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Abstract—The most memorable songs often feature a 
compelling (vocal) melody. Musicians often struggle to 
write melodies that are catchy and unique. The BopBot can 
inspire this creative process by offering melodies based on 
what you play into the machine. After inputting a basic 
chord progression, the BopBot will generate and play back 
a cohesive and interesting sequence of notes using machine 
learning.  

I. INTRODUCTION 

     With the introduction of the radio, musicians became able to 
share their musical creations to a much larger audience. Instead 
of exclusively sharing their music through physical media and 
in live performances, music could be spread to anyone with a 
radio. In doing this, a pressure was applied to musicians to 
create music that had broad appeal. Catchy music catches the 
attention of people quickly scanning through radio stations. 
Although the definition of “catchy” can be hard to define, it is 
usually indicative of one thing: a memorable melody that gets 
stuck in listeners heads played on top of a usually simple chord 
progression. 

A. Significance 

     Where a chord progression is generally quite simple and 
follows a generic pattern, melodies can be highly complex, fast, 
and use a higher variety of notes. Fortunately, when a chord is 
played, a “key” is established which limits the number of 
melody notes that would sound align well with the current 
chord. Despite this, melodies can use varying timings and 
change octaves, making them even more difficult to create. A 
full understanding of music theory is very helpful in 
understanding what chord corresponds to what key and timings 
of notes; however, it takes many years of study to fully 
understand music theory, and thus everyday musicians often 
lack this knowledge. Because of this, writing a chart-topping 
melody can be a very daunting challenge [11]. 

B. Context and Existing Products 

     Music generation is a common application of machine 
learning and is a heavily researched topic [10]. Although music 
generation using machine learning has been done many times, 
it has not been done in the same way that the BopBot will do it.  
     AIVA [8] is a subscription-based artificial intelligence 
program that generates emotional soundtrack music based on 
the selected genre or an existing MIDI file. One of the core 
differences between AIVA and the BopBot is the input and 
output. AIVA is intended to be used as a tool to replace hiring 
someone to write compelling themes for the user’s projects. 
Because of this, AIVA limits the user input to a genre or a track 
of music that it will be “inspired” by. The BopBot, on the other 
hand, takes a chord progression as an input and outputs a 

melody that is overlaid on top of the chord progression. 
Additionally, the BopBot will be functional in a live setting 
using the MIDI input from a keyboard whereas AIVA cannot 
take live input.  
     Google Magenta [9] is an open-source program that uses 
machine learning to append similar melodies to that which the 
user inputs. This is different than the BopBot in similar ways to 
AIVA. Firstly, Google Magenta takes a melody as input where 
the BopBot takes a chord progression as input. Secondly, 
Google Magenta is not intended to be used with live input.  

C. Societal Impacts 

     The BopBot is intended to be used by everyday musicians. 
Because the BopBot will be in the form factor of a music foot 
pedal, as seen in Table 1, it will be able to be used in 
conjunction with the equipment and gear that musicians already 
own. Although the BopBot can be used as a tool to create 
melodies, it is intended to be used more as a creative-assistance 
tool. If a musician creates an interesting chord progression, they 
can use the BopBot to inspire their creative process of writing 
a melody. The BopBot can also be used as a tool in a jam 
session. In this way, it can act as another musician with his/her 
own unique ideas based upon the chord progression being 
jammed to. A concern of ours regarding the BopBot is that it 
will be used as a crutch for newer musicians to create melodies. 
Although the BopBot can be used in this way, it may instill bad 
habits on learning musicians. 

D. Requirements Analysis and Specifications 
System Requirements System Specifications 

Sizing Can fit into a musician’s pedal board 
(typically around 170x138mm). 

Power Powered by a typical music pedal 
power supply (9V, 1700mA maximum). 

Timing Completes melody generation in an 
amount of time that is conducive for 
live music. Less than 5 seconds is 
acceptable. 

Musical Requirement 4 musical genres to choose from for 
models: Rock, Blues, Classical, Pop. 

