
1
SDP20 – TEAM 21

The BopBot

Austin Reilly, CSE, Mathew Cierpial, CSE, Max Jaffe,

EE, and Vee Upatising, CSE

Abstract—The most memorable songs often feature a
compelling (vocal) melody. Musicians often struggle to
write melodies that are catchy and unique. The BopBot can
inspire this creative process by offering melodies based on
what you play into the machine. After inputting a basic
chord progression, the BopBot will generate and play back
a cohesive and interesting sequence of notes using machine
learning.

I. INTRODUCTION

 With the introduction of the radio, musicians became able to
share their musical creations to a much larger audience. Instead
of exclusively sharing their music through physical media and
in live performances, music could be spread to anyone with a
radio. In doing this, a pressure was applied to musicians to
create music that had broad appeal. Catchy music catches the
attention of people quickly scanning through radio stations.
Although the definition of “catchy” can be hard to define, it is
usually indicative of one thing: a memorable melody that gets
stuck in listeners heads played on top of a usually simple chord
progression.

A. Significance

 Where a chord progression is generally quite simple and
follows a generic pattern, melodies can be highly complex, fast,
and use a higher variety of notes. Fortunately, when a chord is
played, a “key” is established which limits the number of
melody notes that would sound align well with the current
chord. Despite this, melodies can use varying timings and
change octaves, making them even more difficult to create. A
full understanding of music theory is very helpful in
understanding what chord corresponds to what key and timings
of notes; however, it takes many years of study to fully
understand music theory, and thus everyday musicians often
lack this knowledge. Because of this, writing a chart-topping
melody can be a very daunting challenge.

B. Context and Existing Products

 Using machine learning to generate music has been done
many times in the past. In fact, much research has been done on
the topic. Although music generation using machine learning
has been done many times, it has not been done in the same way
that the BopBot will do it.
 AIVA is a subscription-based artificial intelligence program
that generates emotional soundtrack music based on the
selected genre or an existing MIDI file. One of the core
differences between AIVA and the BopBot is the input and
output. AIVA is intended to be used as a tool to replace hiring
someone to write compelling themes for the user’s projects.
Because of this, AIVA limits the user input to a genre or a track
of music that it will be “inspired” by. The BopBot, on the other

hand, takes a chord progression as an input and outputs a
melody that is overlaid on top of the chord progression.
Additionally, the BopBot will be functional in a live setting
using the MIDI input from a keyboard whereas AIVA cannot
take live input.
 Google Magenta is an open-source program that uses
machine learning to append similar melodies to that which the
user inputs. This is different than the BopBot in similar ways to
AIVA. Firstly, Google Magenta takes a melody as input where
the BopBot takes a chord progression as input. Secondly,
Google Magenta is not intended to be used with live input.

C. Societal Impacts

 The BopBot is intended to be used by everyday musicians.
Because the BopBot will be in the form factor of a music foot
pedal, as seen in Table 1, it will be able to be used in
conjunction with the equipment and gear that musicians already
own. Although the BopBot can be used as a tool to create
melodies, it is intended to be used more as a creative-assistance
tool. If a musician creates an interesting chord progression, they
can use the BopBot to inspire their creative process of writing
a melody. The BopBot can also be used as a tool in a jam
session. In this way, it can act as another musician with his/her
own unique ideas based upon the chord progression being
jammed to. A concern of ours regarding the BopBot is that it
will be used as a crutch for newer musicians to create melodies.
Although the BopBot can be used in this way, it may instill bad
habits on learning musicians.

