
1
SDP20 – TEAM 20

I.G.O.R.
Intelligent General Order-Fulfillment Robot

Johnathan Shentu, CSE; Josh Savard, CSE; Adam Rivelli,
ME; Victor Wong, CSE; Alex Yen, CSE

Abstract​— Delivering objects autonomously in a building is not
only an interesting problem, but also a way to allow more
uninterrupted time for officer workers. With I.G.O.R. we
demonstrate that a significant portion of this time can be saved
by replacing the delivery process with a convenient and reliable
robot. I.G.O.R. has been equipped with a forklift-styled lifter to
pick up custom designed packages.

I. I​NTRODUCTION

A. Significance
Package delivery within a building, for humans, requires
knowledge of the building topology as well as time to
physically deliver the package. The time and knowledge
needed to perform these deliveries can be replaced, at least in
part, by a robot. Our project implements a robot that
autonomously delivers packages within a floor of a building.
We hope that this project can be used to reduce the amount of
time spent delivering packages in office settings, and to
improve the productivity of employees.

B. Context and Existing Products
There are many delivery robots built today, but most of

them are designed for alternative use cases. The Marble Robot
is able to deliver items from two points of interest in an
outdoor setting [1]. Similarly, Starship Technologies’ delivery
robots [2] exists as a food delivery robot, which is restricted to
outdoor navigation. One large advantage of restricting
operations to outdoors is the availability of GPS/GNSS signals
for localization.

The Savioke Relay [3] is a delivery robot meant to provide
hotel room service. As this robot operates indoors, it cannot
use GPS/GNSS signals and instead uses LiDAR. Both of these
robots must be loaded and unloaded by a human, which is one
of the challenges our robot will attempt to address.

C. Societal Impacts
Our project will reduce the time spent on delivering small

packages within a building. If we implemented IGOR in an
office building, we expect that it would increase the overall
productivity of most employees by decreasing the amount of
time spent on tasks not directly related to work. From a
manager’s perspective, this is an obvious benefit. From an
employee’s perspective, this may be seen as a benefit because
their time is not wasted on trivial tasks, allowing them to focus
on their tasks. However, relatively minor inconveniences like
delivering a file to a coworker’s desk may be seen as welcome
breaks during a day’s work. It is more concerning that IGOR
may reduce the number of people at sites where delivery of
intra-office mail is a time-consuming task. But because IGOR

can only deliver packages - not sort or schedule deliveries -
human intervention is still very much needed.

D. Requirements and Specifications
The overall objective of this project is to be able to deliver a

package from one location to another autonomously. In order
to meet this objective, the robot needs to meet the high level
requirements shown in the left column of Table 1.

Table 1: Requirements and Specifications

Requirement Specification Value
Receive source
and destination

Graphical user
interface

Display a map that
the user can use to
select a package
source and
destination

Path plan route
to goal

Time < 2 sec

Carry a package
to destination

Speed 0.5 mph

Autonomous
package
unloading

Distance from
selected
destination

3 feet

Battery Life Time 3+ deliveries in
Marcus

Collision
avoidance

Responsiveness < 180 ms

Portability Size / weight < 4cu.ft. / < 20 lbs

E. Specification breakdown
First, a user needs to give the robot an order. To make it

easy to select a pickup and drop off point, some form of
graphical interface is required. We currently plan on
displaying a map to the user where they can click to place
pickup and drop off points, and then send that data to the
robot.

Next, the robot needs to be able to plan a path between
goals. Here, we’ve specified that the robot should be able to
plan a path in less than 2 seconds. While it is important that
the robot begins its tasks quickly, it is also important to note
that the robot needs to continuously re-plan its path in case the
robot goes off course. In order to decrease error, the robot
must be able to re-plan the path in under 2 seconds to prevent
significant disparity from robot’s estimate of its position and
its actual position.

While it is important that the robot can move between
pickup and drop off points quickly, it is more important that
the robot doesn’t cause any damage to people or infrastructure
while traveling. We decided that the robot should move at
about 0.5 mph, in order to increase safety, and decrease error
in the robot’s movement by decreasing the robot’s inertia.
While 0.5 mph is slower than the average person’s walking

2
SDP20 – TEAM 20

speed, it is still quick enough to fulfill deliveries in a timely
manner.

We decided that the package needs to be delivered within 3
feet of the destination because when packages are delivered, it
isn’t often imperative that the package is in the exact correct
position; it is only important that it left at about the correct
spot. We settled on 3 feet because doorways are about 3 feet
across, and we figured it’s not an issue if a user specified a
drop off point at the left side of a doorway, and the package
was left at the right side.

