

I.G.O.R.
Intelligent General Order-Fulfillment Robot

Johnathan Shentu, CSE; Josh Savard, CSE; Adam Rivelli,
ME; Victor Wong, CSE; Alex Yen, CSE

Abstract— Delivering objects autonomously in a building is not
only an interesting technical problem, but is also a way to allow
for more uninterrupted time for officer workers. With I.G.O.R.
we demonstrate that a significant portion of this time can be
saved by replacing the delivery process with a convenient and
reliable robot.

Package delivery within a building, for humans, requires
knowledge of the building topology as well as time to physically
deliver the package. Our project implements a robot that
autonomously delivers packages within a floor of a building. We
hope that this project can be used to reduce the amount of time
spent delivering packages in office settings, and to improve the
productivity of employees.

I. INTRODUCTION

A. Significance
Every year, significant amounts of time are spent by highly
paid individuals in the trivial matter of transporting items
within offices and other business environments. While some
companies have dedicated paper runners, it can be expensive
to hire a person whose sole job is to deliver packages. As a
result, the valuable time of crucial employees is not utilised to
its fullest potential.

B. Context and Existing Products
There are many delivery robots built today, but they are

designed for alternative use cases. The Marble Robot [1] is
able to deliver items between two points of interest in an
outdoor setting. Similarly, Starship Technologies’ food
delivery robots [2] also only operate outdoors. One large
advantage of restricting operations to the outdoors is the
availability of GPS/GNSS signals for localization.

The Savioke Relay [3] is a delivery robot meant to provide
hotel room service. As this robot operates indoors, it cannot
use GPS/GNSS signals and instead uses LiDAR. Both of these
robots must be loaded and unloaded by a human, which is one
of the challenges our robot will attempt to address.

C. Societal Impacts
Our project will reduce the time spent on delivering small

packages within a building. If we deployed I.G.O.R. in an
office building, we expect that it would increase the overall
productivity of most employees by decreasing the amount of
time spent on tasks not directly related to work. From a
manager’s perspective, this is an obvious benefit. From an
employee’s perspective, this may be seen as a benefit because
their time is not wasted on trivial tasks. However, relatively
minor inconveniences like delivering a file to a coworker’s
desk may be seen as welcome breaks during a day’s work. It is
more concerning that I.G.O.R. may reduce the number of

people at sites where delivery of intra-office mail is a
time-consuming task. But because I.G.O.R. can only deliver
packages - not sort or schedule deliveries - human intervention
is still very much needed.

A problem that we are unable to address is Human-Robot
Interaction. That topic is on a different scope of ongoing
research that will be hard to address within our SDP project. If
the robot can detect an anomaly within its own system, we can
have the robot stop all actions as an emergency operation, and
set up hazard lights to signal and error within its own system.
However, if a robot encounters an unintentional error in its
system that isn’t detected, it will not react to the error
accordingly. Additional components, such as peripheral
sensors, will allow our system to detect errors and allow for
internal correction by the main system. However, this is not
addressed in our project.

D. Requirements and Specifications
The overall objective of this project is to be able to deliver a

package from one location to another autonomously. In order
to meet this objective, the robot needs to meet the high level
requirements shown in the left column of Table 1.

Table 1: Requirements and Specifications

Requirement Specification Value
Receive source
and destination

Command-line
interface

Display a map that
the user can use to
select a package
source and
destination

Path plan route
to goal

Time < 2 sec

Carry a package
to destination

Speed 0.5 mph

Autonomous
package
unloading

Distance from
selected
destination

3 feet

Battery Life Time 3+ deliveries in
Marcus basement

Collision
avoidance

Responsiveness < 180 ms

Portability Size / weight < 4cu.ft. / < 20 lbs

E. Specification breakdown
First, a user needs to send a delivery order to the robot. To

make it easy to select a pickup and drop off point, some form
of graphical interface is required. We currently plan on
displaying a map to the user, such that the user can select
pickup and drop off points of interest and then send that data
to the robot.

