
1
SDP20 – TEAM 21

The BopBot

Austin Reilly, CSE, Mathew Cierpial, CSE, Max Jaffe,

EE, and Vee Upatising, CSE

Abstract—The most memorable songs often feature a
compelling (vocal) melody. Musicians often struggle to
write melodies that are catchy and unique. The BopBot can
inspire this creative process by offering melodies based on
what you play into the machine. After inputting a basic
chord progression, the BopBot will generate and play back
a cohesive and interesting sequence of notes using machine
learning.

I. INTRODUCTION

 With the introduction of the radio, musicians became able to
share their musical creations to a much larger audience. Instead
of exclusively sharing their music through physical media and
in live performances, music could be spread to anyone with a
radio. In doing this, a pressure was applied to musicians to
create music that had broad appeal. Catchy music catches the
attention of people quickly scanning through radio stations.
Although the definition of “catchy” can be hard to define, it is
usually indicative of one thing: a memorable melody that gets
stuck in listeners heads played on top of a usually simple chord
progression.

A. Significance

 Where a chord progression is generally quite simple and
follows a generic pattern, melodies can be highly complex, fast,
and use a higher variety of notes. Fortunately, when a chord is
played, a “key” is established which limits the number of
melody notes that would sound align well with the current
chord. Despite this, melodies can use varying timings and
change octaves, making them even more difficult to create. A
full understanding of music theory is very helpful in
understanding what chord corresponds to what key and timings
of notes; however, it takes many years of study to fully
understand music theory, and thus everyday musicians often
lack this knowledge. Because of this, writing a chart-topping
melody can be a very daunting challenge [11].

B. Context and Existing Products

 Music generation is a common application of machine
learning and is a heavily researched topic [10]. Although music
generation using machine learning has been done many times,
it has not been done in the same way that the BopBot will do it.
 AIVA [8] is a subscription-based artificial intelligence
program that generates emotional soundtrack music based on
the selected genre or an existing MIDI file. One of the core
differences between AIVA and the BopBot is the input and
output. AIVA is intended to be used as a tool to replace hiring
someone to write compelling themes for the user’s projects.
Because of this, AIVA limits the user input to a genre or a track
of music that it will be “inspired” by. The BopBot, on the other
hand, takes a chord progression as an input and outputs a

melody that is overlaid on top of the chord progression.
Additionally, the BopBot will be functional in a live setting
using the MIDI input from a keyboard whereas AIVA cannot
take live input.
 Google Magenta [9] is an open-source program that uses
machine learning to append similar melodies to that which the
user inputs. This is different than the BopBot in similar ways to
AIVA. Firstly, Google Magenta takes a melody as input where
the BopBot takes a chord progression as input. Secondly,
Google Magenta is not intended to be used with live input.

C. Societal Impacts

 The BopBot is intended to be used by everyday musicians.
Because the BopBot will be in the form factor of a music foot
pedal, as seen in Table 1, it will be able to be used in
conjunction with the equipment and gear that musicians already
own. Although the BopBot can be used as a tool to create
melodies, it is intended to be used more as a creative-assistance
tool. If a musician creates an interesting chord progression, they
can use the BopBot to inspire their creative process of writing
a melody. The BopBot can also be used as a tool in a jam
session. In this way, it can act as another musician with his/her
own unique ideas based upon the chord progression being
jammed to. A concern of ours regarding the BopBot is that it
will be used as a crutch for newer musicians to create melodies.
Although the BopBot can be used in this way, it may instill bad
habits on learning musicians.

D. Requirements Analysis and Specifications
System Requirements System Specifications

Sizing Can fit into a musician’s pedal board
(typically around 170x138mm).

Power Powered by a typical music pedal
power supply (9V, 1700mA maximum).

Timing Completes melody generation in an
amount of time that is conducive for
live music. Less than 5 seconds is
acceptable.

Musical Requirement 4 musical genres to choose from for
models: Rock, Blues, Classical, Pop.

Machine Learning Performance Neural network design must have less
than 23,000 neurons in each of the 3
layers (fewer if using 4 layers) in order
to generate a melody within 5 seconds
on a 1 GHz processor.

Memory Usage Each neural network must be smaller
than 200 MB such that the
microprocessor has enough data
memory (SDRAM).

