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Abstract—The most memorable songs often feature a 
compelling (vocal) melody. Musicians often struggle to 
write melodies that are catchy and unique. The BopBot can 
inspire this creative process by offering melodies based on 
what you play into the machine. After inputting a basic 
chord progression, the BopBot will generate and play back 
a cohesive and interesting sequence of notes using machine 
learning.  

I. INTRODUCTION 

     With the introduction of the radio, musicians became able to 
share their musical creations to a much larger audience. Instead 
of exclusively sharing their music through physical media and 
in live performances, music could be spread to anyone with a 
radio. In doing this, a pressure was applied to musicians to 
create music that had broad appeal. Catchy music catches the 
attention of people quickly scanning through radio stations. 
Although the definition of “catchy” can be hard to define, it is 
usually indicative of one thing: a memorable melody that gets 
stuck in listeners heads played on top of a usually simple chord 
progression. 

A. Significance 

     Where a chord progression is generally quite simple and 
follows a generic pattern, melodies can be highly complex, fast, 
and use a higher variety of notes. Fortunately, when a chord is 
played, a “key” is established which limits the number of 
melody notes that would sound align well with the current 
chord. Despite this, melodies can use varying timings and 
change octaves, making them even more difficult to create. A 
full understanding of music theory is very helpful in 
understanding what chord corresponds to what key and timings 
of notes; however, it takes many years of study to fully 
understand music theory, and thus everyday musicians often 
lack this knowledge. Because of this, writing a chart-topping 
melody can be a very daunting challenge. 

B. Context and Existing Products 

     Using machine learning to generate music has been done 
many times in the past. In fact, much research has been done on 
the topic. Although music generation using machine learning 
has been done many times, it has not been done in the same way 
that the BopBot will do it.  
     AIVA is a subscription-based artificial intelligence program 
that generates emotional soundtrack music based on the 
selected genre or an existing MIDI file. One of the core 
differences between AIVA and the BopBot is the input and 
output. AIVA is intended to be used as a tool to replace hiring 
someone to write compelling themes for the user’s projects. 
Because of this, AIVA limits the user input to a genre or a track 
of music that it will be “inspired” by. The BopBot, on the other 

hand, takes a chord progression as an input and outputs a 
melody that is overlaid on top of the chord progression. 
Additionally, the BopBot will be functional in a live setting 
using the MIDI input from a keyboard whereas AIVA cannot 
take live input.  
     Google Magenta is an open-source program that uses 
machine learning to append similar melodies to that which the 
user inputs. This is different than the BopBot in similar ways to 
AIVA. Firstly, Google Magenta takes a melody as input where 
the BopBot takes a chord progression as input. Secondly, 
Google Magenta is not intended to be used with live input.  

C. Societal Impacts 

     The BopBot is intended to be used by everyday musicians. 
Because the BopBot will be in the form factor of a music foot 
pedal, as seen in Table 1, it will be able to be used in 
conjunction with the equipment and gear that musicians already 
own. Although the BopBot can be used as a tool to create 
melodies, it is intended to be used more as a creative-assistance 
tool. If a musician creates an interesting chord progression, they 
can use the BopBot to inspire their creative process of writing 
a melody. The BopBot can also be used as a tool in a jam 
session. In this way, it can act as another musician with his/her 
own unique ideas based upon the chord progression being 
jammed to. A concern of ours regarding the BopBot is that it 
will be used as a crutch for newer musicians to create melodies. 
Although the BopBot can be used in this way, it may instill bad 
habits on learning musicians. 

D. Requirements Analysis and Specifications 

 