Machine Learning Performance Neural network design must have less 
than 23,000 neurons in each of the 3 
layers (fewer if using 4 layers) in order 
to generate a melody within 5 seconds 
on a 1 GHz processor. 

Memory Usage Each neural network must be smaller 
than 200 MB such that the 
microprocessor has enough data 
memory (SDRAM). 

Table 1: System Requirements and Specifications 

The requirements and specifications, seen in Table 1, constrain 
the problem that the BopBot addresses. As discussed in section 
C, the BopBot must be in the form factor of a musician’s pedal 
board and must be powered by the standard 9V used in all 
pedals. In addition, the BopBot must generate the melody 
within a reasonably quick 5 seconds and be able to create music 
to several genres. Given this 5 second limit, the BopBot 
requires quite powerful hardware. Assuming a 1 GHz processor 
is used, the BopBot’s machine learning algorithm must be 
designed to have fewer than 23,000 neurons in each of its 3 
layers. Additionally, each genre’s model must be smaller than 
200 MB to fit in the processor’s data memory. 
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II. DESIGN 

A. Overview 

 
Figure 1: Block Diagram 
 
     To solve this problem, we are using a recurrent neural 
network. We decided to use this type of machine learning 
network for several reasons which will be explained in detail in 
the section that goes over block 2. We are using a Raspberry Pi 
[6] as our development platform and moving to a Raspberry Pi 
Compute Module [7] for our final PCB. We decided to use the 
Raspberry Pi because it suits our needs well. We needed a 
system capable of running an operating system so we could 
easily compile the code that is necessary to generate our 
melodies via machine learning. We also needed a fairly 
powerful processor to ensure that we completed melody 
generation in a reasonable amount of time (5 seconds). 
     The first major block in the block diagram, seen above in 
Figure 1, is the MIDI decode stage. Roughly speaking, this is 
the “recording stage” where the user input from the keyboard is 
turned into a format that can be used with our machine learning 
models to generate a melody. As you can see in the block 
diagram in Figure 1, the decoded inputs (4 chords) are sent to 
the next major block in our diagram, the recurrent neural 
network. After the second block has generated a melody, the 
output is then sent to the third and final major block in our 
design, the MIDI encode stage. This can be thought of as the 
“playback” stage where the output from the machine learning is 
reformatted into MIDI so it can be output to a speaker. Besides 
the three main stages, there are several peripherals which allow 
for the user to alter different settings concerning the recording 
and playing back parameters. 
     Specifications played a pivotal role in the performance of the 
overall system. The timing specification imposed the most 
tradeoffs in the overall design of the system. Although the 
machine learning model was improved over the course of the 
entire design, melody generation was quick, often less than two 
seconds. The more major timing tradeoff was in loading 
different models. This would often take 5-10 seconds when 
switching, for example, from the rock to classical models. 
Although this did fully satisfy the specification, this was not 
considered as failing the specification either because users are 
not intended to change genres often. Musicians typically write 
a certain genre of music, thus they will not feel the need to 
switch genres often. Most likely, users would not change genres 
within sessions of using the BopBot. 

B. Block 1 - MIDI Decode 

     The first stage to happen in our project is the MIDI Decode 
stage. This stage can be further broken down into two separate 
steps. The first of which is sampling the user input at the correct 
time steps. Human beings struggle significantly with keeping 
consistent time. Even trained drummers, or lifelong 
professional musicians struggle to keep consistent and accurate 
time. Below is a plot [1] of the tempo variation for Led 
Zeppelin’s classic song “Stairway to Heaven” 

 
 

Figure 2: Tempo variations over the course of “Stairway to Heaven” 
by Led Zeppelin. Measures the average beat variation from the 
average BPM of the song. Y-axis is variation, X-axis is time. 

     As you can see from Figure 2, keeping consistent time is 
something that is virtually impossible for any given person. To 
fix this issue we implemented something we referred to as a 
“rounding interval”. Due to our machine learning inference 
architecture, the input into the Recurrent Neural Network is 
four chords, we sampled the user input at the start of each bar 
line. A visual representation of the rounding interval is given in 
Figure 3. 

