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Abstract​— Delivering objects autonomously in a building is not         
only an interesting problem, but also a way to allow more           
uninterrupted time for officer workers. With I.G.O.R. we        
demonstrate that a significant portion of this time can be saved           
by replacing the delivery process with a convenient and reliable          
robot. I.G.O.R. has been equipped with a forklift-styled lifter to          
pick up custom designed packages. 

I. I​NTRODUCTION 

A. Significance 
Package delivery within a building, for humans, requires        
knowledge of the building topology as well as time to          
physically deliver the package. The time and knowledge        
needed to perform these deliveries can be replaced, at least in           
part, by a robot. Our project implements a robot that          
autonomously delivers packages within a floor of a building.         
We hope that this project can be used to reduce the amount of             
time spent delivering packages in office settings, and to         
improve the productivity of employees. 

B. Context and Existing Products 
There are many delivery robots built today, but most of           

them are designed for alternative use cases. The Marble Robot          
is able to deliver items from two points of interest in an            
outdoor setting [1]. Similarly, Starship Technologies’ delivery       
robots [2] exists as a food delivery robot, which is restricted to            
outdoor navigation. One large advantage of restricting       
operations to outdoors is the availability of GPS/GNSS signals         
for localization. 

The Savioke Relay [3] is a delivery robot meant to provide            
hotel room service. As this robot operates indoors, it cannot          
use GPS/GNSS signals and instead uses LiDAR. Both of these          
robots must be loaded and unloaded by a human, which is one            
of the challenges our robot will attempt to address. 
 

C. Societal Impacts 
Our project will reduce the time spent on delivering small           

packages within a building. If we implemented IGOR in an          
office building, we expect that it would increase the overall          
productivity of most employees by decreasing the amount of         
time spent on tasks not directly related to work. From a           
manager’s perspective, this is an obvious benefit. From an         
employee’s perspective, this may be seen as a benefit because          
their time is not wasted on trivial tasks, allowing them to focus            
on their tasks. However, relatively minor inconveniences like        
delivering a file to a coworker’s desk may be seen as welcome            
breaks during a day’s work. It is more concerning that IGOR           
may reduce the number of people at sites where delivery of           
intra-office mail is a time-consuming task. But because IGOR         

can only deliver packages - not sort or schedule deliveries -           
human intervention is still very much needed.  

D. Requirements and Specifications 
The overall objective of this project is to be able to deliver a             

package from one location to another autonomously. In order         
to meet this objective, the robot needs to meet the high level            
requirements shown in the left column of Table 1.  
 
Table 1: Requirements and Specifications 

Requirement Specification Value 
Receive source 
and destination 

Graphical user 
interface 

Display a map that 
the user can use to 
select a package 
source and 
destination 

Path plan route 
to goal 

Time < 2 sec 

Carry a package 
to destination 

Speed 0.5 mph 

Autonomous 
package 
unloading 

Distance from 
selected 
destination 

3 feet 

Battery Life Time 3+ deliveries in 
Marcus 

Collision 
avoidance 

Responsiveness < 180 ms 

Portability Size / weight < 4cu.ft. / < 20 lbs 
 

E. Specification breakdown 
First, a user needs to give the robot an order. To make it              

easy to select a pickup and drop off point, some form of            
graphical interface is required. We currently plan on        
displaying a map to the user where they can click to place            
pickup and drop off points, and then send that data to the            
robot. 

Next, the robot needs to be able to plan a path between             
goals. Here, we’ve specified that the robot should be able to           
plan a path in less than 2 seconds. While it is important that             
the robot begins its tasks quickly, it is also important to note            
that the robot needs to continuously re-plan its path in case the            
robot goes off course. In order to decrease error, the robot           
must be able to re-plan the path in under 2 seconds to prevent             
significant disparity from robot’s estimate of its position and         
its actual position. 

While it is important that the robot can move between           
pickup and drop off points quickly, it is more important that           
the robot doesn’t cause any damage to people or infrastructure          
while traveling. We decided that the robot should move at          
about 0.5 mph, in order to increase safety, and decrease error           
in the robot’s movement by decreasing the robot’s inertia.         
While 0.5 mph is slower than the average person’s walking          
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speed, it is still quick enough to fulfill deliveries in a timely            
manner. 

We decided that the package needs to be delivered within 3            
feet of the destination because when packages are delivered, it          
isn’t often imperative that the package is in the exact correct           
position; it is only important that it left at about the correct            
spot. We settled on 3 feet because doorways are about 3 feet            
across, and we figured it’s not an issue if a user specified a             
drop off point at the left side of a doorway, and the package             
was left at the right side. 

