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Abstract— Delivering objects autonomously in a building is not         
only an interesting technical problem, but is also a way to allow            
for more uninterrupted time for officer workers. With I.G.O.R.         
we demonstrate that a significant portion of this time can be           
saved by replacing the delivery process with a convenient and          
reliable robot. 

Package delivery within a building, for humans, requires         
knowledge of the building topology as well as time to physically           
deliver the package. Our project implements a robot that         
autonomously delivers packages within a floor of a building. We          
hope that this project can be used to reduce the amount of time             
spent delivering packages in office settings, and to improve the          
productivity of employees. 

I. INTRODUCTION 

A. Significance 
Every year, significant amounts of time are spent by highly          
paid individuals in the trivial matter of transporting items         
within offices and other business environments. While some        
companies have dedicated paper runners, it can be expensive         
to hire a person whose sole job is to deliver packages. As a             
result, the valuable time of crucial employees is not utilised to           
its fullest potential. 

B. Context and Existing Products 
There are many delivery robots built today, but they are           

designed for alternative use cases. The Marble Robot [1] is          
able to deliver items between two points of interest in an           
outdoor setting. Similarly, Starship Technologies’ food      
delivery robots [2] also only operate outdoors. One large         
advantage of restricting operations to the outdoors is the         
availability of GPS/GNSS signals for localization. 

The Savioke Relay [3] is a delivery robot meant to provide            
hotel room service. As this robot operates indoors, it cannot          
use GPS/GNSS signals and instead uses LiDAR. Both of these          
robots must be loaded and unloaded by a human, which is one            
of the challenges our robot will attempt to address. 
 

C. Societal Impacts 
Our project will reduce the time spent on delivering small           

packages within a building. If we deployed I.G.O.R. in an          
office building, we expect that it would increase the overall          
productivity of most employees by decreasing the amount of         
time spent on tasks not directly related to work. From a           
manager’s perspective, this is an obvious benefit. From an         
employee’s perspective, this may be seen as a benefit because          
their time is not wasted on trivial tasks. However, relatively          
minor inconveniences like delivering a file to a coworker’s         
desk may be seen as welcome breaks during a day’s work. It is             
more concerning that I.G.O.R. may reduce the number of         

people at sites where delivery of intra-office mail is a          
time-consuming task. But because I.G.O.R. can only deliver        
packages - not sort or schedule deliveries - human intervention          
is still very much needed. 

A problem that we are unable to address is Human-Robot           
Interaction. That topic is on a different scope of ongoing          
research that will be hard to address within our SDP project. If            
the robot can detect an anomaly within its own system, we can            
have the robot stop all actions as an emergency operation, and           
set up hazard lights to signal and error within its own system.            
However, if a robot encounters an unintentional error in its          
system that isn’t detected, it will not react to the error           
accordingly. Additional components, such as peripheral      
sensors, will allow our system to detect errors and allow for           
internal correction by the main system. However, this is not          
addressed in our project. 

D. Requirements and Specifications 
The overall objective of this project is to be able to deliver a             

package from one location to another autonomously. In order         
to meet this objective, the robot needs to meet the high level            
requirements shown in the left column of Table 1.  
 
Table 1: Requirements and Specifications 

Requirement Specification Value 
Receive source 
and destination 

Command-line 
interface 

Display a map that 
the user can use to 
select a package 
source and 
destination 

Path plan route 
to goal 

Time < 2 sec 

Carry a package 
to destination 

Speed 0.5 mph 

Autonomous 
package 
unloading 

Distance from 
selected 
destination 

3 feet 

Battery Life Time 3+ deliveries in 
Marcus basement 

Collision 
avoidance 

Responsiveness < 180 ms 

Portability Size / weight < 4cu.ft. / < 20 lbs 
 

E. Specification breakdown 
First, a user needs to send a delivery order to the robot. To              

make it easy to select a pickup and drop off point, some form             
of graphical interface is required. We currently plan on         
displaying a map to the user, such that the user can select            
pickup and drop off points of interest and then send that data            
to the robot. 

Next, the robot needs to be able to plan a path between two              
selected points of interest. Here, we’ve specified that the robot          
should be able to plan a path in less than 2 seconds. While it is               
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important that the robot begins its tasks quickly, it is also           
important to note that the robot needs to continuously re-plan          
its path in case it goes off course. In order to decrease error,             
the robot must be able to re-plan the path in less than 2             
seconds to prevent significant disparity from the robot's        
estimate of its position and its actual position. This is          
accomplished with the Navigation Stack (NavStack), which       
plans a path trajectory for the robot within our specification of           
2 seconds. 