Table 1: System Requirements and Specifications

The requirements and specifications, seen in Table 1, constrain
the problem that the BopBot addresses. As discussed in section
C, the BopBot must be in the form factor of a musician’s pedal
board and must be powered by the standard 9V used in all
pedals. In addition, the BopBot must generate the melody
within a reasonably quick 5 seconds and be able to create music
to several genres. Given this 5 second limit, the BopBot
requires quite powerful hardware. Assuming a 1 GHz processor
is used, the BopBot’s machine learning algorithm must be
designed to have fewer than 23,000 neurons in each of its 3
layers. Additionally, each genre’s model must be smaller than
200 MB to fit in the processor’s data memory.

2
SDP20 – TEAM 21

II. DESIGN

A. Overview

Figure 1: Block Diagram

 To solve this problem, we are using a recurrent neural
network. We decided to use this type of machine learning
network for several reasons which will be explained in detail in
the section that goes over block 2. We are using a Raspberry Pi
[6] as our development platform and moving to a Raspberry Pi
Compute Module [7] for our final PCB. We decided to use the
Raspberry Pi because it suits our needs well. We needed a
system capable of running an operating system so we could
easily compile the code that is necessary to generate our
melodies via machine learning. We also needed a fairly
powerful processor to ensure that we completed melody
generation in a reasonable amount of time (5 seconds).
 The first major block in the block diagram, seen above in
Figure 1, is the MIDI decode stage. Roughly speaking, this is
the “recording stage” where the user input from the keyboard is
turned into a format that can be used with our machine learning
models to generate a melody. As you can see in the block
diagram in Figure 1, the decoded inputs (4 chords) are sent to
the next major block in our diagram, the recurrent neural
network. After the second block has generated a melody, the
output is then sent to the third and final major block in our
design, the MIDI encode stage. This can be thought of as the
“playback” stage where the output from the machine learning is
reformatted into MIDI so it can be output to a speaker. Besides
the three main stages, there are several peripherals which allow
for the user to alter different settings concerning the recording
and playing back parameters.
 Specifications played a pivotal role in the performance of the
overall system. The timing specification imposed the most
tradeoffs in the overall design of the system. Although the
machine learning model was improved over the course of the
entire design, melody generation was quick, often less than two
seconds. The more major timing tradeoff was in loading
different models. This would often take 5-10 seconds when
switching, for example, from the rock to classical models.
Although this did fully satisfy the specification, this was not
considered as failing the specification either because users are
not intended to change genres often. Musicians typically write
a certain genre of music, thus they will not feel the need to
switch genres often. Most likely, users would not change genres
within sessions of using the BopBot.

B. Block 1 - MIDI Decode

 The first stage to happen in our project is the MIDI Decode
stage. This stage can be further broken down into two separate
steps. The first of which is sampling the user input at the correct
time steps. Human beings struggle significantly with keeping
consistent time. Even trained drummers, or lifelong
professional musicians struggle to keep consistent and accurate
time. Below is a plot [1] of the tempo variation for Led
Zeppelin’s classic song “Stairway to Heaven”

Figure 2: Tempo variations over the course of “Stairway to Heaven”
by Led Zeppelin. Measures the average beat variation from the
average BPM of the song. Y-axis is variation, X-axis is time.

 As you can see from Figure 2, keeping consistent time is
something that is virtually impossible for any given person. To
fix this issue we implemented something we referred to as a
“rounding interval”. Due to our machine learning inference
architecture, the input into the Recurrent Neural Network is
four chords, we sampled the user input at the start of each bar
line. A visual representation of the rounding interval is given in
Figure 3.

Figure 3: Visual representation of the rounding interval implemented
to correct for variations in user input tempo.

 To choose a proper amount of time we conducted various
trials measuring each group members variation from proper
timing. To do this we played a metronome at 120 BPM, in 4/4
time and simply printed out the difference in time between
correct time and the time the user played a note. We found that
after conducting 10 trials per team member, no variation was
greater than 0.25s before or after the bar line. Furthermore, our
rounding interval was chosen to be plus/minus 0.25s from the
bar line.