D. Requirements Analysis and Specifications

Table 1: System Specifications

II. DESIGN

A. Overview

Figure 1: Block Diagram

 To solve this problem, we are using a recurrent neural
network. We decided to use this type of machine learning

2
SDP20 – TEAM 21

network for several reasons which will be explained in detail in
the section that goes over block 2. We are using a Raspberry Pi
as our development platform and moving to a Raspberry Pi
Compute Module for our final PCB. We decided to use the
Raspberry Pi because it suits our needs well. We needed a
system capable of running an operating system so we could
easily compile the code that is necessary to generate our
melodies via machine learning. We also needed a fairly
powerful processor to ensure that we completed melody
generation in a reasonable amount of time (5 seconds).
 The first major block in the block diagram is the MIDI
decode stage. Roughly speaking, this is the “recording stage”
where the user input from the keyboard is turned into a format
that can be used with our machine learning models to generate
a melody. As you can see in the block diagram the decoded
inputs (4 chords) are sent to the next major block in our
diagram, the recurrent neural network. After the second block
has generated a melody, the output is then sent to the third and
final major block in our design, the MIDI encode stage. This
can be thought of as the “playback” stage where the output from
the machine learning is reformatted into MIDI so it can be
output to a speaker. Besides the three main stages, there are
several peripherals which allow for the user to alter different
settings concerning the recording and playing back parameters.

B. Block 1 - MIDI Decode

 The first stage to happen in our project is the MIDI Decode
stage. This stage can be further broken down into two separate
steps. The first of which is sampling the user input at the correct
time steps. Human beings struggle significantly with keeping
consistent time. Even trained drummers, or lifelong
professional musicians struggle to keep consistent and accurate
time. Below is a plot [1] of the tempo variation for Led
Zeppelin’s classic song “Stairway to Heaven”

Figure 2: Tempo variations over the course of “Stairway to Heaven”
by Led Zeppelin. Measures the average beat variation from the
average BPM of the song. Y-axis is variation, X-axis is time.

 As you can see from Figure 2, keeping consistent time is
something that is virtually impossible for any given person. To
fix this issue we implemented something we referred to as a

“rounding interval”. Due to our machine learning inference
architecture, the input into the Recurrent Neural Network is
four chords, we sampled the user input at the start of each bar
line. A visual representation of the rounding interval is given in
Figure 3.

Figure 3: Visual representation of the rounding interval
implemented to correct for variations in user input tempo.

 To choose a proper amount of time we conducted various
trials measuring each group members variation from proper
timing. To do this we played a metronome at 120 BPM, in 4/4
time and simply printed out the difference in time between
correct time and the time the user played a note. We found that
after conducting 10 trials per team member, no variation was
greater than .25s before or after the bar line. Furthermore, our
rounding interval was chosen to be plus/minus .25s from the bar
line.
 Now that a means to account for incorrect timing from
human input has been implemented, we can move on to the
second step in the MIDI decode stage, which is categorizing the
chords as they are being played. This step can be further broken
down into two more steps which is defining what notes belong
to which chord, and then how to name these chords to be used
by the machine learning model. The first step in this process is
defining what notes belong to the same chord. A chord is simply
a sequence of three or more notes played at the same time. To
determine which notes belonged to which chord we repeated a
similar process to choosing a rounding interval. We simply
played a series of chords and printed out the time intervals
between these notes as they were played. We repeated this
process several times and noticed that no notes that are part of
the same chord were more than 30 MIDI ticks apart. A MIDI
tick is defined to be .0010417 seconds long in 120 BPM [2], so
our interval from the first note being played to each consecutive
note is .031 seconds.
 Now that we know which notes belong to each chord, we
need to determine the relationship between these pitches. These
relationships are called intervals, and the intervals of the
sequence of notes determines what the chord is. For our current
iteration we limited user input to be the most basic forms of
simple chords, also known as triads. We limited these triads to
the most basic forms of triads major and minor triads. To
demonstrate this, consider Figure 4 [3].

3
SDP20 – TEAM 21

Figure 4: Notes in C Major Scale to demonstrate the
structure of Major and Minor Triads
 The relationship between the notes in a C Major triad are the
root note (C), a major third (E), and a perfect fifth (G). Playing
these notes simultaneously creates a C Major chord. You’ll
notice that the notes used to create the chord are simply every
other note starting at the root. This is true of triads from any
scale, in that you construct them using this every other note
pattern. This is referred to as “stacking thirds”. To differentiate
the difference between a Major chord and a Minor chord lets
construct a C Minor triad. The notes in a C Minor triad are the
root note (C), a minor third (Eb), and a perfect fifth (G). Playing
this sequence of notes simultaneously creates a C Minor chord.
You’ll notice that this chord does not follow a “stacking third”
pattern in the C Major scale in Figure 4, that is because C Minor
is not in the key of C Major. It is however in the key of C Minor,
seen in Figure 5 [3].