In addition, while it is important that the robot can move           
between pickup and drop off points quickly, it is more          
important that the robot doesn’t harm people or infrastructure         
while traveling. We decided that the robot should move at          
about 0.5 mph to increase safety regarding collisions and         
improve the robot’s path following accuracy due to it having          
reduced momentum. While 0.5 mph is slower than the average          
person’s walking speed, it is still quick enough to fulfill          
deliveries in a timely manner. 

We decided that the package needs to be delivered within 3            
feet of the destination because when packages are delivered, it          
isn’t imperative that the package is at the exact position; it is            
only important that it is left at about the correct area with            
some level of error tolerance, which we decided was 3 feet.           
We settled on 3 feet due to doorways being about 3 feet            
across, and we determined it was not an issue if a user            
specified a drop off point at the left side of a doorway, and the              
package was left at the right side. 

The battery life was chosen because in order to have an            
active duty time with sporadic use; we estimate that the duty           
cycle between delivering and idling will be on average one to           
three. Thus, completing three deliveries in the Marcus        
basement on one charge should allow an adequate buffer to          
allow for recharging between deliveries. Per delivery, the        
robot should travel the distance of approximately Marcus 5 to          
the SDP lab. 

Collision avoidance was chosen to be under 180 ms so that            
if the robot is moving at maximum velocity, it can stop in less             
than 10 cm, which is the maximum distance that our distance           
sensors can reliably detect objects at. 

Portability is the requirement with the broadest range of          
acceptable values. Because we want our product to be easy for           
a human to move in case of an emergency, we based the value             
for the portability requirement on what an average person can          
easily carry. 

II. DESIGN 
A. Overview 

We’ve outlined the different subsystems necessary to        
implement our solution in Figure 1. 

Each module is outlined in grey, which we further          
modularize with specific components. The core computational       
component within our system is the Raspberry Pi [4]. The Pi           
controls every component within our system – the motors,         

unloading mechanism, Pi Camera [5], and our custom PCB         
with integrated ultrasonic distance sensors; our Pi is the         
driving microcontroller for our system. The battery was        
chosen such that there was enough capacity so that the robot           
could make 3 or more deliveries across the basement of          
Marcus. Additionally the robot frame and the lifting        
mechanism were chosen to be able to keep the robot inside of            
our size and weight constraints. 
 

 
Figure 1. Block diagram describing the components used in         
our project. 
 

Within our Pi, we are using a middleware called the Robot            
Operating System (ROS) [6]. Within ROS, I.G.O.R. uses the         
NavStack and AprilTag [9] packages to do the following:         
navigate from source to destination given its surroundings,        
current position, and destination position; use AprilTags as a         
means for global localization of the robot’s position in relation          
to the map. For our CDR, we have demonstrated that our robot            
can navigate and drive from a source point to a destination           
point, although the navigation via NavStack and global        
localization via AprilTags needs further improvement. The use        
of NavStack and AprilTags will be discussed more in II.C. 

We are using a pre-built mecanum robotics kit [7] as the            
platform for our project. We’ve also added an H-bridge motor          
driver module [8] to this kit to allow us to control the motors             
using the Raspberry Pi. The motors have built-in encoders that          
are used to calculate the robot’s current position using wheel          
odometry. The robot’s updated position is then sent to         
NavStack, which sends new velocity commands to the motors.         
New encoder values are then generated via rotation of the          
motor, and these encoder counts are once again used by          
NavStack and thereby closes the control loop.  

The main focus for the remainder of the semester would           
have been put into incorporating navigation with AprilTags to         
make our package delivery more robust and accurate.        
Additionally, we were implementing a command line interface        
(CLI) to select the source and destination positions for         
delivery. 
 
B. State Machine 

Upon the completion of all modules, the end system will           
utilize them to perform the intended tasks of the robot. In           
order to do so, the system must perform subtasks abstracted          
from the modules in a specific order. 

A model of our system is shown in Figure 2 in the form of               
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a state machine. In this model, initialization begins by         
checking if a map file has been preloaded into the system.           
This is necessary as the robot cannot navigate the floor or           
receive meaningful directives without the map. If successful,        
the system requests for a confirmation of the current position          
it is in. 
 

 
Figure 2: State machine representing the program flow of our          
robot.  