3
SDP20 – TEAM 21

 Now that a means to account for incorrect timing from
human input has been implemented, the MIDI notes would be
recorded and saved to be used in the melody generation. In the
early stages of the BopBot, algorithms were to be used to
decode the chord played at each interval. This would involve
reading all notes played during an interval and converting them
to a single major or minor chord, represented as a value between
-1 and 23. In later iterations of the melody generation software,
this was found to be an unnecessary. Instead, the first four notes
played during the rounding interval would be saved exactly as
they are and sent to be used in machine learning. It was chosen
to be the first four notes during the interval because a large
majority of chords only use less than four notes. This would
increase the complexity of the problem tackled by the machine
learning. Now, the output of the MIDI decode stage and input
to the neural networks would be an array of sixteen notes, which
would be divided into groups of four to represent each chord. If
less than four notes were played during the interval, the empty
spaces in the array would be automatically filled as rests.

C. Block 2 - Recurrent Neural Network

 After the MIDI notes are successfully decoded, the
information is then passed to the second block, the Recurrent
Neural Network. A Recurrent Neural Network takes input one
at a time, preserving the sequential ordering of the data. In this
case, a sequence of four chords will be passed in as input to the
Recurrent Neural Network. Each value is a summary of a chord
mapped to a specific integer value ranged -1 to 23 as detailed in
the explanation of Block 1. Once the input has been passed in,
the Neural Network performs inference, also known as forward
propagation. This generates a sequence of 16 notes that
correspond to the four chords that were given as input. The
Neural Network generates this sequence of notes one at a time
and passes the information forward. This means that every note
generated has context of the notes that were previously
generated before it. The raw values of the generated sequence
of notes are then passed to the third block, MIDI Encode, for
necessary preprocessing.
 The use of the Recurrent Neural Network was a specific
design choice. A Recurrent Neural Network is a very special
type of Neural Network that deals with temporal data. This is
data that has a sequential ordering as well non-independent
instances over time. For this specific problem, every note value
is directly dependent on the values of the notes around it. A
Recurrent Neural Network is able to capture this information in
a way that non-temporal Neural Networks are not be able to.
 The second design choice corresponding to this block was
the use of LSTM (Long Short Term Memory) layers inside the
Recurrent Neural Network. LSTM layers are a special kind of
hidden layer within a Recurrent Neural Network that allows the
network to remember long-term time dependencies. The first
design of this block did not include LSTM layers. After testing
the network showed that it lost its context around the 10th note
it generated. After which the network generated the exact same
value for the rest of the 6 notes. This is known in the Machine
Learning field as the Vanishing Gradient Problem. To combat
this, the hidden layers of the Recurrent Neural Network were
replaced with LSTM layers. This allowed the Neural Network

to keep track of long-term dependencies and keep its context all
the way up to the 16th note.
 The current design of the Neural Network includes 3 LSTM
layers with 256 nodes at each layer, which feeds into 3 Dense
layers with 512 nodes at each of those layers. There are
currently 3 Neural Networks each trained on a different genre
of music. The current genres of music are Pop, Blues, and
Classical.
 Given that this is a Machine Learning problem, there are a
multitude of ways in which the Neural Network’s performance
can be evaluated. The current metric of evaluation we are using
is Mean Squared Error. Because this is a supervised learning
problem, for every input in the dataset there is also a
corresponding output that is considered ideal. During the
training process, the Neural Network generates an output for a
given input. This output is then compared to the corresponding
ideal output and the Mean Squared Error is calculated. This is
the Loss Function that is defined for each of the networks.

