hosted on Google’s Firebase with

a 1 to indicate the presence of a car, and a 0 to indicate there is

no car which would then be visible to the android application.

F. User Interface

The final subsystem is consisting of an android application

that will provide real time information about the availability of

the parking spaces. Our plan was to create an easy to use

application that would make finding parking more efficient

and save time. Smart Parking Infrastructure was programmed

in Android Studio using the programming language Java. This

platform provides a lot of tools/resources to approach Android

Application Development. It provides the SDK tools which

are resources being provided by Android Studio to enable

specific features and tools needed to make the application user

friendly. Our current minimum SDK version is Android 4.1

and our target was the latest version of Android 9.0 Pie.

 For out project, we used the following SDK tools:

• Android SDK Build-Tools: Used to debug, build,

run, and test an Android application.

• Android Emulator: Allows us to emulate an Android

device to test our program without having to upload

an APK file onto an Android device. We used a

phone for testing instead of an emulator.

• Android SDK Platform-Tools: Used to support the

features for the current android platform

• Android SDK Tools: Downloadable component for

the Android SDK that includes the complete set of

development and debugging tools for the Android

SDK

• Firebase: Used to establish connection to our cloud

platform.

All the tools were taking into consideration when buying our

phone for testing and interaction. We selected the LG Phoenix

while taking into consideration the budget and our goals and

decided it was the best for our purposes.

 While programming the application, we ran into two major

issues. How are we going to able to connect to our cloud

platform and how are we going to display the parking spaces

available in a user-friendly manner. In order to solve our first

main issue, we discovered that Android Studio had a

downloadable SDK that will allow for an easy to use

implementation when coding in Android Studio. With the use

of this SDK the android application will always have a secure

connection to the database server if the device is connected to

the internet. Figure X shows how connection to Firebase is

established. The app engine in our case is Android and it is

synchronized through all of our devices that are constantly

updating data from our database.

Figure 3: Connection to cloud

This allows us to constantly be providing the user the most

accurate and recent data as possible.

 The next issue is how are going to create a physical map of

the parking spots available in order to show the user a top

view layout of the parking lot while also showing them live

data. We decided to hand create our top layout of the parking

spaces using a software called AutoCAD [8]. This allowed us

to create the parking lots by tracing all of them. This allowed

us to easily implement how the data we receive from the cloud

will change the parking spot availability. Figure 4 shows the

basic user interface that we have developed so far. It is a

SDP20 – TEAM 23 - Comprehensive Design Report

4

dynamic list that updates based of our cloud server which

displays the status of the parking spots.

Figure 4: User Interface displaying parking spot (Red = Taken,

Green = Available)

III. PROJECT MANAGEMENT

Progress on the project has overall been consistent. All our

proposed MDR deliverables can be viewed within Table 2, as

well of the completion status. All deliverable status was met to

satisfaction.

MDR Deliverables

Deliverable Status

We will show the ability to

detect vehicle presence with

use of a magnetometer at an

accuracy rating of 90%

Completed

We will be able to send

XYZ coordinates of the

magnetometer’s readings via

Zigbee protocol to the

receiver and ESP8266

Completed

Graphical User Interface

will be in basic stages,

showing green as open and

red as taken

Completed

Show basic map/layout of

parking area and show the

appropriate status of the

parking spot as read by the

magnetometer.

Completed

Receive relayed Sensor Data

from ESP8266 over internet

Completed

Update Database in

accordance with received

sensor magnetometer

reading

Completed

Push out requested database

information to Android

Application

Completed

Table 2: MDR Deliverables

There is still plenty of work needed to be completed for us to

be satisfied that out project is complete. Our primary goal in

the software side is to continue to add additional

functionalities to the cloud server and application in order to

make it a true application and have a great user interface.

Through the hardware side we will be creating the PCB and

make the enclosure encasement that will hold it. We plan on

adding more sensors so we can see the functionality of

everything working together. Please look at the Gannt Chart

below to look at the additional functionalities that we are plan

on doing.

