

SDP20 Team 16 MDR

December 4th, 2019

Meet the Team

Professor Joshua Jonathan Capozzi Timothy Shum Ang Yang EE EE E Advisor

Angus Mo EE Joshua Howell CSE At restaurants, fast and responsive service leads to higher customer satisfaction. Waiters/waitresses often juggle serving several tables at the same time. A customer might finish their drink and have to wait a while for service.

Specifications

- >95% "empty glass" detection rate
- <1% "empty glass" false positives
- >12hr battery life
- <5hr recharge time
- <2cm coaster thickness
- Supports multiple coasters
- Accurately detects a new/refilled beverage
- Accurately determines weight of glass itself
- Accounts for ice or other leftovers
- Reach Goal: Wireless charging station

Block Diagram - Software Requirements

- Determine expected empty and full weights
 - Each range is bounded by the empty weight and max full weight
 - Relate weight ranges to container types
 - Standard glass, coffee mug, wine glass, etc.
- Detect empty drinks with ice/other leftovers
 - Log the time when the weight last changed by more than some threshold
 - Track how long a drink has gone untouched
- Notify staff
 - Alert waiters/waitresses when drink is low/empty
 - Hub notifies app to send alerts

Block Diagram

MDR Block Diagram

Power Plan

Battery Choice:

- Each coaster will have two 3.7V 2600mAH Li-Ion rechargeable batteries in series.
- This 7.4V supply voltage will be stepped down to the 5V operating voltage chosen.
- If we were to bring down the operating voltage of our Amplifier we could potentially use a series of nickel metal hydride (NiMH) batteries.
- Subject to change based on the current needs of future part selection such as the microcontroller.

Power Plan

Charging:

- Recharge station on the central hub (Regulated power supply using the same wall supply the hub is connected to)
- The coasters are rechargeable through the same process as restaurant pagers
 - Metal Contacts on the screws that hold the enclosure together
 - The charge travels up through all the coasters that are stacked, charging them all simultaneously
 - Metal plates make contact with the screws internally to charge the batteries

Load Cell

- High accuracy
- Highly linear
- Small output voltage
- Needs an amplifier so that we can use the range of our ADC

Instrumentation Amplifier

- Needed to bring the output voltage range of the load cell to the range of the ADC
- ~ .4mV-3.7mV from the load cell
- Picked a gain resistor to reach for 1000 V/V gain
- Operating at a supply voltage of 5V

ADC and Measurement Precision

- ATMEGA328 ADC maps analog input between 0-5V to a digital range 0-1023
- Each ADC value represented roughly by 5mV
- Considering noise ~ 7.5mV amplitude, expected +/- 1.5 error in ADC value
- Depending on calibration, accuracy of about X grams/ADC value

Wireless Communication

Requirements:

- Send status notification wirelessly to a central hub
- Does not have to be real-time, i.e. report status every few seconds
- Low power communication
- Working range up to 100m in open space

Nordic Semiconductor's **nRF24L01+** is a common 2.4GHz radio transceiver IC for low power/bandwidth scenarios.

- 1.9V-3.6V
 - Transmission: ~12mA
 - Standby: 26µA
 - Power down: 0.9µA

MDR Deliverables

Arduino-driven coaster and hub prototype

- Sensor Accuracy:
 - Weight error <10 grams
 - Differentiate between drink levels
- Coaster Functionality:
 - Full, half-full, empty
- System Communication:
 - Hub receives and logs weight sent from coasters

Responsibilities

TASK NAME	ASSIGNED TO	START DATE	DUE DATE	DURATION
Coaster PCB Design	Jonathan/Tim	2/3/2020	2/20/2020	17
Coaster Battery Supply	Jonathan	1/30/2020	2/10/2020	11
Recharge Station	Jonathan/Tim/Angus	1/27/2020	2/25/2020	29
Coaster Enclosure	Tim/Jonathan	2/23/2020	3/9/2020	15
Code Translation	Josh	2/1/2020	2/20/2020	19
Microprocessor Selection	Tim/Angus	1/23/2020	2/1/2020	9
HUB User Interface	Josh/Angus	2/18/2020	2/27/2020	9
HUB Enclosure	Tim/Jonathan	3/8/2020	3/24/2020	16
HUB PCB Design	Tim/Jonathan	2/20/2020	3/8/2020	17
2nd Coaster Module	Team	2/29/2020	3/12/2020	12
Refinement	Team	3/12/2020	4/3/2020	22
Demo Day	Team	4/24/2020	4/25/2020	1

Demo

References

- FSR Wiring
 - https://www.electronicdesign.com/analog/signal-conditioning-force-sensing-resistors
- Connecting FSR to AVR
 - <u>https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr</u>
- MCU Wifi
 - <u>https://circuitdigest.com/microcontroller-projects/esp8266-nodemcu-with-atmega16-avr-microcontroller-to-s</u> end-an-email
- nRF24L01+ RF Transceiver IC
 - <u>https://lastminuteengineers.com/nrf24I01-arduino-wireless-communication/</u>
- Force Sensing Resistor (FSR)
 - <u>https://www.adafruit.com/product/1075</u>