Next, the robot needs to be able to plan a path between two
selected points of interest. Here, we’ve specified that the robot
should be able to plan a path in less than 2 seconds. While it is

2
SDP20 – TEAM 20

important that the robot begins its tasks quickly, it is also
important to note that the robot needs to continuously re-plan
its path in case it goes off course. In order to decrease error,
the robot must be able to re-plan the path in less than 2
seconds to prevent significant disparity from the robot's
estimate of its position and its actual position. This is
accomplished with the Navigation Stack (NavStack), which
plans a path trajectory for the robot within our specification of
2 seconds.

In addition, while it is important that the robot can move
between pickup and drop off points quickly, it is more
important that the robot doesn’t harm people or infrastructure
while traveling. We decided that the robot should move at
about 0.5 mph to increase safety regarding collisions and
improve the robot’s path following accuracy due to it having
reduced momentum. While 0.5 mph is slower than the average
person’s walking speed, it is still quick enough to fulfill
deliveries in a timely manner.

We decided that the package needs to be delivered within 3
feet of the destination because when packages are delivered, it
isn’t imperative that the package is at the exact position; it is
only important that it is left at about the correct area with
some level of error tolerance, which we decided was 3 feet.
We settled on 3 feet due to doorways being about 3 feet
across, and we determined it was not an issue if a user
specified a drop off point at the left side of a doorway, and the
package was left at the right side.

The battery life was chosen because in order to have an
active duty time with sporadic use; we estimate that the duty
cycle between delivering and idling will be on average one to
three. Thus, completing three deliveries in the Marcus
basement on one charge should allow an adequate buffer to
allow for recharging between deliveries. Per delivery, the
robot should travel the distance of approximately Marcus 5 to
the SDP lab.

Collision avoidance was chosen to be under 180 ms so that
if the robot is moving at maximum velocity, it can stop in less
than 10 cm, which is the maximum distance that our distance
sensors can reliably detect objects at.

Portability is the requirement with the broadest range of
acceptable values. Because we want our product to be easy for
a human to move in case of an emergency, we based the value
for the portability requirement on what an average person can
easily carry.

II. DESIGN
A. Overview

We’ve outlined the different subsystems necessary to
implement our solution in Figure 1.

Each module is outlined in grey, which we further
modularize with specific components. The core computational
component within our system is the Raspberry Pi [4]. The Pi
controls every component within our system – the motors,

unloading mechanism, Pi Camera [5], and our custom PCB
with integrated ultrasonic distance sensors; our Pi is the
driving microcontroller for our system. The battery was
chosen such that there was enough capacity so that the robot
could make 3 or more deliveries across the basement of
Marcus. Additionally the robot frame and the lifting
mechanism were chosen to be able to keep the robot inside of
our size and weight constraints.

Figure 1. Block diagram describing the components used in
our project.

Within our Pi, we are using a middleware called the Robot
Operating System (ROS) [6]. Within ROS, I.G.O.R. uses the
NavStack and AprilTag [9] packages to do the following:
navigate from source to destination given its surroundings,
current position, and destination position; use AprilTags as a
means for global localization of the robot’s position in relation
to the map. For our CDR, we have demonstrated that our robot
can navigate and drive from a source point to a destination
point, although the navigation via NavStack and global
localization via AprilTags needs further improvement. The use
of NavStack and AprilTags will be discussed more in II.C.

We are using a pre-built mecanum robotics kit [7] as the
platform for our project. We’ve also added an H-bridge motor
driver module [8] to this kit to allow us to control the motors
using the Raspberry Pi. The motors have built-in encoders that
are used to calculate the robot’s current position using wheel
odometry. The robot’s updated position is then sent to
NavStack, which sends new velocity commands to the motors.
New encoder values are then generated via rotation of the
motor, and these encoder counts are once again used by
NavStack and thereby closes the control loop.

The main focus for the remainder of the semester would
have been put into incorporating navigation with AprilTags to
make our package delivery more robust and accurate.
Additionally, we were implementing a command line interface
(CLI) to select the source and destination positions for
delivery.