The battery life was chosen because in order to be able to             
have an active duty time with sporadic use, we estimate that           
the duty cycle between delivery and idle will be on average 1            
to 3, so the 3+ delivery should be an adequate buffer to allow             
for recharging between deliveries. 

Collision avoidance was chosen to be under 180 ms so that            
if the robot is moving at maximum velocity, it can stop in less             
than 10 cm, which is the maximum distance that our distance           
sensors can reliably detect objects at. 

Portability is the broadest. It must be able to be picked up             
by a human, so our specifications are based around what an           
average person can easily carry. 

II. DESIGN 

A. Overview 
    ​In our project, we outline the different modules necessary to 
implement our problem, shown in Figure 1. 
 

 
Figure 1. A block diagram describing the components used in 
our project. 
 

Each module is outlined in grey, which we further          
modularize with specific components. The overarching      
component within our system is the Raspberry Pi. The Pi          
controls every component within our system - the motors,         
loading and unloading mechanism, Pi Camera, and our custom         
PCB with integrated ultrasonic distance sensors; our Pi is the          
driving microcontroller for our system. 

Within our Pi, we are using a middleware called Robot           
Operating System (ROS), which will be discussed more in         
part D in the Design section. In ROS, we run four nodes that             
allow for the following: loading in a map of its current           
environment, planning a path from source and destination        
points on the map, translating the path positions to velocities,          
sending velocity commands to motors, and updating its        

position via odometry. For our MDR, we have demonstrated         
that our robot can navigate and drive from a source point to a             
destination point. 

To purely drive the motors, the only modules we are using            
are the Robot Frame module, and the Microcontroller module.         
We have discussed the purposes of the Microcontroller        
module and will now discuss the Robot Frame module in          
tandem with the motor encoders. 

For our project, we are using a pre-built mecanum robotics           
kit. Since this kit consists only of the robot frame, motors, and            
encoders, we use an H bridge to drive the motors – this allows             
our motors to drive forwards and backwards, which is         
necessary for our robot to drive omnidirectionally. Since the         
motors have built in encoders, we can use encoder information          
to update the robot’s position relative to the map through          
odometry. This in turn is updated in our path planning          
function and relative position, which in turn sends new         
velocity commands to the motors, allowing the robot to drive          
from source to destination. 

The remaining modules that remain unimplemented are the         
Loading/Unloading module, the Custom PCB module, and the        
Human-Robot Interface module. Starting with the loading and        
unloading mechanism, our team has made this optional within         
our project goals; there are many issues and challenges with          
package alignment that could be time consuming for our         
project. As our main project objective is to deliver packages          
from a source point to a destination point, the loading and           
unloading mechanism is a project component that we can         
make a stretch goal. That being said, while we have made this            
optional within our project, we still anticipate completing this         
module. Many existing delivery robots require human       
interaction to load and unload packages. However,       
autonomous loading and unloading is a feature that will         
distinguish our work from others. As a result, our team still           
intend to implement loading an unloading, even though we         
have made it optional. 

The Custom PCB module is strictly used for object          
detection with our ultrasonic distance sensors. This will be         
used to detect obstacles along the planned path and react          
accordingly. Currently, we have tested and written code to         
read the distance between the sensor and a detected object, but           
we have not yet integrated the sensors with our system. The           
integration of these sensors will require another node in ROS          
that will override commands to run the motors. This is shown           
by the Custom PCB module pointing to the Microcontroller         
module in Figure 1. 

Lastly, we intend to implement a remote application that          
will allow users to interact with the robot. This will be done            
through an initial command line interface with a stretch goal          
of a graphical user interface. This will directly interact with          
the Microcontroller module, such that it will give commands         
to the Pi to make a delivery. This will be touched more upon             
in section B, which is the State Machine. 
 
B. State Machine 

Upon the completion of all modules, the end system will           
utilize them to perform the intended tasks of the robot. In           
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order to do so, the system must perform subtasks abstracted          
from the modules in a specific order. 

A model of our system is shown in Figure 2. In this model,              
initialization begins by checking if a map file has been          
preloaded into the system. This is necessary as the robot          
cannot navigate the floor or receive meaningful directives        
without the map. If successful, the system requests for a          
confirmation of the current position it is in. 

 
Figure 2: A state machine representing the program flow of 

our robot, including nodes for our stretch goals.  

After successful initialization, the system will begin idling         
and checking for job directives. These directives will be         
received by either a console on the Raspberry Pi or polled           
from a server. Job directives consist of a source and          
destination point, which in turn are transcribed into two         
separate source and destination points – the robot must first          
drive to the package location from its current position, then          
drive to the dropoff location to unload the package. 