Figure 5: Notes in C Minor to demonstrate the difference
between major and minor triads.

 You’ll also notice that the only difference between a major
triad and a minor triad is the second note in the sequence (the
third). Determining whether a chord is major or minor depends
entirely on whether this third is a minor third or a major third,
in the cases of minor chords and major chords respectively. To
determine this interval, we simply use the MIDI note value, that
is given in Figure 11. In music Eb and D# are enharmonic,
meaning they are the same thing, what you call them depends
entirely on the context. The MIDI note value for a middle C is
60, the note value for an E note is 64, and the note value for a
G note is 67. These notes correspond to a C Major chord. The
C is the root, the E is the third, and the G is the fifth. The
distance between the root (C) and the third (E) is 4 MIDI note
values, therefore a distance of four represents a Major Third.
Similarly, for a C Minor chord, the root (C) is note value 60, the
third (Eb) is 63, and the fifth (G) is still 67. The distance
between the root and the third in a C minor chord is 3 MIDI
note values, therefore a difference of 3 represents a Minor third.
Once we can determine what the chord is, we created a mapping
for the chords. There are 12 musical notes, each of which can

be constructed into a major and a minor chord, meaning in our
limitations we have 24 possible chord inputs. We simply
assigned each of these chords a value between -1 and 23 (a rest
is indicated by a -1), and then filled in the appropriate value
with the appropriate number to be used by the Recurrent Neural
Network for melody generation.

C. Block 2 - Recurrent Neural Network

 After the MIDI notes are successfully decoded, the
information is then passed to the second block, the Recurrent
Neural Network. A Recurrent Neural Network takes in input
one at a time, preserving the sequential ordering of the data. In
this case, a sequence of four chords will be passed in as input to
the Recurrent Neural Network. Each value is a summary of a
chord mapped to a specific integer value ranged -1 to 23 as
detailed in the explanation of Block 1. Once the input has been
passed in, the Neural Network performs inference, also known
as forward propagation. This generates a sequence of 16 notes
that correspond to the four chords that were given as input. The
Neural Network generates this sequence of notes one at a time
and passes the information forward. This means that every note
generated has context of the notes that were previously
generated before it. The raw values of the generated sequence
of notes are then passed to the third block, MIDI Encode, for
necessary preprocessing.
 The use of the Recurrent Neural Network was a specific
design choice. A Recurrent Neural Network is a very special
type of Neural Network that deals with temporal data. This is
data that has a sequential ordering as well non-independent
instances over time. For this specific problem, every note value
is directly dependent on the values of the notes around it. A
Recurrent Neural Network is able to capture this information in
a way that non-temporal Neural Networks are not be able to.
 The second design choice corresponding to this block was
the use of LSTM (Long Short Term Memory) layers inside the
Recurrent Neural Network. LSTM layers are a special kind of
hidden layer within a Recurrent Neural Network that allows the
network to remember long-term time dependencies. The first
design of this block did not include LSTM layers. After testing
the network showed that it lost its context around the 10th note
it generated. After which the network generated the exact same
value for the rest of the 6 notes. This is known in the Machine
Learning field as the Vanishing Gradient Problem. To combat
this, the hidden layers of the Recurrent Neural Network were
replaced with LSTM layers. This allowed the Neural Network
to keep track of long-term dependencies and keep its context all
the way up to the 16th note.
 The current design of the Neural Network includes 3 LSTM
layers with 256 nodes at each layer, which feeds into 3 Dense
layers with 512 nodes at each of those layers. There are
currently 3 Neural Networks each trained on a different genre
of music. The current genres of music are Pop, Blues, and
Classical.
 Given that this is a Machine Learning problem, there are a
multitude of ways in which the Neural Network’s performance
can be evaluated. The current metric of evaluation we are using
is Mean Squared Error. Because this is a supervised learning

4
SDP20 – TEAM 21

problem, for every input in the dataset there is also a
corresponding output that is considered ideal. During the
training process, the Neural Network generates an output for a
given input. This output is then compared to the corresponding
ideal output and the Mean Squared Error is calculated. This is
the Loss Function that is defined for each of the networks.

