

Smart Coaster SDP20

Team 16 PDR

October 11, 2019

Meet the Team

Professor Joshua Jonathan Capozzi Timothy Shum Ang Yang EE EE E Advisor

Angus Mo EE Joshua Howell CSE At restaurants, fast and responsive service leads to higher customer satisfaction. Waiters/waitresses often juggle serving several tables at the same time. A customer might finish their drink and have to wait a while for service.

Solution - Smart Coaster

- Monitor multiple tables' drinks with ease
 - Coasters connect to a single device to easily see what table needs a drink/refill
- Faster customer service response
 - Coasters send a notification to the smart device when a cup is emptied
- Intuitive system
 - Low maintenance coaster with long lasting battery life

Similar Products

- Brio Smart Coaster
 - New Potato Technologies
 - Interactive app recommends pubs and restaurants
 - Includes coaster position tracking
 - "Drink Guard" notifies if a drink has been tampered with

Similar Products

- HYDRATE.ME
 - NYU Design Team
 - Coaster reminds user periodically to drink water
 - Notifies the user when to refill water bottle
 - Widget provides visual representation of water bottle

Specifications

- >95% "empty glass" detection rate
- <1% "empty glass" false positives
- >12hr battery life
- <5hr recharge time
- <2cm coaster thickness
- Supports multiple coasters
- Accurately detects a new/refilled beverage
- Accurately determines weight of glass itself
- Accounts for ice or other leftovers
- Reach Goal: Wireless charging station

Block Diagram

Block Diagram

Block Diagram - Sensing Components

- Possible Implementations:
 - Load Cell
 - High precision
 - Bulky adds thickness
 - High cost
 - Force Sensitive Capacitors
 - Thin/small form factor
 - Low precision
 - High cost
 - Velostat Variable Resistor
 - Thin/small form factor
 - Low precision
 - Low cost

Block Diagram - Sensing Components

Force Sensitive Resistors:

- Compact and discrete form factor
- Capable of measuring weight within desired weight range (50 - 300 grams)

Figure 1. Plot of resistance vs force for a force sensing resistor. Source: <u>https://learn.adafruit.com/assets/429</u>

Block Diagram - Sensing Components

Figure 1. Plot of resistance vs force for a force sensing resistor. Source: <u>https://learn.adafruit.com/assets/429</u>

Analog Digital Converter

- Needs to translate analog voltage into a force/weight measurement (ADC)
- Has enough resolution to detect small changes in weight
- Low power consumption

Figure 2. Wiring diagram of the force resistive sensor into the Microcontroller $\ensuremath{\mathsf{ADC}}$

$$ADC \ Value = \frac{V_{IN} \cdot 2^{(Bit \ Resolution)}}{V_{CC}}$$

Figure 3. Expression for evaluating the ADC output value based on the input voltage

Figure 4. Translation of ADC input voltage into output codes

Wireless Communication

Requirements:

- Send status notification wirelessly to a central hub
- Does not have to be real-time, i.e. report status every few seconds
- Low power communication
- Working range up to 100m in open space

Nordic Semiconductor's **nRF24L01+** is a common 2.4GHz radio transceiver IC for low power/bandwidth scenarios.

- 1.9V-3.6V
 - Transmission: ~12mA
 - Standby: 26µA
 - Power down: 0.9µA

Block Diagram - Software Requirements

- Determine expected empty and full weights
 - Each range is bounded by the empty weight and max full weight
 - Relate weight ranges to container types
 - Standard glass, coffee mug, wine glass, etc.
- Detect empty drinks with ice/other leftovers
 - Log the time when the weight last changed by more than some threshold
 - Track how long a drink has gone untouched
- Notify staff
 - Alert waiters/waitresses when drink is low/empty
 - Hub notifies app to send alerts

MDR Deliverables

Arduino-driven coaster and hub prototype

- Sensor Accuracy:
 - Weight error <10 grams
 - Differentiate between drink levels
- Coaster Functionality:
 - Full, half-full, empty
- System Communication:
 - Hub receives and logs weight sent from coasters

Prototype Cost Analysis

Coaster:

- Enclosure: \$15
- Processing unit: \$25
 - Microcontroller
 - PCB
 - Passive
 Components
- Wireless comms: \$7
- Battery: \$5
- Force sensors: \$25

Coaster Total: \$77

Hub:

- Enclosure: \$15
- Processing unit: \$25
 - Microcontroller
 - PCB
 - Passive
 Components
- Wireless comms: \$7

HUB Total: \$47

Major Tasks

Josh

- Wireless implementation
- App/UI Development

Tim

- Hardware/Sensor implementation
- Enclosure Design

Angus

- Embedded Software
- Data analysis/processing

Jon

- PCB
- Power budgeting

Questions?

References

- FSR Wiring
 - https://www.electronicdesign.com/analog/signal-conditioning-force-sensing-resistors
- Connecting FSR to AVR
 - <u>https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr</u>
- MCU Wifi
 - <u>https://circuitdigest.com/microcontroller-projects/esp8266-nodemcu-with-atmega16-avr-microcontroller-to-s</u> end-an-email
- nRF24L01+ RF Transceiver IC
 - https://lastminuteengineers.com/nrf24I01-arduino-wireless-communication/
- Force Sensing Resistor (FSR)
 - <u>https://www.adafruit.com/product/1075</u>