After successful initialization, the system will begin idling         
and checking for job directives. These directives will be         
received by either a console on the Raspberry Pi or polled           
from a server. Job directives consist of a source and          
destination point, which are then transcribed into two separate         
source and destination points – the robot must first drive to the            
package location from its current position, then drive to the          
dropoff location to unload the package. 

In order to perform this task, the system must first generate            
a path for the robot to follow, then command the motors to            
follow the path while updating its current location using a          
combination of odometry and visual cues (April Tags) [9]. In          
addition, the robot must stop to avoid obstacles detected from          
the ultrasonic sensors, planning around it if necessary. At the          
end of each destination, the robot must then align itself to           
receive or drop the package off at its destination. 
 
C. Robot Operating System 

ROS is a software framework and collection of libraries that           
facilitates internal communication and modularization within a       
robotic system, as well as simplifying the implementation of a          
number of robotics algorithms on a new physical platform. In          
ROS, programs are split into different nodes, each of which          
can send messages to topics and decide from which topics it           
wants to receive messages. The architecture of our ROS         

program is shown in Figure 7. Note that not every node and            
topic is shown in this diagram; if they were, this diagram           
would become over-complicated. For example, NavStack uses       
several nodes and topics internally that aren’t directly relevant         
to our project, such as the motor driver node, so NavStack is            
simply represented by a single node. The core of our software           
architecture is the NavStack and the motors – everything else          
can be interpreted as a data source for the NavStack. 

The NavStack is an official ROS repository that sends          
commands to a robot’s motors, provided that it receives the          
required data to perform its role. At a minimum, the NavStack           
needs to know the following: (1) what its surroundings are          
like, (2) where it currently is, and (3) where it should go. The             
rest of the software we have written is built around providing           
the NavStack with this information. 

There are three ways to accomplish task (1): outfit the          
robot with the sensors needed to figure out what its          
environment is like, tell the robot ahead of time about its           
environment, or a combination of the two. For this project, we           
limited ourselves to primarily telling the robot what its         
environment is like ahead of time. To do this, we pre-loaded           
the robot with a hand-drawn map of its environment,         
indicating which areas in its environment are freespace and         
which areas are obstacles. We also pre-loaded the robot with          
the position of several AprilTags in its environment that it          
could later use as landmarks.  

For task (2), we used two sources of data about the           
robot’s current position: how far each of its wheels has turned           
(wheel odometry), and the robot’s position relative to the         
AprilTags we placed in the world (visual odometry). 

Wheel odometry works by sensing the amount that each         
wheel rotated during a timestep using encoders, which then         
uses that information to calculate the direction and distance         
the robot traveled in during the last timestep. For example, if           
all of the wheels rotated 90 degrees forwards between the          
previous and the current timestep and each wheel had a          
circumference of 4 inches, then one can conclude that the          
robot moved forwards by one inch. Because our robot uses          
mecanum wheels, the equations governing our wheel       
odometry are slightly more complicated than that. These        
equations are shown in Equation 1. 
 

Equation 1. The equations governing the wheel       
odometry of I.G.O.R. ∆x, ∆y, ∆θ represent the change in the           
robots position forward, to the left, and rotationally, di         
represent the tangential distance that each wheel rotated in the          
last timestep for the front-left, front-right, rear-left, and        
rear-right wheels respectively, and 𝛼 and β are parameters         
tuned manually depending on the robot and its environment’s         
physical features. 
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While wheel odometry can be used for localization in many           
robots, solely relying on this information will result in         
movement inaccuracies over long periods of time. If the robot          
runs over a slippery patch of ground, gets pushed, or          
accidentally overshoots its position, the robot’s positional       
awareness will be unreliable if wheel odometry is its only          
source of position information. 

For this reason, we implemented visual odometry using         
AprilTags. AprilTags are small grids of pixels, shown in         
Figure 3. Given the characteristics of a camera (e.g., how          
much it distorts an image), a software library can be used to            
calculate the camera’s position and orientation in space        
relative to an AprilTag. Since we already know the position of           
the camera relative to the robot and the position of the           
AprilTags relative to the environment, we can use these two          
relative positions to calculate the robot’s actual position based         
on this data, and correct the errors accumulated in the wheel           
odometry’s estimate of the robot’s position. Using a        
combination of wheel and visual odometry, we can        
accomplish task (2), and provide the NavStack with an         
estimate of the robot’s current position.  

 

 
Figure 3. An image of an AprilTag. 