Figure 6: Training and Validation loss of Pop model

Figure 7: Training and Validation loss of Blues model

Figure 8: Training and Validation loss of Classical model

 The Loss Function represents how inaccurate each Neural
Network is. Over time, the Loss Function shows the rate at
which each Neural Network is learning from its mistakes. It
shows how each model is becoming less inaccurate after every

iteration. The three models shown were stopped after 20
training iterations.
 At the start of the training process the dataset is divided into
three chunks, Training, Testing, And Validation. Training takes
80% of the dataset while Testing and Validation take 10% each.
The data inside the Training set is what the Neural Network
learns from, and at every iteration the Neural Network uses the
data inside the Testing set to calculate the Testing loss. This loss
value indicates how close the Neural Network is to reaching an
ideal output and is something that the Neural Network works to
minimize. The data inside the Validation set is used to calculate
the Validation loss. This loss metric is meant to give the most
accurate representation of a Neural Network model’s
performance. This is because the Validation data is never
shown to the Neural Network during the training or testing
process. The Validation loss is silently calculated in the
background at every iteration and gives us a metric of seeing
how well the model performs on data that it has never seen
before. This is a useful thing to measure because Neural
Networks often become overfit to that data that is has been
trained on. Becoming overfit means that the Neural Network
performs very well on training data but poorly on new data. This
generally means that the variance of this model is too high. If
the Testing loss goes down while the Validation loss goes up,
this is a pretty good indication that the model is becoming
overfit to the data that it has been given.

Figure 9: Relationship between overfitting, underfitting, bias
and variance

 As of right now, the current evaluation metric of Mean
Squared Error works fine, but in the future, we have other
evaluation metrics we would like to implement. One method we
would like to implement is a single blind trial in which each
participant listens to a compilation of melodies and tries to
classify each melody as either human-composed or AI-
generated. The purpose of this trial would be to get a true
evaluation metric of whether a generated output is “good”. If a
generated melody can fool a participant into thinking that it is
human-composed, then that output would be evaluated
positively and vice versa. This evaluation metric would be a lot
more representative of a model's performance rather than the
Mean Squared Error between a generated output and the ideal
output.

A.

D. Block 3 - MIDI Encode

 The last significant block in our design is the MIDI encode
block. In this block we take the output from block 2, the
machine learning algorithm, and turn it back into a listenable

5
SDP20 – TEAM 21

format. This requires post processing of the data. The output of
the machine learning algorithm are numbers in a continuous
three-dimensional space. Thus, the numbers will almost always
be floats and need to be rounded to the nearest integer value
which represents the MIDI note value that the machine learning
outputted. We also need to overlay the chords that the user
inputted on top of the melody that is generated by the machine
learning algorithm. To accomplish this, we used a function in
the python library we are using to append the tracks on top of
each other. We then allow the user to choose whether they want
to hear just the melody that was generated, or the melody that
was generated as well as the chords they played as input. Prior
to making the final track that will be played the optimal octave
for the melody must be selected. We decided to simply choose
one octave higher than the average octave of the input chord
values for now, but in the future we plan on allowing the user
to select what octave to play the melody in so they can find what
sounds best to them. Below is a visual representation of octaves
[4].

Figure 10: Visual representation of musical octaves.

 Each octave has twelve notes in it that correspond to twelve
sequential MIDI values. This allows us to easily scale the
octave by first normalizing the data to the lowest octave, and
then multiplying each note value by twelve times the number of
the octave you wish to use. Below is a visual representation of
the MIDI note values that demonstrates the idea of octaves well
[5].

Figure 11: Visual representation of the musical octaves in
MIDI

 Besides allowing the user to scale the octave. In the future
we will also allow them to choose the tempo at which their
generated melody and input chords is played back.

III. PROJECT MANAGEMENT

Below is a list of out MDR goals.