B. State Machine

Upon the completion of all modules, the end system will
utilize them to perform the intended tasks of the robot. In
order to do so, the system must perform subtasks abstracted
from the modules in a specific order.

A model of our system is shown in Figure 2 in the form of

3
SDP20 – TEAM 20

a state machine. In this model, initialization begins by
checking if a map file has been preloaded into the system.
This is necessary as the robot cannot navigate the floor or
receive meaningful directives without the map. If successful,
the system requests for a confirmation of the current position
it is in.

Figure 2: State machine representing the program flow of our
robot.

After successful initialization, the system will begin idling
and checking for job directives. These directives will be
received by either a console on the Raspberry Pi or polled
from a server. Job directives consist of a source and
destination point, which are then transcribed into two separate
source and destination points – the robot must first drive to the
package location from its current position, then drive to the
dropoff location to unload the package.

In order to perform this task, the system must first generate
a path for the robot to follow, then command the motors to
follow the path while updating its current location using a
combination of odometry and visual cues (April Tags) [9]. In
addition, the robot must stop to avoid obstacles detected from
the ultrasonic sensors, planning around it if necessary. At the
end of each destination, the robot must then align itself to
receive or drop the package off at its destination.

C. Robot Operating System

ROS is a software framework and collection of libraries that
facilitates internal communication and modularization within a
robotic system, as well as simplifying the implementation of a
number of robotics algorithms on a new physical platform. In
ROS, programs are split into different nodes, each of which
can send messages to topics and decide from which topics it
wants to receive messages. The architecture of our ROS

program is shown in Figure 7. Note that not every node and
topic is shown in this diagram; if they were, this diagram
would become over-complicated. For example, NavStack uses
several nodes and topics internally that aren’t directly relevant
to our project, such as the motor driver node, so NavStack is
simply represented by a single node. The core of our software
architecture is the NavStack and the motors – everything else
can be interpreted as a data source for the NavStack.

The NavStack is an official ROS repository that sends
commands to a robot’s motors, provided that it receives the
required data to perform its role. At a minimum, the NavStack
needs to know the following: (1) what its surroundings are
like, (2) where it currently is, and (3) where it should go. The
rest of the software we have written is built around providing
the NavStack with this information.

There are three ways to accomplish task (1): outfit the
robot with the sensors needed to figure out what its
environment is like, tell the robot ahead of time about its
environment, or a combination of the two. For this project, we
limited ourselves to primarily telling the robot what its
environment is like ahead of time. To do this, we pre-loaded
the robot with a hand-drawn map of its environment,
indicating which areas in its environment are freespace and
which areas are obstacles. We also pre-loaded the robot with
the position of several AprilTags in its environment that it
could later use as landmarks.

For task (2), we used two sources of data about the
robot’s current position: how far each of its wheels has turned
(wheel odometry), and the robot’s position relative to the
AprilTags we placed in the world (visual odometry).

Wheel odometry works by sensing the amount that each
wheel rotated during a timestep using encoders, which then
uses that information to calculate the direction and distance
the robot traveled in during the last timestep. For example, if
all of the wheels rotated 90 degrees forwards between the
previous and the current timestep and each wheel had a
circumference of 4 inches, then one can conclude that the
robot moved forwards by one inch. Because our robot uses
mecanum wheels, the equations governing our wheel
odometry are slightly more complicated than that. These
equations are shown in Equation 1.

Equation 1. The equations governing the wheel
odometry of I.G.O.R. ∆x, ∆y, ∆θ represent the change in the
robots position forward, to the left, and rotationally, di
represent the tangential distance that each wheel rotated in the
last timestep for the front-left, front-right, rear-left, and
rear-right wheels respectively, and 𝛼 and β are parameters
tuned manually depending on the robot and its environment’s
physical features.