 Team member contribution levels have not been concerning

thus far. All members have contributed in some way to a key

aspect of the project. Having a team composed of both

Electrical Engineering with a wide knowledge of software and

hardware has proved beneficial, as this project requires

aptitude in facets from both fields. Communication between

all group members has been consistent and meetings have

been scheduled and attended by all members regularly.

IV. THE PRODUCT

A. Product Overview

Seen below in our product sketch in Figure 5 and actual

pictures of our network in Figure 6, we had the 2 nodes in the

network up and running.

Figure 5: Product Sketch

SDP20 – TEAM 23 - Comprehensive Design Report

5

B. Electronic Hardware Component

As shown above in Figure 6, we had completed our PCB and

it was fully populated and functional. We designed it in

Altium, and it consisted of many components. First, we had a

lithium ion battery to power the board. This ran into some

power electronics consisting of a diode, capacitors, and

voltage regulators. Next, we had a the ATmega 328P

microcontroller handling the magnetometer. Also, that was

connected to the Xbee chip which communicated the data to

the gateway. In total, we had two of these PCB’s working

functionally, each identical with different channel numbers.

Lastly, we had the gateway hand soldered. This consisted of

an ESP8266 and another Xbee transceiver. This was plugged

directly into an outlet. All these sensor boards were enclosed

in a Pelican 1010 Micro case, which is rated at IP67.

C. Product Functionality

Because our PCB was the main hurdle we faced in the second

semester, and we had it functional at CDR, our project was

mainly completed. We had 2 sensor nodes running properly,

both connected to the gateway, and able to update our Android

application effectively. For CDR, we tested 100 times and

94% of the tests were accurate. For FPR we really wanted to

get this to as close to 100% as possible and that was going to

be our focus for the remaining of the semester.

D. Product Performance

As mentioned above, we met our specification of at least 90%

accuracy by testing at a 94% accuracy rating. The next

specification was for the battery to last at least 6 months. We

calculated a 7-month battery time by utilizing 1200mAh

Lithium ion batteries and only transmitting data when there

was a change in vehicle presence. Next, we wanted to show

the application showing parking lot status, which we did

through the Android application. Next, it had to be operable in

all weather conditions, which we satisfied by utilizing the

Pelican 1010 cases. Lastly, we wanted to update the map

every 1 minute, which we satisfied through our programming

of the ATmega chip.

V. CONCLUSION

 The prototype of the SPI device is working satisfactorily.

The sensor network can reasonably detect the presence of a

vehicle, and then successfully relay that through Xbee chips to

an ESP Gateway. From the ESP, which is connected wirelessly

to IoT, the information of the magnetometer is relayed to

Google’s Firebase, our ‘Cloud’ server. In this data base, the

computation to determine whether there is a vehicle present or

not is decided, and the Android application is then updated,

with the display showing green for a spot that lacks a vehicle,

or red if it is taken. Putting the sensor circuit together, with the

magnetometer and a voltage regulator attached to the Arduino

on a breadboard and connecting the ESP and the Arduino with

the Xbee chips enables all this to happen. The server had to be

set up and configured on Firebase, and the application was

encoded, ensuring the two-way communication necessary, and

with proper graphics.

For FPR we really wanted to try and increase our accuracy

rating and clean up our enclosures. We wanted to make the

enclosures more robust and add mounting plates.

ACKNOWLEDGMENT

We would first like to thank our advisor, Professor Amir

Arbabi for his advice and guidance throughout the semester.

Also, a special thanks to Professor Hollot, Professor Soules,

Fran Caron, and Chuck Malloch for their help with the course.

REFERENCES

[1] Freescale, Xtrinsic MAG3110 Three-Axis, Digital

Magnetometer, MAG3110 datasheet, p. 1

[2] S. User, “Earth's Magnetic Field,” Earth's Magnetic

Field.