 
Table 1: System Specifications 

II. DESIGN 

A. Overview 

 
Figure 1: Block Diagram 
 
     To solve this problem, we are using a recurrent neural 
network. We decided to use this type of machine learning 
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network for several reasons which will be explained in detail in 
the section that goes over block 2. We are using a Raspberry Pi 
as our development platform and moving to a Raspberry Pi 
Compute Module for our final PCB. We decided to use the 
Raspberry Pi because it suits our needs well. We needed a 
system capable of running an operating system so we could 
easily compile the code that is necessary to generate our 
melodies via machine learning. We also needed a fairly 
powerful processor to ensure that we completed melody 
generation in a reasonable amount of time (5 seconds). 
     The first major block in the block diagram is the MIDI 
decode stage. Roughly speaking, this is the “recording stage” 
where the user input from the keyboard is turned into a format 
that can be used with our machine learning models to generate 
a melody. As you can see in the block diagram the decoded 
inputs (4 chords) are sent to the next major block in our 
diagram, the recurrent neural network. After the second block 
has generated a melody, the output is then sent to the third and 
final major block in our design, the MIDI encode stage. This 
can be thought of as the “playback” stage where the output from 
the machine learning is reformatted into MIDI so it can be 
output to a speaker. Besides the three main stages, there are 
several peripherals which allow for the user to alter different 
settings concerning the recording and playing back parameters. 

B. Block 1 - MIDI Decode 

     The first stage to happen in our project is the MIDI Decode 
stage. This stage can be further broken down into two separate 
steps. The first of which is sampling the user input at the correct 
time steps. Human beings struggle significantly with keeping 
consistent time. Even trained drummers, or lifelong 
professional musicians struggle to keep consistent and accurate 
time. Below is a plot [1] of the tempo variation for Led 
Zeppelin’s classic song “Stairway to Heaven” 

 
 

Figure 2: Tempo variations over the course of “Stairway to Heaven” 
by Led Zeppelin. Measures the average beat variation from the 
average BPM of the song. Y-axis is variation, X-axis is time. 

     As you can see from Figure 2, keeping consistent time is 
something that is virtually impossible for any given person. To 
fix this issue we implemented something we referred to as a 

“rounding interval”. Due to our machine learning inference 
architecture, the input into the Recurrent Neural Network is 
four chords, we sampled the user input at the start of each bar 
line. A visual representation of the rounding interval is given in 
Figure 3. 

 
Figure 3: Visual representation of the rounding interval 
implemented to correct for variations in user input tempo.  
 
     To choose a proper amount of time we conducted various 
trials measuring each group members variation from proper 
timing. To do this we played a metronome at 120 BPM, in 4/4 
time and simply printed out the difference in time between 
correct time and the time the user played a note. We found that 
after conducting 10 trials per team member, no variation was 
greater than .25s before or after the bar line. Furthermore, our 
rounding interval was chosen to be plus/minus .25s from the bar 
line.   
     Now that a means to account for incorrect timing from 
human input has been implemented, we can move on to the 
second step in the MIDI decode stage, which is categorizing the 
chords as they are being played. This step can be further broken 
down into two more steps which is defining what notes belong 
to which chord, and then how to name these chords to be used 
by the machine learning model. The first step in this process is 
defining what notes belong to the same chord. A chord is simply 
a sequence of three or more notes played at the same time. To 
determine which notes belonged to which chord we repeated a 
similar process to choosing a rounding interval. We simply 
played a series of chords and printed out the time intervals 
between these notes as they were played. We repeated this 
process several times and noticed that no notes that are part of 
the same chord were more than 30 MIDI ticks apart. A MIDI 
tick is defined to be .0010417 seconds long in 120 BPM [2], so 
our interval from the first note being played to each consecutive 
note is .031 seconds.  
     Now that we know which notes belong to each chord, we 
need to determine the relationship between these pitches. These 
relationships are called intervals, and the intervals of the 
sequence of notes determines what the chord is. For our current 
iteration we limited user input to be the most basic forms of 
simple chords, also known as triads. We limited these triads to 
the most basic forms of triads major and minor triads. To 
demonstrate this, consider Figure 4 [3]. 
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Figure 4: Notes in C Major Scale to demonstrate the   
structure of Major and Minor Triads 
     The relationship between the notes in a C Major triad are the 
root note (C), a major third (E), and a perfect fifth (G). Playing 
these notes simultaneously creates a C Major chord. You’ll 
notice that the notes used to create the chord are simply every 
other note starting at the root. This is true of triads from any 
scale, in that you construct them using this every other note 
pattern. This is referred to as “stacking thirds”. To differentiate 
the difference between a Major chord and a Minor chord lets 
construct a C Minor triad. The notes in a C Minor triad are the 
root note (C), a minor third (Eb), and a perfect fifth (G). Playing 
this sequence of notes simultaneously creates a C Minor chord. 
You’ll notice that this chord does not follow a “stacking third” 
pattern in the C Major scale in Figure 4, that is because C Minor 
is not in the key of C Major. It is however in the key of C Minor, 
seen in Figure 5 [3]. 
 