4
SDP20 – TEAM 20

While wheel odometry can be used for localization in many
robots, solely relying on this information will result in
movement inaccuracies over long periods of time. If the robot
runs over a slippery patch of ground, gets pushed, or
accidentally overshoots its position, the robot’s positional
awareness will be unreliable if wheel odometry is its only
source of position information.

For this reason, we implemented visual odometry using
AprilTags. AprilTags are small grids of pixels, shown in
Figure 3. Given the characteristics of a camera (e.g., how
much it distorts an image), a software library can be used to
calculate the camera’s position and orientation in space
relative to an AprilTag. Since we already know the position of
the camera relative to the robot and the position of the
AprilTags relative to the environment, we can use these two
relative positions to calculate the robot’s actual position based
on this data, and correct the errors accumulated in the wheel
odometry’s estimate of the robot’s position. Using a
combination of wheel and visual odometry, we can
accomplish task (2), and provide the NavStack with an
estimate of the robot’s current position.

Figure 3. An image of an AprilTag.

Finally, we need to tell the robot where to go (task (3)). To

do this, we use the orchestrator node from Figure 7. The
orchestrator is largely responsible for implementing the
behaviors described by the state machine in Figure 2. The
orchestrator is where our robot behaves as a delivery robot,
not just a robot that navigates autonomously. The orchestrator
node accepts a few pieces of user input and then directs the
NavStack where to go based on this input. The orchestrator
needs the following as input: the package pickup coordinates,
whether or not the package has been placed on the robot yet,
and the package dropoff coordinates. After the user enters the
pickup coordinates, the orchestrator asks the NavStack to go
to the pickup location. Next, the orchestrator waits until the
user indicates that the package has been loaded, and then
passes the destination coordinates on to the NavStack. After
reaching the destination, the orchestrator communicates with
the lifter to drop off the package, and then it resumes its idle
behavior.

Given that tasks (1), (2), and (3) are accomplished, the
NavStack can generate its output: a desired robot velocity.
After generating this velocity, the motor node converts this
into a set of motor voltages, and sends these to the motors.

III. THE PRODUCT

A. Product Overview
 In figures 4 and 5, we show our product design sketch and
physical implementation respectively; figure 4 shows the
top-down view sketch of our robot.

Figure 4. Product Sketch

Figure 5. Product Implementation

Figure 6 shows an example of I.G.O.R. in operation, which

navigates from the beginning destination to the target

5
SDP20 – TEAM 20

destination while avoiding obstacles, picking up a package,
and using AprilTags for global localization. Figure 7 shows
our software implementation of our robot system.

Figure 6. Robot Operation

Figure 7. I.G.O.R. Software Architecture.

B. Electronic Hardware Component
Before MDR, the PCB was emulated using an Arduino Uno

to run four ultrasonic distance sensors. In the transition
between Arduino to PCB, a model was established with four
ultrasonics on a breadboard. This was then scaled up to
include hardware to support eight ultrasonics, and to regulate
voltage to the microcontroller. Subsequently, this was created
as a schematic using Altium designer and sent to OSH Park
for fabrication. The majority of components were surface
mounted to the board after being tested. Problems such as
shorts between through-hole mounted components were
diagnosed with a meter and an oscilloscope.

Figure 8. Populated and Unpopulated PCBs

Figure 9. PCB Development Breadboard

C. Product Functionality
Table 2 shows a summary of the CDR deliverables we were

able to complete. Overall, we did not reach a few major goals,
and still had a fair bit of work required to be completed
between CDR and FPR.

D. Product Performance
In the implementation at the time of CDR, the robot was

able to receive command line instructions specifying a start
and goal position, and autonomously navigate between the two
locations. It should be noted that navigation was not integrated
with real time updates from AprilTags so there was no method
of correction in absolute position, resulting in disparities of up
to 6 inches after traveling 1.5 meters while changing direction
three times with a package loaded. Additionally the battery
was able to consistently surpass its three delivery requirement
with the ability to turn the wheels for over 10 mins. In
addition, we initially planned for the robot to pick up a
package autonomously, which would have been accomplished
via AprilTags through self alignment. However, we realized
that this task was a lot more complicated than we had

6
SDP20 – TEAM 20

imagined, and we decided to omit this part of our project in
our final design. We also implemented a command line
interface that could transmit commands to the robot
wirelessly.