The battery life was chosen because in order to be able to
have an active duty time with sporadic use, we estimate that
the duty cycle between delivery and idle will be on average 1
to 3, so the 3+ delivery should be an adequate buffer to allow
for recharging between deliveries.

Collision avoidance was chosen to be under 180 ms so that
if the robot is moving at maximum velocity, it can stop in less
than 10 cm, which is the maximum distance that our distance
sensors can reliably detect objects at.

Portability is the broadest. It must be able to be picked up
by a human, so our specifications are based around what an
average person can easily carry.

II. DESIGN

A. Overview
 ​In our project, we outline the different modules necessary to
implement our problem, shown in Figure 1.

Figure 1. A block diagram describing the components used in
our project.

Each module is outlined in grey, which we further
modularize with specific components. The overarching
component within our system is the Raspberry Pi. The Pi
controls every component within our system - the motors,
loading and unloading mechanism, Pi Camera, and our custom
PCB with integrated ultrasonic distance sensors; our Pi is the
driving microcontroller for our system.

Within our Pi, we are using a middleware called Robot
Operating System (ROS), which will be discussed more in
part D in the Design section. In ROS, we run four nodes that
allow for the following: loading in a map of its current
environment, planning a path from source and destination
points on the map, translating the path positions to velocities,
sending velocity commands to motors, and updating its

position via odometry. For our MDR, we have demonstrated
that our robot can navigate and drive from a source point to a
destination point.

To purely drive the motors, the only modules we are using
are the Robot Frame module, and the Microcontroller module.
We have discussed the purposes of the Microcontroller
module and will now discuss the Robot Frame module in
tandem with the motor encoders.

For our project, we are using a pre-built mecanum robotics
kit. Since this kit consists only of the robot frame, motors, and
encoders, we use an H bridge to drive the motors – this allows
our motors to drive forwards and backwards, which is
necessary for our robot to drive omnidirectionally. Since the
motors have built in encoders, we can use encoder information
to update the robot’s position relative to the map through
odometry. This in turn is updated in our path planning
function and relative position, which in turn sends new
velocity commands to the motors, allowing the robot to drive
from source to destination.

The remaining modules that remain unimplemented are the
Loading/Unloading module, the Custom PCB module, and the
Human-Robot Interface module. Starting with the loading and
unloading mechanism, our team has made this optional within
our project goals; there are many issues and challenges with
package alignment that could be time consuming for our
project. As our main project objective is to deliver packages
from a source point to a destination point, the loading and
unloading mechanism is a project component that we can
make a stretch goal. That being said, while we have made this
optional within our project, we still anticipate completing this
module. Many existing delivery robots require human
interaction to load and unload packages. However,
autonomous loading and unloading is a feature that will
distinguish our work from others. As a result, our team still
intend to implement loading an unloading, even though we
have made it optional.

The Custom PCB module is strictly used for object
detection with our ultrasonic distance sensors. This will be
used to detect obstacles along the planned path and react
accordingly. Currently, we have tested and written code to
read the distance between the sensor and a detected object, but
we have not yet integrated the sensors with our system. The
integration of these sensors will require another node in ROS
that will override commands to run the motors. This is shown
by the Custom PCB module pointing to the Microcontroller
module in Figure 1.

Lastly, we intend to implement a remote application that
will allow users to interact with the robot. This will be done
through an initial command line interface with a stretch goal
of a graphical user interface. This will directly interact with
the Microcontroller module, such that it will give commands
to the Pi to make a delivery. This will be touched more upon
in section B, which is the State Machine.

B. State Machine

Upon the completion of all modules, the end system will
utilize them to perform the intended tasks of the robot. In

3
SDP20 – TEAM 20

order to do so, the system must perform subtasks abstracted
from the modules in a specific order.

A model of our system is shown in Figure 2. In this model,
initialization begins by checking if a map file has been
preloaded into the system. This is necessary as the robot
cannot navigate the floor or receive meaningful directives
without the map. If successful, the system requests for a
confirmation of the current position it is in.

Figure 2: A state machine representing the program flow of

our robot, including nodes for our stretch goals.

After successful initialization, the system will begin idling
and checking for job directives. These directives will be
received by either a console on the Raspberry Pi or polled
from a server. Job directives consist of a source and
destination point, which in turn are transcribed into two
separate source and destination points – the robot must first
drive to the package location from its current position, then
drive to the dropoff location to unload the package.

In order to perform this task, the system must first generate
a path for the robot to follow, then command the motors to
follow the path while updating its current location using a
combination of odometry and visual cues (April Tags). In
addition, the robot must stop to avoid obstacles detected from
the ultrasonic sensors, planning around it if necessary. At the
end of each destination, the robot must then align itself to
receive or drop the package off to its destination.