 
 

 
Figure 5: Notes in C Minor to demonstrate the difference 
between major and minor triads.  
 
     You’ll also notice that the only difference between a major 
triad and a minor triad is the second note in the sequence (the 
third). Determining whether a chord is major or minor depends 
entirely on whether this third is a minor third or a major third, 
in the cases of minor chords and major chords respectively. To 
determine this interval, we simply use the MIDI note value, that 
is given in Figure 11. In music Eb and D# are enharmonic, 
meaning they are the same thing, what you call them depends 
entirely on the context. The MIDI note value for a middle C is 
60, the note value for an E note is 64, and the note value for a 
G note is 67. These notes correspond to a C Major chord. The 
C is the root, the E is the third, and the G is the fifth. The 
distance between the root (C) and the third (E) is 4 MIDI note 
values, therefore a distance of four represents a Major Third. 
Similarly, for a C Minor chord, the root (C) is note value 60, the 
third (Eb) is 63, and the fifth (G) is still 67. The distance 
between the root and the third in a C minor chord is 3 MIDI 
note values, therefore a difference of 3 represents a Minor third. 
Once we can determine what the chord is, we created a mapping 
for the chords. There are 12 musical notes, each of which can 

be constructed into a major and a minor chord, meaning in our 
limitations we have 24 possible chord inputs. We simply 
assigned each of these chords a value between -1 and 23 (a rest 
is indicated by a -1), and then filled in the appropriate value 
with the appropriate number to be used by the Recurrent Neural 
Network for melody generation.  

C. Block 2 - Recurrent Neural Network 

     After the MIDI notes are successfully decoded, the 
information is then passed to the second block, the Recurrent 
Neural Network. A Recurrent Neural Network takes in input 
one at a time, preserving the sequential ordering of the data. In 
this case, a sequence of four chords will be passed in as input to 
the Recurrent Neural Network. Each value is a summary of a 
chord mapped to a specific integer value ranged -1 to 23 as 
detailed in the explanation of Block 1. Once the input has been 
passed in, the Neural Network performs inference, also known 
as forward propagation. This generates a sequence of 16 notes 
that correspond to the four chords that were given as input. The 
Neural Network generates this sequence of notes one at a time 
and passes the information forward. This means that every note 
generated has context of the notes that were previously 
generated before it. The raw values of the generated sequence 
of notes are then passed to the third block, MIDI Encode, for 
necessary preprocessing. 
     The use of the Recurrent Neural Network was a specific 
design choice. A Recurrent Neural Network is a very special 
type of Neural Network that deals with temporal data. This is 
data that has a sequential ordering as well non-independent 
instances over time. For this specific problem, every note value 
is directly dependent on the values of the notes around it. A 
Recurrent Neural Network is able to capture this information in 
a way that non-temporal Neural Networks are not be able to. 
     The second design choice corresponding to this block was 
the use of LSTM (Long Short Term Memory) layers inside the 
Recurrent Neural Network. LSTM layers are a special kind of 
hidden layer within a Recurrent Neural Network that allows the 
network to remember long-term time dependencies. The first 
design of this block did not include LSTM layers. After testing 
the network showed that it lost its context around the 10th note 
it generated. After which the network generated the exact same 
value for the rest of the 6 notes. This is known in the Machine 
Learning field as the Vanishing Gradient Problem. To combat 
this, the hidden layers of the Recurrent Neural Network were 
replaced with LSTM layers. This allowed the Neural Network 
to keep track of long-term dependencies and keep its context all 
the way up to the 16th note. 
     The current design of the Neural Network includes 3 LSTM 
layers with 256 nodes at each layer, which feeds into 3 Dense 
layers with 512 nodes at each of those layers. There are 
currently 3 Neural Networks each trained on a different genre 
of music. The current genres of music are Pop, Blues, and 
Classical. 
     Given that this is a Machine Learning problem, there are a 
multitude of ways in which the Neural Network’s performance 
can be evaluated. The current metric of evaluation we are using 
is Mean Squared Error. Because this is a supervised learning 
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problem, for every input in the dataset there is also a 
corresponding output that is considered ideal. During the 
training process, the Neural Network generates an output for a 
given input. This output is then compared to the corresponding 
ideal output and the Mean Squared Error is calculated. This is 
the Loss Function that is defined for each of the networks. 