[3] Digi, Digi Xbee 3 Hardware Reference Manual, p. 13

[4] M. Braibanti, “Our Newest Innovation: Ultrasonic Sensor

Parking Availability Technology,” Inrix. Available:

https://inrix.com/blog/2017/12/ultrasonic-sensor-parking-

availability-technology/.

[5] “Intelligent Parking Solutions.” Siemens.com Global

Website,

https://new.siemens.com/global/en/products/mobility/road

-solutions/parking-solutions/intelligent-parking-

solutions.html.

[6] Burnett, Roderick. “Understanding How Ultrasonic

Sensors Work.” MaxBotix Inc., MaxBotix Inc,

www.maxbotix.com/articles/how-ultrasonic-sensors-

work.html.

[7] “ESP8266 Overview: Espressif Systems.” ESP8266

Overview | Espressif Systems

[8] “Uses of AutoCAD: Basic Concepts About

AutoCAD.” EDUCBA, 12 Dec. 2019,

www.educba.com/uses-of-autocad/.html

[9] K. McCoy, “Drivers spend an average of 17 hours a year

searching for parking spots,” USA Today, 13-Jul-2017.

Figure 6: Photos of Sensor Network and Application

SDP20 – TEAM 23 - Comprehensive Design Report

6

[Online]. Available:

https://www.usatoday.com/story/money/2017/07/12/parki

ng-pain-causes-financial-and-personal-strain/467637001/.

[10] “Magnetometer,” Wikipedia, 22-Jan-2020. [Online].

Available: https://en.wikipedia.org/wiki/Magnetometer.

[11] Microchip, ATmega48A/PA/88A/PA/168A/PA/328/P,

megaAVR Data Sheet

APPENDIX

A. Design Alternatives

Originally, the design we determined called for a

microcontroller connected wirelessly to a Pi, which in turn was

connected to a cloud service, Amazon Web Services provider,

or AWS. For the prototype, we decided that the microcontroller

should be an Arduino for ease of use, and to program and work

with easily. As we move forward, the Arduino will be swapped

out with just an Atmega328P chip to ensure maximum power

savings [11]. We decided on using Xbee chips using Zigbee

protocol rather than normal Wi-Fi since it draws less current,

resulting in a lower power consumption. In a similar vein, we

also decided on using an ESP chip rather than a Pi since they

effectively would do the same thing, act as a conduit between

the nodes and the Cloud, but the ESP draws significantly less

current. AWS proved to be more difficult to deal with than

Google Firebase, and it allowed better and easier connection to

use Firebase with an Android application, as they align more

than with Amazon.

For the sensor, we considered using an ultrasonic sensor,

rather than a magnetometer. Ultrasonic sensors however are

significantly more expensive, require more power, and can

potentially result in more error due to requiring bouncing off

flush surfaces. Magnetometers are much cheaper to make and

for the purposes of detecting vehicles, much more reliable. The

magnetometer we chose also requires a very low amount of

current and can idle at even lower amounts. Cheap, power

efficient, and reliable are all valued in our project.

B. Technical Standards

In our project, the main standard we followed was

the ZigBee/IEEE 802.15. 4 protocol. This is a specification

that is used for wireless networking to create low power

digital radios for low power needs. Next, we meet IP67 rating

by enclosing our product in the Pelican 1010 Micro case. IP67

rating refers to the Ingress Protection Code, IEC standard

60529, means that it is both dust tight, and can be immersed in

water, up to 1 meter for 30 minutes. This standard was

important to meet because we wanted our product to be suited

for all weather conditions. Lastly, we utilized the Google

Firebase platform and followed the JSON protocol which is a

data interchange format. This was compatible between our

transceivers and the cloud communication. Overall, we

followed many standards and protocols to create a universal,

functional product.