In order to perform this task, the system must first generate            
a path for the robot to follow, then command the motors to            
follow the path while updating its current location using a          
combination of odometry and visual cues (April Tags). In         
addition, the robot must stop to avoid obstacles detected from          
the ultrasonic sensors, planning around it if necessary. At the          
end of each destination, the robot must then align itself to           
receive or drop the package off to its destination.  
 

C. Robot Operating System 
Figure 3 shows the current nodes that are used within ROS            

to move our robot from one destination to another. ROS is a            
framework that allows internal communication and      
modularization within a system. Each node is able to send and           
expect specific messages that can be handled by the node          
accordingly. 

 
Figure 3. I.G.O.R. ROS Nodes 

 

 
Figure 4. An example of a map that we are currently using to 
represent the robot’s environment and directives. 0’s represent 
walls, 1’s represent free space, 2 represents the robot’s start 
position, and 3 represents the robot’s goal.  
 
    Starting with the Path Planner node, we first import a map 
as a text file, an example of which is shown in Figure 4. In our 
map, we define the areas that our robot can traverse as a “1” 
walls or obstacles as a “0.” The digits annotated in red are the 
starting place, “2,” and the destination, “3.” This map just tests 
our robot moving straight since “2” and “3” are in the same 
column. However, for our MDR demo, we used a larger map 
that allows our robot to travel in “C” shaped path; this map is 
too large to include in this report. 

After the map is imported, the Path Planner node          
determines a path from the starting point to end point via the            
A* search algorithm. This node then sends a message         
containing an array of positions to the Path Interpreter node.          
The Path Interpreter node then computes the next move it          
needs to make by determining the vector from its current          
position to the next position; this vector is then converted to a            
linear velocity, which is sent as a message to the Motors node.            
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The Motor node then receives those velocities and runs the          
motors, allow the robot to drive. 

Since our motors have built in encoders, we are able to use             
the encoders for odometry – that is, we are able to update the             
robot’s position relative to the imported map. This is shown as           
a dotted line in Figure 3 – while the Motor node is not sending              
messages specifically to the Encoder node, the two nodes are          
interlinked. As a result, by updating its own position in          
relation to the map, our robot recalculates its path from its           
given position to the end point – the cycle of driving the robot             
towards the end goal then continues as we have described          
above. 

III. PROJECT MANAGEMENT 
Table 2 shows a summary of which MDR deliverables we 

were able to complete. Overall, we were fairly successful with 
meeting our goals for this semester. However, we could have 
been more organized overall. Appendix C gives some insight 
into how we organized ourselves as a team. 

A Gantt chart has been included in Figure 5 in order to 
show how we’ve planned our project for next semester, and to 
show all the additional major components we still need to 
implement. 

 
 

 
 

Table 2. A table summarizing which MDR goals we were able 
to complete on time. 
Deliverable Met? 
Load Package Yes. The robot can lift a 

package. 
Path Planning Yes. The robot can plan and 

follow a path. 
Receive Directives Almost. The robot can 

receive directives through 
hardcoded values, but not 
through a CLI. 

Ultrasonic detect collision Yes. Ultrasonics detect when 
the robot is close to a wall or 
obstacle. 

 

IV. CONCLUSION 
A. Current State of the Project 

Currently, our robot can plan a path between two points,          
with odometry as the only feedback it receives regarding its          
position. Additionally, we have a prototype lifting mechanism        
that can raise and lower packages. A photo of the current state            
of our robot is shown in Figure 6.  
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Figure 6. The current state of our robot. 

 
Our robot currently receives its goal and start positions         

through hard-coded coordinates, and updates its current       
position only through odometry. The path planning and        
execution are currently performed using a simple       
implementation that we wrote ourselves. 

We have ultrasonic range sensors connected to our robot         
that let us know whether an obstacle is near the robot, but we             
don’t use that information to plan paths around unexpected         
obstacles. Data from these sensors are currently read and         
processed by an Arduino microcontroller. 

Our current lifting mechanism is flexible, causing it to have          
a hard time lifting packages high enough to clear the ground. 
 
B. Next Steps 

Figure 5 shows a Gantt chart, which provides an overview          
of the work we must complete between now and demo day in            
order to have a complete product at that point. 

Next semester, we need to develop a GUI interface that          
users can use to specify package pickup and dropoff locations.  