C. Robot Operating System
Figure 3 shows the current nodes that are used within ROS

to move our robot from one destination to another. ROS is a
framework that allows internal communication and
modularization within a system. Each node is able to send and
expect specific messages that can be handled by the node
accordingly.

Figure 3. I.G.O.R. ROS Nodes

Figure 4. An example of a map that we are currently using to
represent the robot’s environment and directives. 0’s represent
walls, 1’s represent free space, 2 represents the robot’s start
position, and 3 represents the robot’s goal.

 Starting with the Path Planner node, we first import a map
as a text file, an example of which is shown in Figure 4. In our
map, we define the areas that our robot can traverse as a “1”
walls or obstacles as a “0.” The digits annotated in red are the
starting place, “2,” and the destination, “3.” This map just tests
our robot moving straight since “2” and “3” are in the same
column. However, for our MDR demo, we used a larger map
that allows our robot to travel in “C” shaped path; this map is
too large to include in this report.

After the map is imported, the Path Planner node
determines a path from the starting point to end point via the
A* search algorithm. This node then sends a message
containing an array of positions to the Path Interpreter node.
The Path Interpreter node then computes the next move it
needs to make by determining the vector from its current
position to the next position; this vector is then converted to a
linear velocity, which is sent as a message to the Motors node.

4
SDP20 – TEAM 20

The Motor node then receives those velocities and runs the
motors, allow the robot to drive.

Since our motors have built in encoders, we are able to use
the encoders for odometry – that is, we are able to update the
robot’s position relative to the imported map. This is shown as
a dotted line in Figure 3 – while the Motor node is not sending
messages specifically to the Encoder node, the two nodes are
interlinked. As a result, by updating its own position in
relation to the map, our robot recalculates its path from its
given position to the end point – the cycle of driving the robot
towards the end goal then continues as we have described
above.

III. PROJECT MANAGEMENT
Table 2 shows a summary of which MDR deliverables we

were able to complete. Overall, we were fairly successful with
meeting our goals for this semester. However, we could have
been more organized overall. Appendix C gives some insight
into how we organized ourselves as a team.

A Gantt chart has been included in Figure 5 in order to
show how we’ve planned our project for next semester, and to
show all the additional major components we still need to
implement.

Table 2. A table summarizing which MDR goals we were able
to complete on time.
Deliverable Met?
Load Package Yes. The robot can lift a

package.
Path Planning Yes. The robot can plan and

follow a path.
Receive Directives Almost. The robot can

receive directives through
hardcoded values, but not
through a CLI.

Ultrasonic detect collision Yes. Ultrasonics detect when
the robot is close to a wall or
obstacle.

IV. CONCLUSION
A. Current State of the Project

Currently, our robot can plan a path between two points,
with odometry as the only feedback it receives regarding its
position. Additionally, we have a prototype lifting mechanism
that can raise and lower packages. A photo of the current state
of our robot is shown in Figure 6.

5
SDP20 – TEAM 20

Figure 6. The current state of our robot.

Our robot currently receives its goal and start positions

through hard-coded coordinates, and updates its current
position only through odometry. The path planning and
execution are currently performed using a simple
implementation that we wrote ourselves.

We have ultrasonic range sensors connected to our robot
that let us know whether an obstacle is near the robot, but we
don’t use that information to plan paths around unexpected
obstacles. Data from these sensors are currently read and
processed by an Arduino microcontroller.

Our current lifting mechanism is flexible, causing it to have
a hard time lifting packages high enough to clear the ground.

B. Next Steps

Figure 5 shows a Gantt chart, which provides an overview
of the work we must complete between now and demo day in
order to have a complete product at that point.

Next semester, we need to develop a GUI interface that
users can use to specify package pickup and dropoff locations.

We also need to implement localization using AprilTags
[4]. AprilTags are small grids of pixels, shown in Figure 7.
Given the characteristics of a camera, a software library can be
used to calculate the camera’s position and orientation in
space relative to an AprilTag. As the robot moves, odometry
inevitably accumulates error. So, the farther the robot has
moved from its starting position, the more inaccurate its
estimate of its current position will be. To fix this, we will put
AprilTags in the environment with known positions, and then
we will calculate the robot’s position relative to those tags,
and therefore the robot’s position in a building.

Figure 7. An image of an AprilTag.

We also need to design and print the hardware component

of our project. Currently, we are using an Arduino to obtain
and process data from the ultrasonic sensors related to local
obstacles. However, Arduinos are not allowed in the final
iteration of our project, so we will need to replace it with a
custom designed PCB before FPR.