Figure 12: List of MDR goals set at PDR

 As you can see, we completed all the goals we set for
ourselves at PDR. Our current prototype generates music in real
time, technically has multiple genres that you can choose to
generate a melody from, allows for input of any key, and plays
back in consistent timing. As for what is left to be done, we now
need to create our own system on a PCB and implement our
software on said new system. Below is a Gantt chart of what we
need to accomplish next semester.

Figure 13: Gantt Chart for Jan-Apr 2020

 As you can see by the Gantt chart, besides creating a new
system and porting our existing code on to said system, we need
to improve the quality of our models drastically. The amount of
time we will need to dedicate to the task of data collection
reflects this. Austin will be in charge of the MIDI Decode stage
(recording), Vee will be in charge of the machine learning block
(melody generation), Matt will be in charge of MIDI Encode
(playback), and Max will provide musical expertise for the
machine learning and assist both the recording and playback
stages.

IV. CONCLUSION

 Currently our project is a Python program on a Raspberry Pi
3 Model B. Our project is currently limited to the major/minor
triad inputs outlined in Section II.B. We plan to implement a
more robust chord detection algorithm that allows for more
types of chords (Inversions, 7’s, 9’s). We also plan to
implement a more robust post-processing program in our MIDI
encode stage. Currently the input and output are locked at the
same BPM (120) and the octave is chosen for the user. We plan
to allow for the tempo to be scaled so that the output can be
played faster or slower. We also plan to allow for the user to
choose the octave the generated melody is in.
 After consulting with our advisor, Professor Moritz, we plan
to utilize a Raspberry Pi Compute Module in our larger printed
circuit board. We expect this to be fairly involved, but there is
extensive documentation from both Raspberry Pi and

6
SDP20 – TEAM 21

independent sources. After this is complete, our Python
program can be directly ported from the complete Raspberry Pi,
to our PCB involving the Compute Module.

ACKNOWLEDGMENT

 Team 21 would like to acknowledge our advisor Professor
Moritz for his guidance in tackling this problem. We would also
like to thank Sachin Bhat for his seemingly endless assistance
during our design process.

REFERENCES

[1] Lamere, Paul. “In Search of the Click Track.” Music Machinery, 9 Apr.
2009, musicmachinery.com/2009/03/02/in-search-of-the-click-track/.

[2] “MIDI Files.” Mido 1.2.9 Documentation,
mido.readthedocs.io/en/latest/MIDI_files.html.

[3] “C Major Scale.” Basicmusictheory.com: C Major Scale,
www.basicmusictheory.com/c-major-scale.

[4] “Octave Registers.” All About Music Theory.com,
www.allaboutmusictheory.com/piano-keyboard/octave-registers/.

[5] “Articles.” Noterepeat.com, www.noterepeat.com/articles/how-to/213-
MIDI-basics-common-terms-explained.

APPENDIX

A. Design Alternatives

 We initially planned on completing our MDR design using
the De1-SoC development board. We eventually came to
realize that it did not serve our purposes well and only served
to overcomplicate our design process. This is mostly due to the
fact that the De1-SoC has an FPGA that must be configured to
gain access to a lot of the components on the board. This added
a whole other element to the design process that in the end
would not matter for our final design. Instead of the De1-SoC
we decided to move to a raspberry pi model 3 B to complete our
MDR. Not only is this board extremely easy to develop with,
but it also can be used in our final PCB design as a compute
module. This will make the porting of our existing software
much easier, leaving only the other hardware components to be
implemented (Buttons, Switches, USB interface, GPIO pins,
ethernet port etc.)

B. Testing Methods

 The first system specification we were able to test was
number two, given in Table 1. To test if our system generated
melodies in under five seconds, we simply chose 25 unique
chord progression inputs and measured the time it took to
generate a melody. The data for the melody generation time was
then compiled into Figure 14.

Figure 14: Chord progression inputs versus melody generation
time for the rock model

 A concern we emphasized at both PDR and MDR, was that
our Machine Learning model would not generate melodies that
sounded “good.” Music is subjective, so defining a metric that
determines what is good or bad is nearly impossible. Our initial
idea is to simply poll people and ask them if the generated
melodies sound good or not. We would have to mix in human-
made melodies so that comparisons could be drawn about
whether our model generated a good melody, but also a melody
that sounds human-made.