We also need to implement localization using AprilTags        
[4]. AprilTags are small grids of pixels, shown in Figure 7.           
Given the characteristics of a camera, a software library can be           
used to calculate the camera’s position and orientation in         
space relative to an AprilTag. As the robot moves, odometry          
inevitably accumulates error. So, the farther the robot has         
moved from its starting position, the more inaccurate its         
estimate of its current position will be. To fix this, we will put             
AprilTags in the environment with known positions, and then         
we will calculate the robot’s position relative to those tags,          
and therefore the robot’s position in a building. 

 

 
Figure 7. An image of an AprilTag. 

 
We also need to design and print the hardware component          

of our project. Currently, we are using an Arduino to obtain           
and process data from the ultrasonic sensors related to local          
obstacles. However, Arduinos are not allowed in the final         
iteration of our project, so we will need to replace it with a             
custom designed PCB before FPR.  

Finally, we need to improve the stiffness of our lifting          
mechanism. Right now it is too flexible, so it cannot reliably           
keep a package off the ground. We need to revise its design            
and implementation so it does not flex as much under load,           
keeping the package clear of the ground. 

After these minimum requirements are completed, we will        
begin to focus on our stretch goals. First, we will focus on            
loading packages without human intervention. If time permits,        
we also hope to implement Simultaneous Localization and        
Mapping (SLAM) so our robot does not need to be loaded           
with a handmade map of its environment to be able to           
function. SLAM is an algorithm that allows a robot to build up            
a representation of its environment on its own, and determine          
its position within that environment at the same time [5]. 
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APPENDIX 
A. Design Alternatives 
This semester, there were two major decisions that we made          
regarding our design.  

One major decision we made was in software – we decided           
to write our own path-planning software rather than to use          
ROS’s navigation software. ROS provides a series of nodes         
and libraries, collectively known as the “navigation stack,”        
that robots can use to plan and follow a path between given            
positions. The navigation stack accepts the following as input: 

● A map of the robot’s environment 
● The geometry of the robot, including which sensors it 

has available 
● A goal position that the robot needs to plan a path to, 

which can be periodically updated 
● The robot’s position, which will be continually 

updated 
Given these inputs, the navigation stack can send velocity         
commands to the robot’s motor interface. The navigation stack         
is very feature-rich; it has the ability to path around local           
obstacles not included in the map, recover from faults, and it           
easily integrates new sensor information into its path planning.  

However, we decided to not use the navigation stack.         
Among us, only one of us had experience with ROS at all, and             
none of us had ever used the navigation stack before. So,           
integrating it into our project was a daunting task, and we           
were worried that it would take a long time to get it working.             
On the other hand, we had all written A* before, and therefore            
thought that writing all of this ourselves wouldn’t be a          
difficult task.  

This turned out to be a mistake – we spent a lot of time              
writing and debugging our path planning code, and ended up          
with a product that is both not very feature rich and difficult to             
extend. Since MDR, we have briefly attempted to implement         
path planning using the navigation stack. Because we all now          
have far more experience working with ROS, this process         
went relatively smoothly. Next semester, we plan to        
completely switch to the navigation stack for path planning. 

We also decided to use mecanum wheels over traditional         
wheels for our robot. Robots with mecanum wheels can move          
in any direction - even directly sideways - unlike traditional          
wheels. However, mecanum wheels require more traction than        
traditional wheels, so they are more limited in the types of           
terrain that they can traverse. 

This decision was partially influenced by our decision to         
write our own path planning code. To control a tank drive           
robot, we would need to take into consideration the constraints          
on which directions the robot can move in. However, there are           
no constraints on how a mecanum drive robot can move in a            
2D plane, so it was much easier for us to plan paths for a              
mecanum drive robot. 

Additionally, if we eventually implement autonomous      

package pickup, it will be easier for the robot to adjust           
laterally to realign itself with the package.  

 
B. Testing Methods 

This semester, our testing methods were rather primitive. To         
test whether path planning worked, we simply placed the robot          
on a map and saw if it ran over any walls during its path              
execution. To test our lifting mechanism, we simply placed a          
package on the lifter’s fork, and saw if it could successfully           
raise the package.  

While these experiments are primitive, they are still useful.         
After testing our path planning, we noticed that we weren’t          
sufficiently taking the robot’s geometry into account when        
avoiding walls. So, while the center of our robot would clear           
the walls, the edges of our robot would not. After testing our            
lifter, we realized that, if the package was too heavy, the           
package would bend the lifter until it was on the ground, and            
the gear driving the lifter would skip. This experiment is          
currently guiding our redesigns of the lifter, so that we ensure           
that in the next revision, the gear is positioned precisely and           
the lifter’s fork is stiffer. 
 