 
Finally, we need to tell the robot where to go (task (3)). To              

do this, we use the orchestrator node from Figure 7. The           
orchestrator is largely responsible for implementing the       
behaviors described by the state machine in Figure 2. The          
orchestrator is where our robot behaves as a delivery robot,          
not just a robot that navigates autonomously. The orchestrator         
node accepts a few pieces of user input and then directs the            
NavStack where to go based on this input. The orchestrator          
needs the following as input: the package pickup coordinates,         
whether or not the package has been placed on the robot yet,            
and the package dropoff coordinates. After the user enters the          
pickup coordinates, the orchestrator asks the NavStack to go         
to the pickup location. Next, the orchestrator waits until the          
user indicates that the package has been loaded, and then          
passes the destination coordinates on to the NavStack. After         
reaching the destination, the orchestrator communicates with       
the lifter to drop off the package, and then it resumes its idle             
behavior.  

Given that tasks (1), (2), and (3) are accomplished, the           
NavStack can generate its output: a desired robot velocity.         
After generating this velocity, the motor node converts this         
into a set of motor voltages, and sends these to the motors. 

  

III. THE PRODUCT 

A. Product Overview 
    In figures 4 and 5, we show our product design sketch and 
physical implementation respectively; figure 4 shows the 
top-down view sketch of our robot. 
 

 
Figure 4. Product Sketch 

 

 
Figure 5. Product Implementation 

 
Figure 6 shows an example of I.G.O.R. in operation, which 

navigates from the beginning destination to the target 
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destination while avoiding obstacles, picking up a package, 
and using AprilTags for global localization. Figure 7 shows 
our software implementation of our robot system. 

 

 
Figure 6. Robot Operation 

 

 
Figure 7. I.G.O.R. Software Architecture.  

B. Electronic Hardware Component 
Before MDR, the PCB was emulated using an Arduino Uno          

to run four ultrasonic distance sensors. In the transition         
between Arduino to PCB, a model was established with four          
ultrasonics on a breadboard. This was then scaled up to          
include hardware to support eight ultrasonics, and to regulate         
voltage to the microcontroller. Subsequently, this was created        
as a schematic using Altium designer and sent to OSH Park           
for fabrication. The majority of components were surface        
mounted to the board after being tested. Problems such as          
shorts between through-hole mounted components were      
diagnosed with a meter and an oscilloscope. 

 

 
Figure 8. Populated and Unpopulated PCBs 

 

Figure 9. PCB Development Breadboard 

C. Product Functionality 
Table 2 shows a summary of the CDR deliverables we were           

able to complete. Overall, we did not reach a few major goals,            
and still had a fair bit of work required to be completed            
between CDR and FPR. 

D. Product Performance 
In the implementation at the time of CDR, the robot was           

able to receive command line instructions specifying a start         
and goal position, and autonomously navigate between the two         
locations. It should be noted that navigation was not integrated          
with real time updates from AprilTags so there was no method           
of correction in absolute position, resulting in disparities of up          
to 6 inches after traveling 1.5 meters while changing direction          
three times with a package loaded. Additionally the battery         
was able to consistently surpass its three delivery requirement         
with the ability to turn the wheels for over 10 mins. In            
addition, we initially planned for the robot to pick up a           
package autonomously, which would have been accomplished       
via AprilTags through self alignment. However, we realized        
that this task was a lot more complicated than we had           
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imagined, and we decided to omit this part of our project in            
our final design. We also implemented a command line         
interface that could transmit commands to the robot        
wirelessly. 

 
Table 2. A table summarizing which CDR goals we were able           
to complete on time. 
 

Deliverable Met? 
Update global position 
with April Tags 

50%. The robot can 
determine its position relative 
to an AprilTag, but it does 
not update its position 
relative to the world based on 
that information. 

Path Planning Yes. The robot can plan and 
follow a path. 

Receive Directives Yes. The robot receives 
directives through a CLI 
interface 

Detect and plan around 
obstacle with 
Ultrasonic Distance 
Sensors 

50%. The robot detects 
obstacles and stops, but does 
not plan a path around the 
obstacle 

 

IV. CONCLUSION 
A. Current State of the Project 

Physically, our robot has a mobile base, a prototype         
lifting mechanism, and a prototype enclosure, as well as all of           
the sensors and actuators required to sense and move within its           
environment. A photo of the current state of our robot is           
shown in Figure 5. 