Table 2. A table summarizing which CDR goals we were able
to complete on time.

Deliverable Met?
Update global position
with April Tags

50%. The robot can
determine its position relative
to an AprilTag, but it does
not update its position
relative to the world based on
that information.

Path Planning Yes. The robot can plan and
follow a path.

Receive Directives Yes. The robot receives
directives through a CLI
interface

Detect and plan around
obstacle with
Ultrasonic Distance
Sensors

50%. The robot detects
obstacles and stops, but does
not plan a path around the
obstacle

IV. CONCLUSION
A. Current State of the Project

Physically, our robot has a mobile base, a prototype
lifting mechanism, and a prototype enclosure, as well as all of
the sensors and actuators required to sense and move within its
environment. A photo of the current state of our robot is
shown in Figure 5.

Currently, the robot can receive directives from a CLI
interface, and then plan and follow a path from its current
position, to the pickup point, and to the dropoff point.
However, it performs this using only wheel odometry for
position feedback, with no correction for the accumulation of
error. Path planning and execution are completed using ROS
and the NavStack provided by ROS.

A camera is mounted on the robot, and it can sense the
position of an AprilTag relative to the camera. However, this
position is not used by the robot to update its position relative
to the world.

We have designed a PCB and integrated it into our
project. The PCB operates the ultrasonic distance sensors,
compiles the data received from them, and relays this data to
the Raspberry Pi. A ROS node on the Raspberry Pi then
processes this data, and decides whether or not to stop based
on the sensor data.

B. Intended Future Implementation

Due to the abrupt conditions imposed by the COVID-19

pandemic, our project was unable to see its completion. All of
the other sections of this report only deal with what we were
able to complete up until CDR, and this section will discuss
what we would have focused on between CDR and FPR if this
project were to be continued.

Three major tasks remained to be completed between CDR
and FPR: (1) implementing visual odometry using AprilTags,
(2) testing and tuning the complete navigation system, and (3)
making our project clean and presentable for demo day.

At CDR, the robot’s navigation was not very accurate.
Wheel odometry needs to be experimentally calibrated for
new robots, so there is a lot of uncertainty intrinsic in it. As
our robot travelled farther distances, the accuracy of its
position estimate continuously decreased. Therefore, our first
priority would have been to implement visual odometry using
AprilTags in order to improve the long-term accuracy of the
robot’s position estimates.

Next, we would have focused on testing and tuning the
navigation. There were many variables in our system that
needed to be hand-tuned, such as: the maximum velocity and
acceleration of the robot, the amount of uncertainty present in
our wheel and visual odometry readings, the rate at which the
odometry loops should be run at, and many other parameters
related to NavStack. Most of these values need to be
determined experimentally, and we would have needed to
spend a lot of time on determining the best values for these
parameters for our specific application.

Next, we would have worked on cleaning up our project
for FPR and demo day, physically as well as in software. We
would have remade the lifter to look more presentable,
mounted the camera more cleanly to the enclosure, and
constructed a more robust enclosure overall. Additionally, we
would have converted the CLI to a GUI in order to make the
project easier to demonstrate at demo day.

ACKNOWLEDGMENT
We’d like to thank our advisor, Prof. Ciesielski for

providing continual guidance and feedback to our team
throughout the semester. We’d also like to thank our
evaluators, Prof. Stephen Frasier and Prof. Mario Parente, for
providing constructive feedback and helping us constrain the
scope of our project.

REFERENCES

[1] “Autonomously Moving Things into the Future,” marble.io [Online].
Available: https://www.marble.io/ [Accessed December 18, 2019].

[2] “We are a company building a network of robots ready to serve you
anytime, anywhere,” starship.xyz [Online]. Available:
https://www.starship.xyz/ [Accessed December 19, 2019].