 
Figure 6: Training and Validation loss of Pop model 
 

 
Figure 7: Training and Validation loss of Blues model 

 
 
Figure 8: Training and Validation loss of Classical model 
 
     The Loss Function represents how inaccurate each Neural 
Network is. Over time, the Loss Function shows the rate at 
which each Neural Network is learning from its mistakes. It 
shows how each model is becoming less inaccurate after every 

iteration. The three models shown were stopped after 20 
training iterations. 
     At the start of the training process the dataset is divided into 
three chunks, Training, Testing, And Validation. Training takes 
80% of the dataset while Testing and Validation take 10% each. 
The data inside the Training set is what the Neural Network 
learns from, and at every iteration the Neural Network uses the 
data inside the Testing set to calculate the Testing loss. This loss 
value indicates how close the Neural Network is to reaching an 
ideal output and is something that the Neural Network works to 
minimize. The data inside the Validation set is used to calculate 
the Validation loss. This loss metric is meant to give the most 
accurate representation of a Neural Network model’s 
performance. This is because the Validation data is never 
shown to the Neural Network during the training or testing 
process. The Validation loss is silently calculated in the 
background at every iteration and gives us a metric of seeing 
how well the model performs on data that it has never seen 
before. This is a useful thing to measure because Neural 
Networks often become overfit to that data that is has been 
trained on. Becoming overfit means that the Neural Network 
performs very well on training data but poorly on new data. This 
generally means that the variance of this model is too high. If 
the Testing loss goes down while the Validation loss goes up, 
this is a pretty good indication that the model is becoming 
overfit to the data that it has been given. 

 
Figure 9: Relationship between overfitting, underfitting, bias 
and variance 
 
     As of right now, the current evaluation metric of Mean 
Squared Error works fine, but in the future, we have other 
evaluation metrics we would like to implement. One method we 
would like to implement is a single blind trial in which each 
participant listens to a compilation of melodies and tries to 
classify each melody as either human-composed or AI-
generated. The purpose of this trial would be to get a true 
evaluation metric of whether a generated output is “good”. If a 
generated melody can fool a participant into thinking that it is 
human-composed, then that output would be evaluated 
positively and vice versa. This evaluation metric would be a lot 
more representative of a model's performance rather than the 
Mean Squared Error between a generated output and the ideal 
output. 

A.  

D. Block 3 - MIDI Encode 

     The last significant block in our design is the MIDI encode 
block. In this block we take the output from block 2, the 
machine learning algorithm, and turn it back into a listenable 
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format. This requires post processing of the data. The output of 
the machine learning algorithm are numbers in a continuous 
three-dimensional space. Thus, the numbers will almost always 
be floats and need to be rounded to the nearest integer value 
which represents the MIDI note value that the machine learning 
outputted. We also need to overlay the chords that the user 
inputted on top of the melody that is generated by the machine 
learning algorithm. To accomplish this, we used a function in 
the python library we are using to append the tracks on top of 
each other. We then allow the user to choose whether they want 
to hear just the melody that was generated, or the melody that 
was generated as well as the chords they played as input.  Prior 
to making the final track that will be played the optimal octave 
for the melody must be selected. We decided to simply choose 
one octave higher than the average octave of the input chord 
values for now, but in the future we plan on allowing the user 
to select what octave to play the melody in so they can find what 
sounds best to them. Below is a visual representation of octaves 
[4]. 

 

 
Figure 10: Visual representation of musical octaves.  
 