Figure 4: Training and Validation loss of Pop model

Figure 5: Training and Validation loss of Blues model

4
SDP20 – TEAM 21

Figure 6: Training and Validation loss of Classical model

 The Loss Function represents how inaccurate each Neural
Network is. Over time, the Loss Function shows the rate at
which each Neural Network is learning from its mistakes. It
shows how each model is becoming less inaccurate after every
iteration. The three models shown were stopped after 20
training iterations.
 At the start of the training process the dataset is divided into
three chunks, Training, Testing, And Validation. Training takes
80% of the dataset while Testing and Validation take 10% each.
The data inside the Training set is what the Neural Network
learns from, and at every iteration the Neural Network uses the
data inside the Testing set to calculate the Testing loss. This loss
value indicates how close the Neural Network is to reaching an
ideal output and is something that the Neural Network works to
minimize. The data inside the Validation set is used to calculate
the Validation loss. This loss metric is meant to give the most
accurate representation of a Neural Network model’s
performance. This is because the Validation data is never
shown to the Neural Network during the training or testing
process. The Validation loss is silently calculated in the
background at every iteration and gives us a metric of seeing
how well the model performs on data that it has never seen
before. This is a useful thing to measure because Neural
Networks often become overfit to that data that is has been
trained on. Becoming overfit means that the Neural Network
performs very well on training data but poorly on new data. This
generally means that the variance of this model is too high. If
the Testing loss goes down while the Validation loss goes up,
this is a pretty good indication that the model is becoming
overfit to the data that it has been given.

Figure 7: Relationship between overfitting, underfitting, bias and
variance

 As of right now, the current evaluation metric of Mean

Squared Error works fine, but in the future, we have other
evaluation metrics we would like to implement. One method we
would like to implement is a single blind trial in which each
participant listens to a compilation of melodies and tries to
classify each melody as either human-composed or AI-
generated. The purpose of this trial would be to get a true
evaluation metric of whether a generated output is “good”. If a
generated melody can fool a participant into thinking that it is
human-composed, then that output would be evaluated
positively and vice versa. This evaluation metric would be a lot
more representative of a model's performance rather than the
Mean Squared Error between a generated output and the ideal
output.

D. Block 3 - MIDI Encode

 The last significant block in our design is the MIDI encode
block. In this block we take the output from block 2, the
machine learning algorithm, and turn it back into a listenable
format. This requires post processing of the data. The output of
the machine learning algorithm are numbers in a continuous
three-dimensional space. Thus, the numbers will almost always
be floats and need to be rounded to the nearest integer value
which represents the MIDI note value that the machine learning
outputted. We also need to overlay the chords that the user
inputted on top of the melody that is generated by the machine
learning algorithm. To accomplish this, we used a function in
the python library we are using to append the tracks on top of
each other. We then allow the user to choose whether they want
to hear just the melody that was generated, or the melody that
was generated as well as the chords they played as input. Prior
to making the final track that will be played the optimal octave
for the melody must be selected. We decided to simply choose
one octave higher than the average octave of the input chord
values for now, but in the future, we plan on allowing the user
to select what octave to play the melody in so they can find what
sounds best to them. Below is a visual representation of octaves
[4].

Figure 8: Visual representation of musical octaves.

 Each octave has twelve notes in it that correspond to twelve
sequential MIDI values. This allows us to easily scale the
octave by first normalizing the data to the lowest octave, and
then multiplying each note value by twelve times the number of
the octave you wish to use. Below is a visual representation of
the MIDI note values that demonstrates the idea of octaves well
[5].

5
SDP20 – TEAM 21

Figure 9: Visual representation of the musical octaves in MIDI

 Besides allowing the user to scale the octave. In the future
we will also allow them to choose the tempo at which their
generated melody and input chords is played back.

III. THE PRODUCT

A. Product Overview
 The BopBot consists of one independent, totally enclosed
system. This system consists of the main electronic hardware,
mounted in an aluminum enclosure. The design of the BopBot
is intentionally simple in nature, to emulate existing products
that musicians know and use on a regular basis. The intent of
the design was to be “plug and play” where the musician could
have just one piece of hardware, plug their instrument in, and
play with very little effort needed. A picture of the design is
provided in Figure 10, and the block diagram of the
functionality of the design is provided in Figure 1.
 Our block diagram is almost entirely software based, as the
MIDI decode, Recurrent Neural Network, and Re-Encode to
MIDI stages, are all implemented in software (Python) on the
Raspberry Pi Compute Module in the enclosure. The user
Input sections of the right of the block diagram are physical
knobs that are mounted on the face of the enclosure to allow
for input parameters such as timing and pitch to allow for
variations in generated melodies. The ADC blocks live on the
same PCB as the Compute Module within the enclosure and
simply provide an interface between the analog potentiometer
knobs, and the digital input pins of the Compute Module.