 
Figure 3: Visual representation of the rounding interval implemented 
to correct for variations in user input tempo.  
 
     To choose a proper amount of time we conducted various 
trials measuring each group members variation from proper 
timing. To do this we played a metronome at 120 BPM, in 4/4 
time and simply printed out the difference in time between 
correct time and the time the user played a note. We found that 
after conducting 10 trials per team member, no variation was 
greater than 0.25s before or after the bar line. Furthermore, our 
rounding interval was chosen to be plus/minus 0.25s from the 
bar line.   
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     Now that a means to account for incorrect timing from 
human input has been implemented, the MIDI notes would be 
recorded and saved to be used in the melody generation. In the 
early stages of the BopBot, algorithms were to be used to 
decode the chord played at each interval. This would involve 
reading all notes played during an interval and converting them 
to a single major or minor chord, represented as a value between 
-1 and 23. In later iterations of the melody generation software, 
this was found to be an unnecessary. Instead, the first four notes 
played during the rounding interval would be saved exactly as 
they are and sent to be used in machine learning. It was chosen 
to be the first four notes during the interval because a large 
majority of chords only use less than four notes. This would 
increase the complexity of the problem tackled by the machine 
learning. Now, the output of the MIDI decode stage and input 
to the neural networks would be an array of sixteen notes, which 
would be divided into groups of four to represent each chord. If 
less than four notes were played during the interval, the empty 
spaces in the array would be automatically filled as rests. 

C. Block 2 - Recurrent Neural Network 

     After the MIDI notes are successfully decoded, the 
information is then passed to the second block, the Recurrent 
Neural Network. A Recurrent Neural Network takes input one 
at a time, preserving the sequential ordering of the data. In this 
case, a sequence of four chords will be passed in as input to the 
Recurrent Neural Network. Each value is a summary of a chord 
mapped to a specific integer value ranged -1 to 23 as detailed in 
the explanation of Block 1. Once the input has been passed in, 
the Neural Network performs inference, also known as forward 
propagation. This generates a sequence of 16 notes that 
correspond to the four chords that were given as input. The 
Neural Network generates this sequence of notes one at a time 
and passes the information forward. This means that every note 
generated has context of the notes that were previously 
generated before it. The raw values of the generated sequence 
of notes are then passed to the third block, MIDI Encode, for 
necessary preprocessing. 
     The use of the Recurrent Neural Network was a specific 
design choice. A Recurrent Neural Network is a very special 
type of Neural Network that deals with temporal data. This is 
data that has a sequential ordering as well non-independent 
instances over time. For this specific problem, every note value 
is directly dependent on the values of the notes around it. A 
Recurrent Neural Network is able to capture this information in 
a way that non-temporal Neural Networks are not be able to. 
     The second design choice corresponding to this block was 
the use of LSTM (Long Short Term Memory) layers inside the 
Recurrent Neural Network. LSTM layers are a special kind of 
hidden layer within a Recurrent Neural Network that allows the 
network to remember long-term time dependencies. The first 
design of this block did not include LSTM layers. After testing 
the network showed that it lost its context around the 10th note 
it generated. After which the network generated the exact same 
value for the rest of the 6 notes. This is known in the Machine 
Learning field as the Vanishing Gradient Problem. To combat 
this, the hidden layers of the Recurrent Neural Network were 
replaced with LSTM layers. This allowed the Neural Network 

to keep track of long-term dependencies and keep its context all 
the way up to the 16th note. 
     The current design of the Neural Network includes 3 LSTM 
layers with 256 nodes at each layer, which feeds into 3 Dense 
layers with 512 nodes at each of those layers. There are 
currently 3 Neural Networks each trained on a different genre 
of music. The current genres of music are Pop, Blues, and 
Classical. 
     Given that this is a Machine Learning problem, there are a 
multitude of ways in which the Neural Network’s performance 
can be evaluated. The current metric of evaluation we are using 
is Mean Squared Error. Because this is a supervised learning 
problem, for every input in the dataset there is also a 
corresponding output that is considered ideal. During the 
training process, the Neural Network generates an output for a 
given input. This output is then compared to the corresponding 
ideal output and the Mean Squared Error is calculated. This is 
the Loss Function that is defined for each of the networks. 
 