[3] “Meet Relay Autonomous, Secure Delivery in Dynamic Public Spaces,”
savioke.com, [Online]. Available: https://www.savioke.com/ [Accessed
December 19, 2019].

[4] “Buy a Raspberry Pi 3 Model B+ – Raspberry Pi.” Buy a Raspberry Pi 3
Model B+ – Raspberry Pi,
www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

https://www.marble.io/
https://www.starship.xyz/
https://www.savioke.com/

7
SDP20 – TEAM 20

[5] “Buy a Camera Module V2 – Raspberry Pi.” Buy a Camera Module V2

– Raspberry Pi, www.raspberrypi.org/products/camera-module-v2/.
[6] “About ROS.” ROS.org, www.ros.org/about-ros/.
[7] “Mars Explorer Mecanum Wheel Robotic Kit (Arduino

Mega2560)-Lesson1 Assembling the Car.” Mars Explorer Mecanum
Wheel Robotic Kit (Arduino Mega2560)-Lesson1 Assembling the Car "
Osoyoo.com, 13 Nov. 2019,
osoyoo.com/2019/11/13/mecanum-omni-wheel-robotic-kit-v1-for-arduin
o-mega2560-lesson-14/.

[8] #600449, Member. “Rover 5 Motor Driver Board.” ROB-11593 -
SparkFun Electronics, www.sparkfun.com/products/retired/11593.

[9] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” 2011
IEEE International Conference on Robotics and Automation, 2011.

[10] “A* Search Algorithm.” GeeksforGeeks, GeeksforGeeks, 7 Sept. 2018,
www.geeksforgeeks.org/a-search-algorithm/.

APPENDIX
A. Design Alternatives
During the design process of our project, we considered
several alternative implementations for our chassis, our path
planning algorithm, and our localization algorithm.

We had to decide whether to design and manufacture the
chassis ourselves, or to buy a prefabricated robot chassis. We
eventually decided to buy a prefabricated chassis. Although
we could have designed a more application-specific chassis
ourselves, we decided that the chassis was not the core
component of our project, so the time that we would have
spent designing a chassis would be better spent on other
components.

For our path planning algorithm, we had to decide whether
to write our own implementation, or to use an existing path
planning library. Up until MDR, we had decided to write our
own path planning implementation because we thought that it
would be easier to make our own simple implementation,
rather than to familiarize ourselves with the extensive ROS
NavStack ecosystem. However, we eventually decided to use
NavStack anyway. Although using NavStack introduced a lot
of complexity into our code, it allowed us to worry about the
problems specific to our robot, rather than reimplementing
several algorithms that had already been implemented by other
roboticists.

A final important design decision that we made was how to
implement localization on our robot. We considered two initial
choices: Simultaneous Localization and Mapping (SLAM) or
visual odometry. There are several tradeoffs between these
approaches, including their relative material costs, ease of
implementation, computational costs, and accuracy.

In terms of sensor cost, SLAM is far more expensive than
visual odometry. SLAM requires a LiDAR sensor, the
cheapest of which cost around $100, while visual odometry
can be implemented with a Raspberry Pi camera, which costs
only about $10. Additionally, visual odometry with AprilTags
can be run on a Raspberry Pi, while most people opt to run
SLAM on a more powerful, more expensive computer due to
its increased computational needs. However, SLAM is more
commonly implemented by users of ROS, so there may have

been more support for SLAM than there was for visual
odometry. Additionally, we expect that SLAM would have
produced more accurate estimates of our robot’s position than
we were able to achieve with visual odometry.

In the end, we decided to use visual odometry over SLAM.
We weren’t comfortable with how much of our budget SLAM
would use, and we were less comfortable with its underlying
technology, and were not confident that we would be able to
successfully implement a robot running SLAM.