Currently, the robot can receive directives from a CLI         
interface, and then plan and follow a path from its current           
position, to the pickup point, and to the dropoff point.          
However, it performs this using only wheel odometry for         
position feedback, with no correction for the accumulation of         
error. Path planning and execution are completed using ROS         
and the NavStack provided by ROS. 

A camera is mounted on the robot, and it can sense the            
position of an AprilTag relative to the camera. However, this          
position is not used by the robot to update its position relative            
to the world.  

We have designed a PCB and integrated it into our          
project. The PCB operates the ultrasonic distance sensors,        
compiles the data received from them, and relays this data to           
the Raspberry Pi. A ROS node on the Raspberry Pi then           
processes this data, and decides whether or not to stop based           
on the sensor data. 
 
B. Intended Future Implementation 

Due to the abrupt conditions imposed by the COVID-19          

pandemic, our project was unable to see its completion. All of           
the other sections of this report only deal with what we were            
able to complete up until CDR, and this section will discuss           
what we would have focused on between CDR and FPR if this            
project were to be continued.  

Three major tasks remained to be completed between CDR          
and FPR: (1) implementing visual odometry using AprilTags,        
(2) testing and tuning the complete navigation system, and (3)          
making our project clean and presentable for demo day. 

At CDR, the robot’s navigation was not very accurate.          
Wheel odometry needs to be experimentally calibrated for        
new robots, so there is a lot of uncertainty intrinsic in it. As             
our robot travelled farther distances, the accuracy of its         
position estimate continuously decreased. Therefore, our first       
priority would have been to implement visual odometry using         
AprilTags in order to improve the long-term accuracy of the          
robot’s position estimates.  

Next, we would have focused on testing and tuning the           
navigation. There were many variables in our system that         
needed to be hand-tuned, such as: the maximum velocity and          
acceleration of the robot, the amount of uncertainty present in          
our wheel and visual odometry readings, the rate at which the           
odometry loops should be run at, and many other parameters          
related to NavStack. Most of these values need to be          
determined experimentally, and we would have needed to        
spend a lot of time on determining the best values for these            
parameters for our specific application.  

Next, we would have worked on cleaning up our project           
for FPR and demo day, physically as well as in software. We            
would have remade the lifter to look more presentable,         
mounted the camera more cleanly to the enclosure, and         
constructed a more robust enclosure overall. Additionally, we        
would have converted the CLI to a GUI in order to make the             
project easier to demonstrate at demo day. 
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APPENDIX 
A. Design Alternatives 
During the design process of our project, we considered         
several alternative implementations for our chassis, our path        
planning algorithm, and our localization algorithm. 

We had to decide whether to design and manufacture the           
chassis ourselves, or to buy a prefabricated robot chassis. We          
eventually decided to buy a prefabricated chassis. Although        
we could have designed a more application-specific chassis        
ourselves, we decided that the chassis was not the core          
component of our project, so the time that we would have           
spent designing a chassis would be better spent on other          
components. 

For our path planning algorithm, we had to decide whether           
to write our own implementation, or to use an existing path           
planning library. Up until MDR, we had decided to write our           
own path planning implementation because we thought that it         
would be easier to make our own simple implementation,         
rather than to familiarize ourselves with the extensive ROS         
NavStack ecosystem. However, we eventually decided to use        
NavStack anyway. Although using NavStack introduced a lot        
of complexity into our code, it allowed us to worry about the            
problems specific to our robot, rather than reimplementing        
several algorithms that had already been implemented by other         
roboticists. 

A final important design decision that we made was how to            
implement localization on our robot. We considered two initial         
choices: Simultaneous Localization and Mapping (SLAM) or       
visual odometry. There are several tradeoffs between these        
approaches, including their relative material costs, ease of        
implementation, computational costs, and accuracy.  

In terms of sensor cost, SLAM is far more expensive than            
visual odometry. SLAM requires a LiDAR sensor, the        
cheapest of which cost around $100, while visual odometry         
can be implemented with a Raspberry Pi camera, which costs          
only about $10. Additionally, visual odometry with AprilTags        
can be run on a Raspberry Pi, while most people opt to run             
SLAM on a more powerful, more expensive computer due to          
its increased computational needs. However, SLAM is more        
commonly implemented by users of ROS, so there may have          

been more support for SLAM than there was for visual          
odometry. Additionally, we expect that SLAM would have        
produced more accurate estimates of our robot’s position than         
we were able to achieve with visual odometry.  