 
Figure 4: Training and Validation loss of Pop model 
 
 

 
Figure 5: Training and Validation loss of Blues model 
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Figure 6: Training and Validation loss of Classical model 
 
     The Loss Function represents how inaccurate each Neural 
Network is. Over time, the Loss Function shows the rate at 
which each Neural Network is learning from its mistakes. It 
shows how each model is becoming less inaccurate after every 
iteration. The three models shown were stopped after 20 
training iterations. 
     At the start of the training process the dataset is divided into 
three chunks, Training, Testing, And Validation. Training takes 
80% of the dataset while Testing and Validation take 10% each. 
The data inside the Training set is what the Neural Network 
learns from, and at every iteration the Neural Network uses the 
data inside the Testing set to calculate the Testing loss. This loss 
value indicates how close the Neural Network is to reaching an 
ideal output and is something that the Neural Network works to 
minimize. The data inside the Validation set is used to calculate 
the Validation loss. This loss metric is meant to give the most 
accurate representation of a Neural Network model’s 
performance. This is because the Validation data is never 
shown to the Neural Network during the training or testing 
process. The Validation loss is silently calculated in the 
background at every iteration and gives us a metric of seeing 
how well the model performs on data that it has never seen 
before. This is a useful thing to measure because Neural 
Networks often become overfit to that data that is has been 
trained on. Becoming overfit means that the Neural Network 
performs very well on training data but poorly on new data. This 
generally means that the variance of this model is too high. If 
the Testing loss goes down while the Validation loss goes up, 
this is a pretty good indication that the model is becoming 
overfit to the data that it has been given. 

 
Figure 7: Relationship between overfitting, underfitting, bias and 
variance 
 
     As of right now, the current evaluation metric of Mean 

Squared Error works fine, but in the future, we have other 
evaluation metrics we would like to implement. One method we 
would like to implement is a single blind trial in which each 
participant listens to a compilation of melodies and tries to 
classify each melody as either human-composed or AI-
generated. The purpose of this trial would be to get a true 
evaluation metric of whether a generated output is “good”. If a 
generated melody can fool a participant into thinking that it is 
human-composed, then that output would be evaluated 
positively and vice versa. This evaluation metric would be a lot 
more representative of a model's performance rather than the 
Mean Squared Error between a generated output and the ideal 
output. 

D. Block 3 - MIDI Encode 

     The last significant block in our design is the MIDI encode 
block. In this block we take the output from block 2, the 
machine learning algorithm, and turn it back into a listenable 
format. This requires post processing of the data. The output of 
the machine learning algorithm are numbers in a continuous 
three-dimensional space. Thus, the numbers will almost always 
be floats and need to be rounded to the nearest integer value 
which represents the MIDI note value that the machine learning 
outputted. We also need to overlay the chords that the user 
inputted on top of the melody that is generated by the machine 
learning algorithm. To accomplish this, we used a function in 
the python library we are using to append the tracks on top of 
each other. We then allow the user to choose whether they want 
to hear just the melody that was generated, or the melody that 
was generated as well as the chords they played as input.  Prior 
to making the final track that will be played the optimal octave 
for the melody must be selected. We decided to simply choose 
one octave higher than the average octave of the input chord 
values for now, but in the future, we plan on allowing the user 
to select what octave to play the melody in so they can find what 
sounds best to them. Below is a visual representation of octaves 
[4]. 

 

 
Figure 8: Visual representation of musical octaves.  
 
     Each octave has twelve notes in it that correspond to twelve 
sequential MIDI values. This allows us to easily scale the 
octave by first normalizing the data to the lowest octave, and 
then multiplying each note value by twelve times the number of 
the octave you wish to use. Below is a visual representation of 
the MIDI note values that demonstrates the idea of octaves well 
[5]. 
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Figure 9: Visual representation of the musical octaves in MIDI 
 
     Besides allowing the user to scale the octave. In the future 
we will also allow them to choose the tempo at which their 
generated melody and input chords is played back. 