Finally, we need to improve the stiffness of our lifting
mechanism. Right now it is too flexible, so it cannot reliably
keep a package off the ground. We need to revise its design
and implementation so it does not flex as much under load,
keeping the package clear of the ground.

After these minimum requirements are completed, we will
begin to focus on our stretch goals. First, we will focus on
loading packages without human intervention. If time permits,
we also hope to implement Simultaneous Localization and
Mapping (SLAM) so our robot does not need to be loaded
with a handmade map of its environment to be able to
function. SLAM is an algorithm that allows a robot to build up
a representation of its environment on its own, and determine
its position within that environment at the same time [5].

ACKNOWLEDGMENT
We’d like to thank our advisor, Prof. Ciesielski for

providing continual guidance and feedback to our team
throughout the semester, and for helping us grow as engineers.
We’d also like to thank our evaluators, Prof. Stephen Frasier
and Prof. Mario Parente for providing constructive feedback
and helping us to constrain the scope of our project.

REFERENCES

[1] “Autonomously Moving Things into the Future,” ​marble.io​ [Online].
Available: ​https://www.marble.io/​ [Accessed December 18, 2019].

[2] “We are a company building a network of robots ready to serve you
anytime, anywhere,” ​starship.xyz​ [Online]. Available:
https://www.starship.xyz/​ [Accessed December 19, 2019].

[3] “Meet Relay Autonomous, Secure Delivery in Dynamic Public Spaces,”
savioke.com​, [Online]. Available: ​https://www.savioke.com/​ [Accessed
December 19, 2019].

[4] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” 2011
IEEE International Conference on Robotics and Automation, 2011.

[5] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and
Mapping (SLAM): Part I The Essential Algorithms,” p. 9.

https://www.marble.io/
https://www.starship.xyz/
https://www.savioke.com/

6
SDP20 – TEAM 20

APPENDIX
A. Design Alternatives
This semester, there were two major decisions that we made
regarding our design.

One major decision we made was in software – we decided
to write our own path-planning software rather than to use
ROS’s navigation software. ROS provides a series of nodes
and libraries, collectively known as the “navigation stack,”
that robots can use to plan and follow a path between given
positions. The navigation stack accepts the following as input:

● A map of the robot’s environment
● The geometry of the robot, including which sensors it

has available
● A goal position that the robot needs to plan a path to,

which can be periodically updated
● The robot’s position, which will be continually

updated
Given these inputs, the navigation stack can send velocity
commands to the robot’s motor interface. The navigation stack
is very feature-rich; it has the ability to path around local
obstacles not included in the map, recover from faults, and it
easily integrates new sensor information into its path planning.

However, we decided to not use the navigation stack.
Among us, only one of us had experience with ROS at all, and
none of us had ever used the navigation stack before. So,
integrating it into our project was a daunting task, and we
were worried that it would take a long time to get it working.
On the other hand, we had all written A* before, and therefore
thought that writing all of this ourselves wouldn’t be a
difficult task.

This turned out to be a mistake – we spent a lot of time
writing and debugging our path planning code, and ended up
with a product that is both not very feature rich and difficult to
extend. Since MDR, we have briefly attempted to implement
path planning using the navigation stack. Because we all now
have far more experience working with ROS, this process
went relatively smoothly. Next semester, we plan to
completely switch to the navigation stack for path planning.

We also decided to use mecanum wheels over traditional
wheels for our robot. Robots with mecanum wheels can move
in any direction - even directly sideways - unlike traditional
wheels. However, mecanum wheels require more traction than
traditional wheels, so they are more limited in the types of
terrain that they can traverse.

This decision was partially influenced by our decision to
write our own path planning code. To control a tank drive
robot, we would need to take into consideration the constraints
on which directions the robot can move in. However, there are
no constraints on how a mecanum drive robot can move in a
2D plane, so it was much easier for us to plan paths for a
mecanum drive robot.

Additionally, if we eventually implement autonomous

package pickup, it will be easier for the robot to adjust
laterally to realign itself with the package.

B. Testing Methods

This semester, our testing methods were rather primitive. To
test whether path planning worked, we simply placed the robot
on a map and saw if it ran over any walls during its path
execution. To test our lifting mechanism, we simply placed a
package on the lifter’s fork, and saw if it could successfully
raise the package.

While these experiments are primitive, they are still useful.
After testing our path planning, we noticed that we weren’t
sufficiently taking the robot’s geometry into account when
avoiding walls. So, while the center of our robot would clear
the walls, the edges of our robot would not. After testing our
lifter, we realized that, if the package was too heavy, the
package would bend the lifter until it was on the ground, and
the gear driving the lifter would skip. This experiment is
currently guiding our redesigns of the lifter, so that we ensure
that in the next revision, the gear is positioned precisely and
the lifter’s fork is stiffer.