In the end, we decided to use visual odometry over SLAM.            
We weren’t comfortable with how much of our budget SLAM          
would use, and we were less comfortable with its underlying          
technology, and were not confident that we would be able to           
successfully implement a robot running SLAM.  
 
B. Technical Standards 

Our project does not use IEEE hardware standards, but we           
use software standards for technical reliability and soundness.        
We use the IEEE 829 standard, which is the standard for           
software testing. Within our project, we planned to test         
moving the robot first, then implement path planning from two          
points of interest, and then incorporate AprilTags for global         
localization. We first tested the movement of the robot to          
ensure that the robot moved the correct direction, which was          
important because our robot uses omni-motor wheels. Next,        
we moved onto path planning, which incorporated the use of          
NavStack into our system. However, while NavStack was        
working properly for our project, we did not finish refining          
this component of our project. Instead, we moved on to          
AprilTags to incorporate global information with NavStack.       
However, before we could finish testing AprilTag       
incorporation with NavStack, our project was cut short due to          
COVID-19. 

 
C. Testing Methods 

We ran several tests in order to verify the performance of           
several individual components of the system. Notably, we        
tested the accuracy of our odometry measurements, and the         
accuracy of the AprilTag detection measurements. 

The testing and verification of these two measurements was         
very important to the overall performance of our robot because          
these were the two components that allowed the robot to keep           
track of its current position. 

In order to test the accuracy of its odometry, we drove the            
robot for varying periods of time and in varying directions          
(forwards, backwards, sideways, and diagonally), measured      
how far it actually travelled, and compared this to the distance           
that it calculated it had travelled. From these measurements,         
we calculated a correction factor that we used to correct its           
odometry estimates in the future. This is important because         
odometry calculations are only approximate; the distance that        
the robot actually moves is dependent on how much the          
wheels slip, which is dependent on the weight of the robot, the            
surface that the robot is driving on, and how worn the robot’s            
wheels are.  

To test AprilTag detection, we mounted the camera, and         
then measured the distance to several points in front of the           
camera where we then placed the AprilTags. From this, we          
could determine the accuracy of the AprilTag detection, and         
therefore the long-term accuracy of our localization algorithm.        
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During this test, we also determined how close the AprilTags          
needed to be to the camera in order for them to be detected,             
which helped us decide how close the tags needed to be to            
each other in the robot’s environment. 

When performing verification of the PCB, hardware       
analysis tools, such as a multimeter and an oscilloscope, were          
used to initially confirm that all contact traces were properly          
linked. Then, once all components were mounted, we loaded         
the C code onto the microcontroller to find that it did not            
function. After testing, we used an oscilloscope to determine         
that the crystal oscillator on our PCB was not functioning.          
Once the crystal oscillator was replaced, the board functioned         
properly, although a few ultrasonic distance sensors were        
malfunctioning. We used a scope to verify that two of the           
ultrasonics were broken, and they were replaced. 
 
D. Team Organization 

On our team, each member made strong individual        
technical contributions to the project, and several members        
stepped up to take on a leadership role on the team.  

Throughout the course of the project, Alex ensured that         
the team was on track to meet the formal requirements and           
deadlines required by SDP. He took charge on scheduling our          
design reviews with our evaluators, as well as ensuring that          
the rest of the team was focused on completing the          
deliverables that we promised to our evaluators.  

In addition to providing valuable individual contributions,       
Victor was also skilled at helping other members of the team           
make the best use of their lab time. When working with other            
team members, Victor did a good job of encouraging other          
team members to organize their thoughts, work through their         
technical challenges methodically, and therefore improve the       
overall productivity of the team.  

Josh took the lead on two major components of our          
project: our homemade implementation of A* path planning,        
and the design and programming of our PCB. Joshua was an           
integral part of the technical sides of both of these          
components, but he also helped to organize the efforts of other           
team members on these components as well, and he ensured          
that these components were completed quickly and smoothly. 

While Johnathan did not often take on a leadership role          
within our team, he did frequently take the initiative to lay the            
groundwork for new components of the project. Johnathan        
researched and created prototype implementations of the       
AprilTag detection software, and the orchestrator ROS node        
that coalesced our entire project. 

Despite being the mechanical engineering major on our        
team, Adam is also a computer science major, and played a           
fundamental role in our product implementation. When Alex,        
Victor, and Johnathan were struggling with NavStack and        
AprilTag incorporation into our robot system, Adam took        
initiative and propelled the team towards project completion.        
Overall, this project would have never progressed to its         
current state without Adam’s technical contributions.  

 