B. Technical Standards

Our project does not use IEEE hardware standards, but we
use software standards for technical reliability and soundness.
We use the IEEE 829 standard, which is the standard for
software testing. Within our project, we planned to test
moving the robot first, then implement path planning from two
points of interest, and then incorporate AprilTags for global
localization. We first tested the movement of the robot to
ensure that the robot moved the correct direction, which was
important because our robot uses omni-motor wheels. Next,
we moved onto path planning, which incorporated the use of
NavStack into our system. However, while NavStack was
working properly for our project, we did not finish refining
this component of our project. Instead, we moved on to
AprilTags to incorporate global information with NavStack.
However, before we could finish testing AprilTag
incorporation with NavStack, our project was cut short due to
COVID-19.

C. Testing Methods

We ran several tests in order to verify the performance of
several individual components of the system. Notably, we
tested the accuracy of our odometry measurements, and the
accuracy of the AprilTag detection measurements.

The testing and verification of these two measurements was
very important to the overall performance of our robot because
these were the two components that allowed the robot to keep
track of its current position.

In order to test the accuracy of its odometry, we drove the
robot for varying periods of time and in varying directions
(forwards, backwards, sideways, and diagonally), measured
how far it actually travelled, and compared this to the distance
that it calculated it had travelled. From these measurements,
we calculated a correction factor that we used to correct its
odometry estimates in the future. This is important because
odometry calculations are only approximate; the distance that
the robot actually moves is dependent on how much the
wheels slip, which is dependent on the weight of the robot, the
surface that the robot is driving on, and how worn the robot’s
wheels are.

To test AprilTag detection, we mounted the camera, and
then measured the distance to several points in front of the
camera where we then placed the AprilTags. From this, we
could determine the accuracy of the AprilTag detection, and
therefore the long-term accuracy of our localization algorithm.

http://www.raspberrypi.org/products/camera-module-v2/
http://www.geeksforgeeks.org/a-search-algorithm/

8
SDP20 – TEAM 20

During this test, we also determined how close the AprilTags
needed to be to the camera in order for them to be detected,
which helped us decide how close the tags needed to be to
each other in the robot’s environment.

When performing verification of the PCB, hardware
analysis tools, such as a multimeter and an oscilloscope, were
used to initially confirm that all contact traces were properly
linked. Then, once all components were mounted, we loaded
the C code onto the microcontroller to find that it did not
function. After testing, we used an oscilloscope to determine
that the crystal oscillator on our PCB was not functioning.
Once the crystal oscillator was replaced, the board functioned
properly, although a few ultrasonic distance sensors were
malfunctioning. We used a scope to verify that two of the
ultrasonics were broken, and they were replaced.

D. Team Organization

On our team, each member made strong individual
technical contributions to the project, and several members
stepped up to take on a leadership role on the team.

Throughout the course of the project, Alex ensured that
the team was on track to meet the formal requirements and
deadlines required by SDP. He took charge on scheduling our
design reviews with our evaluators, as well as ensuring that
the rest of the team was focused on completing the
deliverables that we promised to our evaluators.

In addition to providing valuable individual contributions,
Victor was also skilled at helping other members of the team
make the best use of their lab time. When working with other
team members, Victor did a good job of encouraging other
team members to organize their thoughts, work through their
technical challenges methodically, and therefore improve the
overall productivity of the team.

Josh took the lead on two major components of our
project: our homemade implementation of A* path planning,
and the design and programming of our PCB. Joshua was an
integral part of the technical sides of both of these
components, but he also helped to organize the efforts of other
team members on these components as well, and he ensured
that these components were completed quickly and smoothly.

While Johnathan did not often take on a leadership role
within our team, he did frequently take the initiative to lay the
groundwork for new components of the project. Johnathan
researched and created prototype implementations of the
AprilTag detection software, and the orchestrator ROS node
that coalesced our entire project.

Despite being the mechanical engineering major on our
team, Adam is also a computer science major, and played a
fundamental role in our product implementation. When Alex,
Victor, and Johnathan were struggling with NavStack and
AprilTag incorporation into our robot system, Adam took
initiative and propelled the team towards project completion.
Overall, this project would have never progressed to its
current state without Adam’s technical contributions.