C. Team Organization

Team coordination at the beginning of the semester was
lacking – roles were not particularly well defined , but eaus
was assigned a part. Before our project started picking up
pace, each group member had a part in designing or debugging
a particular module within our system. Adam by far had the
most contribution towards the project. He set up all the wiring
for our robot frame and also wrote programs to use our motors
and encoders within ROS. He started off strong on the before
we came together as a team mid-November. However, when
mid-November came around, the rest of the team members
filled in their roles. Josh wrote the path planning code, and
Victor and Johnathan played a significant role to make the
path planning ROS node work. Alex translated the path
planning directions to real-time motor velocities. With each
ROS nodes working individually, we were able to successfully
run and test all nodes together without many issues. Our team
was able to collaborate well to finish off our project before
MDR.

For our team collaboration during Spring semester, we aim
to set well defined roles for each team member to ensure the
steady progress in our work. This will be done in tandem with
the Gantt chart as a general reference for our project
milestones.

D. Beyond the Classroom
Adam Rivelli:

So far, I’ve needed to learn a lot about how ROS works and
about the ROS ecosystem in order to be a contributor this
semester. Initially, ROS was very overwhelming to me; it was
hard to figure out how to do anything with it, and while it
seemed to be very useful for any project involving a robot, I
found it difficult to see exactly how we should implement it in
our project. To learn about ROS, I found that the basic ROS

7
SDP20 – TEAM 20

tutorials were the best place to start. Overall, I thought that the
ROS documentation was either lacking or too terse for me to
understand, so I generally think that the tutorials for any given
part of ROS are far more useful than the documentation for
that part. Additionally, the ROS community is very helpful,
and I found their Q&A forums to be very useful.

Additionally, I had to learn a bit more about 3D printing,
especially about how to set tolerances on parts. The lifter uses
three parts which are 3D printed. One part needed to make a
press fit with another part, the second part needed to be a press
fit with a gear rack, and the third part needed to both be a
press fit with another part, and needed to have a slip fit with
the gear rack. I didn’t get the tolerancing for these parts
perfect - they all needed heavy post-processing in order to
work - but I have learned a lot about the significance of part
tolerancing.

Victor Wong:

On top of learning how ROS works from scratch, I spent a
significant amount of time integrating the individual
contributions of others to form a working system. My prior
knowledge in Python and object-oriented programming helped
in integrating and debugging the various ROS nodes written in
Python and C++. Additionally, I learned about ultrasonic
sensors and Arduino from writing the collision detection node.

Joshua Savard

Throughout the course of the semester I have learned many
things from this years senior design project, the first of which
is the project development lifecycle. While at first it may not
be something that you often think about, it’s importance
should not be underestimated. At at least 3 different interviews
throughout this semester, I have been asked about the product
development lifecycle, and a situation where I was able to
apply it. Looking back and reflecting upon how many times I
have been able to apply this information I now realise how
important it is when actually applying it to the industry. On a
more technical note, I also got a significant amount of
experience in understanding ROS. From drone swarms to
vacuum robots, ROS is being used to create new innovative
drone and robot ideas, and to be able to get hands on
experience working with these current technologies is
something I will likely be able to apply later on in my career. I
also got hands on experience working in C++ as well as some
minor experience in python. I am glad to be able to say that
this is relatively insignificant because I have gained enough
experience working with so many languages that I can now
pick up two more with little effort. Another large takeaway
that I would like to mention is the experience I gained
integrating other people's software into my own. Utilising
other people's software is not something I have often done in
the past, but that is the way that most software development is
done in practice, so it is good to gain that experience. One last
thing that I took away from my time working in senior design
project is to make sure that when you have downtime you are
preparing for and planning out future schedules so that way

you can avoid long sprints when things go wrong and project
deadlines come near.

Johnathan Shentu

As a result of poor planning early in the semester, I was
unable to contribute as much as I would have liked to for this
project thus far. However, I believe I was able to grasp fairly
well the scope of the project, and was still able to contribute to
debugging and (the current) navigation code. Like the other
team members, I spent a significant percentage of time
working on this project learning ROS.

Alex Yen

I personally feel like I did not contribute as much as I had
hoped to. This semester was particularly challenging for with
along with other commitments. That being said, I had the most
experience ROS in our team, so I did not have a big learning
curve while implementing ROS nodes. I was able to
strengthen my familiarity with ROS, such that I feel more
confident in my own ability to use ROS in future projects.