Figure 10: The BopBot Product Sketch
B. Electronic Hardware Component
 To design the PCB on which the compute module and
ADCs live (among other things), mainly Eagle CAD software
was used. The design that was implemented was heavily based
on a design specified in [12] and on provided documentation
from the Raspberry Pi foundation [2][3]. In addition to the

Compute Module and ADC’s, the board has a USB- A female
connector to provide MIDI output, as well as internet
connectivity through an adapter. In the ultimate design the
USB-A would not be used for internet connectivity, but in our
testing and debugging it was used for this purpose. The PCB
also houses voltage regulators to step down the input voltage
to the appropriate 5V, 3.3V, 1.1V levels needed by the
Compute Module. The board otherwise housed the necessary
capacitors, and resistors specified in the Raspberry Pi
Compute Module schematics [2], and the Datasheet [3].

C. Product Functionality
 At the time of CDR, much of the BopBot was functioning.
Although the software and machine learning were improved
consistently throughout the process, they were at a presentable
state at CDR. The PCB within the BopBot had been delivered
and had begun to be populated, but was not yet usable in time
for CDR. Instead, the Raspberry Pi Compute Module was used
with its corresponding I/O board. After CDR, the PCB was to
have a final revision to improve a few issues with the first
iteration. In addition, the final revision of the PCB would need
to leave space for the ADCs and voltage regulators, which were
not yet implemented in the first iteration. Finally, the enclosure
was not yet implemented. The box to be used in the final
product was purchased, but still needed to have holes drilled
into it for inputs and outputs. Switches, buttons, LEDs, and
MIDI jacks would then be mounted in these holes.
 The demo presented at CDR proved that the BopBot could
become a fully functional product. A demo was performed
(using the Compute Module and I/O board) at CDR which
showed that the machine learning models had reached a point
where the generated melodies would sound decent alongside
the inputted chords. The Compute Module was set to load the
software on boot, and the controls ran flawlessly.

D. Product Performance
 To evaluate the performance of the BopBot, please refer to
Table 1. Going through this table, each specification was met
to the level which we originally set out to accomplish except for
the Timing specification. Firstly, the enclosure that was
implemented in our final design was a Hammond 1590XX
enclosure which is 145mmx121mm, which is slightly smaller
than the original sizing that was specified. This specification
exists to enforce the simplicity of the ultimate design to suit our
target audience. We intended for the design to emulate existing
products, so it could be integrated seamlessly into instrument
effects boards, and the 145mmx121mm sizing is appropriate for
this task. For the power specification, the provided current
from a typical music pedal power supply may not have been
sufficient, so this specification was likely to be reevaluated
given we had enough time. For the timing specification please
refer to section 2A which discusses how the timing
specification was not met to the original standard. For the
musical requirement specification, enough data was collected
from each of the genres to create a distinct sound for the
generated output, which was the original intent of this
specification. The final two specifications were of no concern
due to the usage of the Compute Module which has enough

6
SDP20 – TEAM 21

computing power and memory space to accommodate our
models, as well as the program which implements functionality.

IV. CONCLUSION

 Currently our project is a Python program on a Raspberry Pi
3 Model B. Our project is currently limited to the major/minor
triad inputs outlined in Section II.B. We plan to implement a
more robust chord detection algorithm that allows for more
types of chords (Inversions, 7’s, 9’s). We also plan to
implement a more robust post-processing program in our MIDI
encode stage. Currently the input and output are locked at the
same BPM (120) and the octave is chosen for the user. We plan
to allow for the tempo to be scaled so that the output can be
played faster or slower. We also plan to allow for the user to
choose the octave the generated melody is in.
 After consulting with our advisor, Professor Moritz, we plan
to utilize a Raspberry Pi Compute Module in our larger printed
circuit board. We expect this to be fairly involved, but there is
extensive documentation from both Raspberry Pi and
independent sources. After this is complete, our Python
program can be directly ported from the complete Raspberry Pi,
to our PCB involving the Compute Module.

ACKNOWLEDGMENT

 Team 21 would like to acknowledge our advisor Professor
Moritz for his guidance in tackling this problem. We would also
like to thank Sachin Bhat for his seemingly endless assistance
during our design process.

REFERENCES

[1] Lamere, Paul. “In Search of the Click Track.” Music Machinery,
musicmachinery.com/2009/03/02/in-search-of-the-click-track/.