III. THE PRODUCT 

A. Product Overview 
     The BopBot consists of one independent, totally enclosed 
system. This system consists of the main electronic hardware, 
mounted in an aluminum enclosure. The design of the BopBot 
is intentionally simple in nature, to emulate existing products 
that musicians know and use on a regular basis. The intent of 
the design was to be “plug and play” where the musician could 
have just one piece of hardware, plug their instrument in, and 
play with very little effort needed. A picture of the design is 
provided in Figure 10, and the block diagram of the 
functionality of the design is provided in Figure 1. 
     Our block diagram is almost entirely software based, as the 
MIDI decode, Recurrent Neural Network, and Re-Encode to 
MIDI stages, are all implemented in software (Python) on the 
Raspberry Pi Compute Module in the enclosure. The user 
Input sections of the right of the block diagram are physical 
knobs that are mounted on the face of the enclosure to allow 
for input parameters such as timing and pitch to allow for 
variations in generated melodies. The ADC blocks live on the 
same PCB as the Compute Module within the enclosure and 
simply provide an interface between the analog potentiometer 
knobs, and the digital input pins of the Compute Module.  

 
Figure 10: The BopBot Product Sketch 
B. Electronic Hardware Component 
     To design the PCB on which the compute module and 
ADCs live (among other things), mainly Eagle CAD software 
was used. The design that was implemented was heavily based 
on a design specified in [12] and on provided documentation 
from the Raspberry Pi foundation [2][3].  In addition to the 

Compute Module and ADC’s, the board has a USB- A female 
connector to provide MIDI output, as well as internet 
connectivity through an adapter. In the ultimate design the 
USB-A would not be used for internet connectivity, but in our 
testing and debugging it was used for this purpose. The PCB 
also houses voltage regulators to step down the input voltage 
to the appropriate 5V, 3.3V, 1.1V levels needed by the 
Compute Module. The board otherwise housed the necessary 
capacitors, and resistors specified in the Raspberry Pi 
Compute Module schematics [2], and the Datasheet [3].  
 
C. Product Functionality 
     At the time of CDR, much of the BopBot was functioning. 
Although the software and machine learning were improved 
consistently throughout the process, they were at a presentable 
state at CDR. The PCB within the BopBot had been delivered 
and had begun to be populated, but was not yet usable in time 
for CDR. Instead, the Raspberry Pi Compute Module was used 
with its corresponding I/O board. After CDR, the PCB was to 
have a final revision to improve a few issues with the first 
iteration. In addition, the final revision of the PCB would need 
to leave space for the ADCs and voltage regulators, which were 
not yet implemented in the first iteration. Finally, the enclosure 
was not yet implemented. The box to be used in the final 
product was purchased, but still needed to have holes drilled 
into it for inputs and outputs. Switches, buttons, LEDs, and 
MIDI jacks would then be mounted in these holes. 
     The demo presented at CDR proved that the BopBot could 
become a fully functional product. A demo was performed 
(using the Compute Module and I/O board) at CDR which 
showed that the machine learning models had reached a point 
where the generated melodies would sound decent alongside 
the inputted chords. The Compute Module was set to load the 
software on boot, and the controls ran flawlessly. 
 
D. Product Performance 
     To evaluate the performance of the BopBot, please refer to 
Table 1.  Going through this table, each specification was met 
to the level which we originally set out to accomplish except for 
the Timing specification. Firstly, the enclosure that was 
implemented in our final design was a Hammond 1590XX 
enclosure which is 145mmx121mm, which is slightly smaller 
than the original sizing that was specified. This specification 
exists to enforce the simplicity of the ultimate design to suit our 
target audience. We intended for the design to emulate existing 
products, so it could be integrated seamlessly into instrument 
effects boards, and the 145mmx121mm sizing is appropriate for 
this task.  For the power specification, the provided current 
from a typical music pedal power supply may not have been 
sufficient, so this specification was likely to be reevaluated 
given we had enough time. For the timing specification please 
refer to section 2A which discusses how the timing 
specification was not met to the original standard. For the 
musical requirement specification, enough data was collected 
from each of the genres to create a distinct sound for the 
generated output, which was the original intent of this 
specification. The final two specifications were of no concern 
due to the usage of the Compute Module which has enough 
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computing power and memory space to accommodate our 
models, as well as the program which implements functionality.  