     Each octave has twelve notes in it that correspond to twelve 
sequential MIDI values. This allows us to easily scale the 
octave by first normalizing the data to the lowest octave, and 
then multiplying each note value by twelve times the number of 
the octave you wish to use. Below is a visual representation of 
the MIDI note values that demonstrates the idea of octaves well 
[5]. 
 

 
Figure 11: Visual representation of the musical octaves in 
MIDI 
 
     Besides allowing the user to scale the octave. In the future 
we will also allow them to choose the tempo at which their 
generated melody and input chords is played back. 

III. PROJECT MANAGEMENT 

Below is a list of out MDR goals. 

 
Figure 12: List of MDR goals set at PDR 

 
     As you can see, we completed all the goals we set for 
ourselves at PDR. Our current prototype generates music in real 
time, technically has multiple genres that you can choose to 
generate a melody from, allows for input of any key, and plays 
back in consistent timing. As for what is left to be done, we now 
need to create our own system on a PCB and implement our 
software on said new system. Below is a Gantt chart of what we 
need to accomplish next semester.  
 

 
 

Figure 13: Gantt Chart for Jan-Apr 2020 
 
     As you can see by the Gantt chart, besides creating a new 
system and porting our existing code on to said system, we need 
to improve the quality of our models drastically. The amount of 
time we will need to dedicate to the task of data collection 
reflects this. Austin will be in charge of the MIDI Decode stage 
(recording), Vee will be in charge of the machine learning block 
(melody generation), Matt will be in charge of MIDI Encode 
(playback), and Max will provide musical expertise for the 
machine learning and assist both the recording and playback 
stages. 

IV. CONCLUSION 

     Currently our project is a Python program on a Raspberry Pi 
3 Model B. Our project is currently limited to the major/minor 
triad inputs outlined in Section II.B. We plan to implement a 
more robust chord detection algorithm that allows for more 
types of chords (Inversions, 7’s, 9’s). We also plan to 
implement a more robust post-processing program in our MIDI 
encode stage. Currently the input and output are locked at the 
same BPM (120) and the octave is chosen for the user. We plan 
to allow for the tempo to be scaled so that the output can be 
played faster or slower. We also plan to allow for the user to 
choose the octave the generated melody is in.  
     After consulting with our advisor, Professor Moritz, we plan 
to utilize a Raspberry Pi Compute Module in our larger printed 
circuit board. We expect this to be fairly involved, but there is 
extensive documentation from both Raspberry Pi and 
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independent sources. After this is complete, our Python 
program can be directly ported from the complete Raspberry Pi, 
to our PCB involving the Compute Module.  
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APPENDIX 

A. Design Alternatives 

     We initially planned on completing our MDR design using 
the De1-SoC development board. We eventually came to 
realize that it did not serve our purposes well and only served 
to overcomplicate our design process. This is mostly due to the 
fact that the De1-SoC has an FPGA that must be configured to 
gain access to a lot of the components on the board. This added 
a whole other element to the design process that in the end 
would not matter for our final design. Instead of the De1-SoC 
we decided to move to a raspberry pi model 3 B to complete our 
MDR. Not only is this board extremely easy to develop with, 
but it also can be used in our final PCB design as a compute 
module. This will make the porting of our existing software 
much easier, leaving only the other hardware components to be 
implemented (Buttons, Switches, USB interface, GPIO pins, 
ethernet port etc.) 

B. Testing Methods 

     The first system specification we were able to test was 
number two, given in Table 1. To test if our system generated 
melodies in under five seconds, we simply chose 25 unique 
chord progression inputs and measured the time it took to 
generate a melody. The data for the melody generation time was 
then compiled into Figure 14.  

 

 
Figure 14: Chord progression inputs versus melody generation 
time for the rock model  
 
     A concern we emphasized at both PDR and MDR, was that 
our Machine Learning model would not generate melodies that 
sounded “good.” Music is subjective, so defining a metric that 
determines what is good or bad is nearly impossible. Our initial 
idea is to simply poll people and ask them if the generated 
melodies sound good or not. We would have to mix in human-
made melodies so that comparisons could be drawn about 
whether our model generated a good melody, but also a melody 
that sounds human-made.  