C. Testing Methods

For the sensor network, many tests were performed. The first

tests performed was simple X, Y, and Z magnetometer readings

outside, with no vehicles present. We tested over 100 of these

scenarios to determine an accurate threshold value for an empty

parking spot. Below is data we gathered from one of those

days of testing. Also, it is important to note that we varied time

of day, and weather conditions when performing this threshold

testing.

We decided to make our threshold value 317 microTesla,

which was calculated by taking the standard deviation of all our

data when a vehicle was present. In order to account for

unwanted noise, we added a buffer of +/- 2% of this standard

deviation. This means that if the magnetometer read 317

microTesla +/- 2%, then no vehicle is present. After multiple

tests, this algorithm satisfied our design specifications of over a

90% accuracy rating, so we have met our requirements.

Next, we needed to test the Xbee underneath a vehicle, and

the distance it was able to transmit. Because we have these

sensors underneath a vehicle, there was concern if there would

be too much interference during transmission. To test this, we

simply setup our gateway Xbee by the parking lot and placed

another Xbee with an Arduino underneath a vehicle. The Xbee

underneath a vehicle simply sent a command to light up an LED

on the gateway. We tested this under many vehicles and were

able to do so successfully at ranges over 200 feet. Lastly, we

needed to implement and the entire system. First, we used

Google Firebase to see updates that were sent by the sensor.

Then, once the app was finished, we tested the whole system

110 times, under different conditions. Things like time of day,

temperature, location of parking spot, and vehicle driven over

sensor all varied. We were able to get an accuracy of 92%,

which met out initial specifications.

D. Team Organization

Mike and Alex were responsible for the hardware portion of

the project. This includes creating the sensor network, doing the

threshold and magnetic field testing, and creating and coding

the gateway. Mike has been mainly the group leader, sending

out emails, and organizing the reviews. Mike and Alex have

been communicating effectively and efficiently and need to

work in tandem with Dan. Dan is responsible for the cloud

computing side of things and also responsible for creating the

website. Dan works with Mike and Alex as he receives data

from the gateway and make computations on that data. Dan

serves as the backend for Edwin, who created the Android

application. Dan and Edwin must work very closely as Dan’s

information is sent directly to Edwin, where he must update the

application accordingly. The team has not really had any

breakdowns in communication as things are going smoothly so

far.

Figure 7: Testing data of vacant and taken parking spots

SDP20 – TEAM 23 - Comprehensive Design Report

7

E. Beyond the Classroom

For the hardware portion of this project, testing and

debugging have been some of the most important skills gained

so far. Because our project consists of something that needed to

be tested to gain baseline values, we needed to get enough data

to be statistically significant. Working with the Xbee’s has

proved to be challenging but having many videos and tutorials

online to help has been quite helpful. Although most videos will

not give you the exact answer, there is great documentation to

use and build off. Our team had one experience where our

network suddenly stopped working. We were able to use our

debugging skills and quickly pinpoint the problem to the fact

that we weren’t transmitting information. Classes like ECE 353

and ECE 324 really helped us in debugging and testing

strategies. In the cloud portion of the we managed to learn the

basics and some complicated features of managing the

application and the data coming from all the sensors. We

learned how to create administrator features and user features

to make the application be more user friendly for both parties.

While developing the cloud on firebase we managed to use a lot

resources like Google’s cloud book that allowed us to do a lot

of features included the cloud that were beneficial to the

application and the data being transmitted from the sensors.

For the application part we learned how to develop an

application from scratch. We also learned how majority of

applications communicate to the cloud servers and can send and

retrieve the data. We got to apply some of the technical skills

we got from school and apply them with skills we had to learn

in order to complete the application. We managed to use skills

learned from Intro to Programming and Data Structures to help

us code the entire application. We had a multitude of useful

resources like the Internet and the use of multiple professors

that have experience in creating applications. This allowed to

make connections that will be useful in our life and future

careers as professionals.