C. Team Organization 

Team coordination at the beginning of the semester was          
lacking – roles were not particularly well defined , but eaus           
was assigned a part. Before our project started picking up          
pace, each group member had a part in designing or debugging           
a particular module within our system. Adam by far had the           
most contribution towards the project. He set up all the wiring           
for our robot frame and also wrote programs to use our motors            
and encoders within ROS. He started off strong on the before           
we came together as a team mid-November. However, when         
mid-November came around, the rest of the team members         
filled in their roles. Josh wrote the path planning code, and           
Victor and Johnathan played a significant role to make the          
path planning ROS node work. Alex translated the path         
planning directions to real-time motor velocities. With each        
ROS nodes working individually, we were able to successfully         
run and test all nodes together without many issues. Our team           
was able to collaborate well to finish off our project before           
MDR. 

For our team collaboration during Spring semester, we aim          
to set well defined roles for each team member to ensure the            
steady progress in our work. This will be done in tandem with            
the Gantt chart as a general reference for our project          
milestones. 
 
D. Beyond the Classroom 
Adam Rivelli:  

So far, I’ve needed to learn a lot about how ROS works and             
about the ROS ecosystem in order to be a contributor this           
semester. Initially, ROS was very overwhelming to me; it was          
hard to figure out how to do anything with it, and while it             
seemed to be very useful for any project involving a robot, I            
found it difficult to see exactly how we should implement it in            
our project. To learn about ROS, I found that the basic ROS            
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tutorials were the best place to start. Overall, I thought that the            
ROS documentation was either lacking or too terse for me to           
understand, so I generally think that the tutorials for any given           
part of ROS are far more useful than the documentation for           
that part. Additionally, the ROS community is very helpful,         
and I found their Q&A forums to be very useful.  

Additionally, I had to learn a bit more about 3D printing,           
especially about how to set tolerances on parts. The lifter uses           
three parts which are 3D printed. One part needed to make a            
press fit with another part, the second part needed to be a press             
fit with a gear rack, and the third part needed to both be a              
press fit with another part, and needed to have a slip fit with             
the gear rack. I didn’t get the tolerancing for these parts           
perfect - they all needed heavy post-processing in order to          
work - but I have learned a lot about the significance of part             
tolerancing.  

 
Victor Wong: 

On top of learning how ROS works from scratch, I spent a            
significant amount of time integrating the individual       
contributions of others to form a working system. My prior          
knowledge in Python and object-oriented programming helped       
in integrating and debugging the various ROS nodes written in          
Python and C++. Additionally, I learned about ultrasonic        
sensors and Arduino from writing the collision detection node.  

 
Joshua Savard  

Throughout the course of the semester I have learned many           
things from this years senior design project, the first of which           
is the project development lifecycle. While at first it may not           
be something that you often think about, it’s importance         
should not be underestimated. At at least 3 different interviews          
throughout this semester, I have been asked about the product          
development lifecycle, and a situation where I was able to          
apply it. Looking back and reflecting upon how many times I           
have been able to apply this information I now realise how           
important it is when actually applying it to the industry. On a            
more technical note, I also got a significant amount of          
experience in understanding ROS. From drone swarms to        
vacuum robots, ROS is being used to create new innovative          
drone and robot ideas, and to be able to get hands on            
experience working with these current technologies is       
something I will likely be able to apply later on in my career. I              
also got hands on experience working in C++ as well as some            
minor experience in python. I am glad to be able to say that             
this is relatively insignificant because I have gained enough         
experience working with so many languages that I can now          
pick up two more with little effort. Another large takeaway          
that I would like to mention is the experience I gained           
integrating other people's software into my own. Utilising        
other people's software is not something I have often done in           
the past, but that is the way that most software development is            
done in practice, so it is good to gain that experience. One last             
thing that I took away from my time working in senior design            
project is to make sure that when you have downtime you are            
preparing for and planning out future schedules so that way          

you can avoid long sprints when things go wrong and project           
deadlines come near. 
 
Johnathan Shentu 

As a result of poor planning early in the semester, I was             
unable to contribute as much as I would have liked to for this             
project thus far. However, I believe I was able to grasp fairly            
well the scope of the project, and was still able to contribute to             
debugging and (the current) navigation code. Like the other         
team members, I spent a significant percentage of time         
working on this project learning ROS. 
 
Alex Yen 

I personally feel like I did not contribute as much as I had              
hoped to. This semester was particularly challenging for with         
along with other commitments. That being said, I had the most           
experience ROS in our team, so I did not have a big learning             
curve while implementing ROS nodes. I was able to         
strengthen my familiarity with ROS, such that I feel more          
confident in my own ability to use ROS in future projects. 