[2] “MIDI Files.” Mido 1.2.9 Documentation,
mido.readthedocs.io/en/latest/MIDI_files.html.

[3] “C Major Scale.” Basicmusictheory.com: C Major Scale,
www.basicmusictheory.com/c-major-scale.

[4] “Octave Registers.” All About Music Theory.com,
www.allaboutmusictheory.com/piano-keyboard/octave-registers/.

[5] “Articles.” Noterepeat.com, www.noterepeat.com/articles/how-
to/213-MIDI-basics-common-terms-explained.

[6] Buy a Raspberry Pi 3 Model B – Raspberry Pi. (n.d.). Retrieved from
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[7] Buy a Compute Module 3 – Raspberry Pi. (n.d.). Retrieved from
https://www.raspberrypi.org/products/compute-module-3-plus/

[8] “AIVA.” AIVA, www.aiva.ai/.

[9] “Magenta.” Magenta, magenta.tensorflow.org/.

[10] Agarwala, Nipun, Yuki Inoue, and Axel Sly. "Music composition
using recurrent neural networks." CS 224n: Natural Language
Processing with Deep Learning,
https://pdfs.semanticscholar.org/c933/79a401dd159fc0c90eab44c43d
07286b227e.pdf

[11] Blume, Jason. “The Top 5 Melody Pitfalls-and How to Avoid Them.”
BMI.com,
www.bmi.com/news/entry/the_top_5_melody_pitfallsemand_how_to
_avoid_them_em

[12] Agkopian, Manolis. “Design Your Own Raspberry Pi Compute
Module PCB.” Instructables, Instructables, 30 June 2019,
www.instructables.com/id/Design-Your-Own-Raspberry-Pi-
Compute-Module-PCB/.

[13] “Compute Module and Related Schematics.” Compute Module and
Related Schematics - Raspberry Pi Documentation,
www.raspberrypi.org/documentation/hardware/computemodule/sche
matics.md.

[14] Raspberry Pi Compute Module Datasheet. Oct. 2016,
www.raspberrypi.org/documentation/hardware/computemodule/datas
heets/rpi_DATA_CM_1p0.pdf.

APPENDIX

A. Design Alternatives

 We initially planned on completing our MDR design using
the De1-SoC development board. We eventually came to
realize that it did not serve our purposes well and only served
to overcomplicate our design process. This is mostly due to the
fact that the De1-SoC has an FPGA that must be configured to
gain access to a lot of the components on the board. This added
a whole other element to the design process that in the end
would not matter for our final design. Instead of the De1-SoC
we decided to move to a raspberry pi model 3 B to complete our
MDR. Not only is this board extremely easy to develop with,
but it also can be used in our final PCB design as a compute
module. This will make the porting of our existing software
much easier, leaving only the other hardware components to be
implemented (Buttons, Switches, USB interface, GPIO pins,
ethernet port etc.)

B. Technical Standards
 Because the BopBot is intended to be used by musicians, it
is important that it can be integrated easily with a musicians
standards. Most importantly, the BopBot uses standard MIDI
for recording and playback. This is the standard way to read and
write from electric keyboards. Because of this, musicians will
often own their own MIDI cables that can be used to connect
the BopBot to their keyboard. To allow easy integration with
other footpedals that musicians may use, the BopBot is
designed to use a standard 9V power supply and be of a similar
form-factor as other footpedals (see Table 1).
 The software used in the BopBot uses a Unix-based
operating system, which is an IEEE standard. The operating
system is Raspbian which is based on the Linux operating
system Debian. Obviously, a Linux operating system is not the
exact same thing as basic Unix, but it is very closely related.

C. Testing Methods

 The first system specification we were able to test was
number two, given in Table 1. To test if our system generated
melodies in under five seconds, we simply chose 25 unique
chord progression inputs and measured the time it took to
generate a melody. The data for the melody generation time was
then compiled into Figure 14.

7
SDP20 – TEAM 21

Figure 14: Chord progression inputs versus melody generation
time for the rock model

 A concern we emphasized at both PDR and MDR, was that
our Machine Learning model would not generate melodies that
sounded “good.” Music is subjective, so defining a metric that
determines what is good or bad is nearly impossible. Our initial
idea is to simply poll people and ask them if the generated
melodies sound good or not. We would have to mix in human-
made melodies so that comparisons could be drawn about
whether our model generated a good melody, but also a melody
that sounds human-made.