C. Team Organization

 Max is the project manager and he generally keeps all of us
on track in terms of completing work by certain deadlines. Of
course, we all have a hand in making sure things are running
smoothly so we all give input from time to time and all have our
individual technical work to complete.
 Our team is working well together. Our individual expertises
complement each other well for this project. Vee is the machine
learning guru, having taken classes in the subject and conducted
personal research. Austin has an interest in hardware design
which has been helpful when interfacing with hardware
peripherals (buttons, USB interface, GPIO pins, etc.). Matt is
most interested in software which has been helpful in
implementing our state machine and other code in python. Max
has a good musical background which has been very important
in bridging the worlds of machine learning and musical creation
together.
 There has not been a clear moment when a team member
served as a leader. Rather we all give our feedback when
pertinent and generally the whole project is directed by Max.
An example of when Max helped another team member is when
we came up with how our machine learning model would be
constructed. He helped us decide what made sense in terms of
the input and output of the model (structure of input chords and
output melodies). Austin has helped Matt out extensively in
creating the python code for the program, specifically in
interfacing with hardware peripherals like previously
mentioned. Vee is always there to discuss the machine learning
model to make sure it is structured in a way that makes sense
for our purposes.

7
SDP20 – TEAM 21

 We had a communication breakdown with our advisor Prof.
Moritz when we were trying to use the De1-SoC for MDR. We
as a team did not communicate well enough the status of how
things were going with using the board which created a
situation where we decided very late in the semester to switch
to a Raspberry Pi. Once we established that we were not
communicating effectively with our advisor we made a much
more consistent effort to stay in touch with the progress of our
project. This has made life a lot easier because we address
problems proactively rather than waiting until there is an issue.

D. Beyond the Classroom

Matt: In order to write the code that implemented the MIDI
encode block in our block diagram I needed to develop my
python coding skills. I had only used python very briefly once
before this project, so I needed to familiarize myself with
python syntax and how to import libraries. Besides that, I
needed to gain a basic understanding of the machine learning
algorithm we utilized, just so I could give input when necessary.

Austin: Like Matt, I implemented the MIDI decode stage in
Python, which I had very little experience in. Familiarizing
myself with a new programming language, specifically Python,
will translate very well to the professional world. Also, in the
future, I would like to work in some sort of a hardware or
embedded development position, so our work in the upcoming
semester I feel will be very helpful in teaching me skills I may
need as a professional.

Vee: I needed to do a lot of research in order to implement the
Recurrent Neural Network. Before this project I had worked
with other types of Neural Networks, but I had never
specifically worked with Recurrent Neural Networks and
temporal data. Even after I implemented the first design of the
Neural Network there was still much research to be done on
how to optimize the performance of the Neural Network. I
consulted various research papers and the book Machine
Learning Mastery quite a bit. I went through dozens of designs
before ending up with the current design, which is still being
optimized. Although the hardest skill I had to learn was how to
organize and structure the data into a shape that was required
for the Neural Network. I needed to find a way to
mathematically represent music in three dimensions of a
continuous space. It was challenging to come up with the data
representation in the first place but working with the data
representation after that was easy. I just needed to write a
python script to extract notes information from a MIDI file and
store the data in the exact three-dimensional form it needed to
be for the Neural Network. I believe that the skills I developed
from this data management process will greatly help me in my
career in the Data Science field.

Max: Although this project is somewhat out of my interests in
the field of microwaves, I have been able to apply what
knowledge I have and have learned a lot. My musical
knowledge has been very helpful in this music-oriented project.
With this knowledge, I have been able to work with Vee to fine

tune the machine learning models to be more based in music
theory. This project has also helped me expand my knowledge
of embedded programming when collaborating with Austin,
Matt, and Vee to make sure the blocks of the block diagram
interact with each other correctly. I have also gained a great deal
of knowledge in team management and systems engineering.
Because I am the project manager, I have been learning how to
communicate with people effectively and positively so that
work is accomplished in the most efficient way possible.