 

C. Team Organization 

     Max is the project manager and he generally keeps all of us 
on track in terms of completing work by certain deadlines. Of 
course, we all have a hand in making sure things are running 
smoothly so we all give input from time to time and all have our 
individual technical work to complete.  
     Our team is working well together. Our individual expertises 
complement each other well for this project. Vee is the machine 
learning guru, having taken classes in the subject and conducted 
personal research. Austin has an interest in hardware design 
which has been helpful when interfacing with hardware 
peripherals (buttons, USB interface, GPIO pins, etc.). Matt is 
most interested in software which has been helpful in 
implementing our state machine and other code in python. Max 
has a good musical background which has been very important 
in bridging the worlds of machine learning and musical creation 
together.  
     There has not been a clear moment when a team member 
served as a leader. Rather we all give our feedback when 
pertinent and generally the whole project is directed by Max. 
An example of when Max helped another team member is when 
we came up with how our machine learning model would be 
constructed. He helped us decide what made sense in terms of 
the input and output of the model (structure of input chords and 
output melodies). Austin has helped Matt out extensively in 
creating the python code for the program, specifically in 
interfacing with hardware peripherals like previously 
mentioned. Vee is always there to discuss the machine learning 
model to make sure it is structured in a way that makes sense 
for our purposes. 
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     We had a communication breakdown with our advisor Prof. 
Moritz when we were trying to use the De1-SoC for MDR. We 
as a team did not communicate well enough the status of how 
things were going with using the board which created a 
situation where we decided very late in the semester to switch 
to a Raspberry Pi. Once we established that we were not 
communicating effectively with our advisor we made a much 
more consistent effort to stay in touch with the progress of our 
project. This has made life a lot easier because we address 
problems proactively rather than waiting until there is an issue. 

 

D. Beyond the Classroom 

Matt: In order to write the code that implemented the MIDI 
encode block in our block diagram I needed to develop my 
python coding skills. I had only used python very briefly once 
before this project, so I needed to familiarize myself with 
python syntax and how to import libraries. Besides that, I 
needed to gain a basic understanding of the machine learning 
algorithm we utilized, just so I could give input when necessary. 
 
Austin: Like Matt, I implemented the MIDI decode stage in 
Python, which I had very little experience in. Familiarizing 
myself with a new programming language, specifically Python, 
will translate very well to the professional world. Also, in the 
future, I would like to work in some sort of a hardware or 
embedded development position, so our work in the upcoming 
semester I feel will be very helpful in teaching me skills I may 
need as a professional. 
 
Vee: I needed to do a lot of research in order to implement the 
Recurrent Neural Network. Before this project I had worked 
with other types of Neural Networks, but I had never 
specifically worked with Recurrent Neural Networks and 
temporal data. Even after I implemented the first design of the 
Neural Network there was still much research to be done on 
how to optimize the performance of the Neural Network. I 
consulted various research papers and the book Machine 
Learning Mastery quite a bit. I went through dozens of designs 
before ending up with the current design, which is still being 
optimized. Although the hardest skill I had to learn was how to 
organize and structure the data into a shape that was required 
for the Neural Network. I needed to find a way to 
mathematically represent music in three dimensions of a 
continuous space. It was challenging to come up with the data 
representation in the first place but working with the data 
representation after that was easy. I just needed to write a 
python script to extract notes information from a MIDI file and 
store the data in the exact three-dimensional form it needed to 
be for the Neural Network. I believe that the skills I developed 
from this data management process will greatly help me in my 
career in the Data Science field. 
 
Max: Although this project is somewhat out of my interests in 
the field of microwaves, I have been able to apply what 
knowledge I have and have learned a lot. My musical 
knowledge has been very helpful in this music-oriented project. 
With this knowledge, I have been able to work with Vee to fine 

tune the machine learning models to be more based in music 
theory. This project has also helped me expand my knowledge 
of embedded programming when collaborating with Austin, 
Matt, and Vee to make sure the blocks of the block diagram 
interact with each other correctly. I have also gained a great deal 
of knowledge in team management and systems engineering. 
Because I am the project manager, I have been learning how to 
communicate with people effectively and positively so that 
work is accomplished in the most efficient way possible.  