IV. CONCLUSION 

     Currently our project is a Python program on a Raspberry Pi 
3 Model B. Our project is currently limited to the major/minor 
triad inputs outlined in Section II.B. We plan to implement a 
more robust chord detection algorithm that allows for more 
types of chords (Inversions, 7’s, 9’s). We also plan to 
implement a more robust post-processing program in our MIDI 
encode stage. Currently the input and output are locked at the 
same BPM (120) and the octave is chosen for the user. We plan 
to allow for the tempo to be scaled so that the output can be 
played faster or slower. We also plan to allow for the user to 
choose the octave the generated melody is in.  
     After consulting with our advisor, Professor Moritz, we plan 
to utilize a Raspberry Pi Compute Module in our larger printed 
circuit board. We expect this to be fairly involved, but there is 
extensive documentation from both Raspberry Pi and 
independent sources. After this is complete, our Python 
program can be directly ported from the complete Raspberry Pi, 
to our PCB involving the Compute Module.  
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APPENDIX 

A. Design Alternatives 

     We initially planned on completing our MDR design using 
the De1-SoC development board. We eventually came to 
realize that it did not serve our purposes well and only served 
to overcomplicate our design process. This is mostly due to the 
fact that the De1-SoC has an FPGA that must be configured to 
gain access to a lot of the components on the board. This added 
a whole other element to the design process that in the end 
would not matter for our final design. Instead of the De1-SoC 
we decided to move to a raspberry pi model 3 B to complete our 
MDR. Not only is this board extremely easy to develop with, 
but it also can be used in our final PCB design as a compute 
module. This will make the porting of our existing software 
much easier, leaving only the other hardware components to be 
implemented (Buttons, Switches, USB interface, GPIO pins, 
ethernet port etc.) 
 
B. Technical Standards 
     Because the BopBot is intended to be used by musicians, it 
is important that it can be integrated easily with a musicians 
standards. Most importantly, the BopBot uses standard MIDI 
for recording and playback. This is the standard way to read and 
write from electric keyboards. Because of this, musicians will 
often own their own MIDI cables that can be used to connect 
the BopBot to their keyboard. To allow easy integration with 
other footpedals that musicians may use, the BopBot is 
designed to use a standard 9V power supply and be of a similar 
form-factor as other footpedals (see Table 1).  
     The software used in the BopBot uses a Unix-based 
operating system, which is an IEEE standard. The operating 
system is Raspbian which is based on the Linux operating 
system Debian. Obviously, a Linux operating system is not the 
exact same thing as basic Unix, but it is very closely related.  

C. Testing Methods 

     The first system specification we were able to test was 
number two, given in Table 1. To test if our system generated 
melodies in under five seconds, we simply chose 25 unique 
chord progression inputs and measured the time it took to 
generate a melody. The data for the melody generation time was 
then compiled into Figure 14.  
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Figure 14: Chord progression inputs versus melody generation 
time for the rock model  
 
     A concern we emphasized at both PDR and MDR, was that 
our Machine Learning model would not generate melodies that 
sounded “good.” Music is subjective, so defining a metric that 
determines what is good or bad is nearly impossible. Our initial 
idea is to simply poll people and ask them if the generated 
melodies sound good or not. We would have to mix in human-
made melodies so that comparisons could be drawn about 
whether our model generated a good melody, but also a melody 
that sounds human-made.  