D. Team Organization

 Max is the project manager and he generally keeps all of us
on track in terms of completing work by certain deadlines. Of
course, we all have a hand in making sure things are running
smoothly so we all give input from time to time and all have our
individual technical work to complete.
 Our team is working well together. Our individual expertises
complement each other well for this project. Vee is the machine
learning guru, having taken classes in the subject and conducted
personal research. Austin has an interest in hardware design
which has been helpful when interfacing with hardware
peripherals (buttons, USB interface, GPIO pins, etc.). Matt is
most interested in software which has been helpful in
implementing our state machine and other code in python. Max
has a good musical background which has been very important
in bridging the worlds of machine learning and musical creation
together.
 There has not been a clear moment when a team member
served as a leader. Rather we all give our feedback when
pertinent and generally the whole project is directed by Max.
An example of when Max helped another team member is when
we came up with how our machine learning model would be
constructed. He helped us decide what made sense in terms of
the input and output of the model (structure of input chords and
output melodies). Austin has helped Matt out extensively in
creating the python code for the program, specifically in
interfacing with hardware peripherals like previously
mentioned. Vee is always there to discuss the machine learning
model to make sure it is structured in a way that makes sense
for our purposes.
 We had a communication breakdown with our advisor Prof.
Moritz when we were trying to use the De1-SoC for MDR. We
as a team did not communicate well enough the status of how

things were going with using the board which created a
situation where we decided very late in the semester to switch
to a Raspberry Pi. Once we established that we were not
communicating effectively with our advisor we made a much
more consistent effort to stay in touch with the progress of our
project. This has made life a lot easier because we address
problems proactively rather than waiting until there is an issue.

E. Beyond the Classroom

Matt: In order to write the code that implemented the MIDI
encode block in our block diagram I needed to develop my
python coding skills. I had only used python very briefly once
before this project, so I needed to familiarize myself with
python syntax and how to import libraries. Besides that, I
needed to gain a basic understanding of the machine learning
algorithm we utilized, just so I could give input when necessary.

Austin: Like Matt, I implemented the MIDI decode stage in
Python, which I had very little experience in. Familiarizing
myself with a new programming language, specifically Python,
will translate very well to the professional world. Also, in the
future, I would like to work in some sort of a hardware or
embedded development position, so our work in the upcoming
semester I feel will be very helpful in teaching me skills I may
need as a professional.

Vee: I needed to do a lot of research in order to implement the
Recurrent Neural Network. Before this project I had worked
with other types of Neural Networks, but I had never
specifically worked with Recurrent Neural Networks and
temporal data. Even after I implemented the first design of the
Neural Network there was still much research to be done on
how to optimize the performance of the Neural Network. I
consulted various research papers and the book Machine
Learning Mastery quite a bit. I went through dozens of designs
before ending up with the current design, which is still being
optimized. Although the hardest skill I had to learn was how to
organize and structure the data into a shape that was required
for the Neural Network. I needed to find a way to
mathematically represent music in three dimensions of a
continuous space. It was challenging to come up with the data
representation in the first place but working with the data
representation after that was easy. I just needed to write a
python script to extract notes information from a MIDI file and
store the data in the exact three-dimensional form it needed to
be for the Neural Network. I believe that the skills I developed
from this data management process will greatly help me in my
career in the Data Science field.

Max: Although this project is somewhat out of my interests in
the field of microwaves, I have been able to apply what
knowledge I have and have learned a lot. My musical
knowledge has been very helpful in this music-oriented project.
With this knowledge, I have been able to work with Vee to fine
tune the machine learning models to be more based in music
theory. This project has also helped me expand my knowledge
of embedded programming when collaborating with Austin,
Matt, and Vee to make sure the blocks of the block diagram
interact with each other correctly. I have also gained a great deal

8
SDP20 – TEAM 21

of knowledge in team management and systems engineering.
Because I am the project manager, I have been learning how to
communicate with people effectively and positively so that
work is accomplished in the most efficient way possible.