D. Team Organization 

     Max is the project manager and he generally keeps all of us 
on track in terms of completing work by certain deadlines. Of 
course, we all have a hand in making sure things are running 
smoothly so we all give input from time to time and all have our 
individual technical work to complete.  
     Our team is working well together. Our individual expertises 
complement each other well for this project. Vee is the machine 
learning guru, having taken classes in the subject and conducted 
personal research. Austin has an interest in hardware design 
which has been helpful when interfacing with hardware 
peripherals (buttons, USB interface, GPIO pins, etc.). Matt is 
most interested in software which has been helpful in 
implementing our state machine and other code in python. Max 
has a good musical background which has been very important 
in bridging the worlds of machine learning and musical creation 
together.  
     There has not been a clear moment when a team member 
served as a leader. Rather we all give our feedback when 
pertinent and generally the whole project is directed by Max. 
An example of when Max helped another team member is when 
we came up with how our machine learning model would be 
constructed. He helped us decide what made sense in terms of 
the input and output of the model (structure of input chords and 
output melodies). Austin has helped Matt out extensively in 
creating the python code for the program, specifically in 
interfacing with hardware peripherals like previously 
mentioned. Vee is always there to discuss the machine learning 
model to make sure it is structured in a way that makes sense 
for our purposes. 
     We had a communication breakdown with our advisor Prof. 
Moritz when we were trying to use the De1-SoC for MDR. We 
as a team did not communicate well enough the status of how 

things were going with using the board which created a 
situation where we decided very late in the semester to switch 
to a Raspberry Pi. Once we established that we were not 
communicating effectively with our advisor we made a much 
more consistent effort to stay in touch with the progress of our 
project. This has made life a lot easier because we address 
problems proactively rather than waiting until there is an issue. 

E. Beyond the Classroom 

Matt: In order to write the code that implemented the MIDI 
encode block in our block diagram I needed to develop my 
python coding skills. I had only used python very briefly once 
before this project, so I needed to familiarize myself with 
python syntax and how to import libraries. Besides that, I 
needed to gain a basic understanding of the machine learning 
algorithm we utilized, just so I could give input when necessary. 
 
Austin: Like Matt, I implemented the MIDI decode stage in 
Python, which I had very little experience in. Familiarizing 
myself with a new programming language, specifically Python, 
will translate very well to the professional world. Also, in the 
future, I would like to work in some sort of a hardware or 
embedded development position, so our work in the upcoming 
semester I feel will be very helpful in teaching me skills I may 
need as a professional. 
 
Vee: I needed to do a lot of research in order to implement the 
Recurrent Neural Network. Before this project I had worked 
with other types of Neural Networks, but I had never 
specifically worked with Recurrent Neural Networks and 
temporal data. Even after I implemented the first design of the 
Neural Network there was still much research to be done on 
how to optimize the performance of the Neural Network. I 
consulted various research papers and the book Machine 
Learning Mastery quite a bit. I went through dozens of designs 
before ending up with the current design, which is still being 
optimized. Although the hardest skill I had to learn was how to 
organize and structure the data into a shape that was required 
for the Neural Network. I needed to find a way to 
mathematically represent music in three dimensions of a 
continuous space. It was challenging to come up with the data 
representation in the first place but working with the data 
representation after that was easy. I just needed to write a 
python script to extract notes information from a MIDI file and 
store the data in the exact three-dimensional form it needed to 
be for the Neural Network. I believe that the skills I developed 
from this data management process will greatly help me in my 
career in the Data Science field. 
 
Max: Although this project is somewhat out of my interests in 
the field of microwaves, I have been able to apply what 
knowledge I have and have learned a lot. My musical 
knowledge has been very helpful in this music-oriented project. 
With this knowledge, I have been able to work with Vee to fine 
tune the machine learning models to be more based in music 
theory. This project has also helped me expand my knowledge 
of embedded programming when collaborating with Austin, 
Matt, and Vee to make sure the blocks of the block diagram 
interact with each other correctly. I have also gained a great deal 
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of knowledge in team management and systems engineering. 
Because I am the project manager, I have been learning how to 
communicate with people effectively and positively so that 
work is accomplished in the most efficient way possible.  


