
1
SDP20 – Team 15

1	

Anamitra Datta, CSE, CS, Max Haimowitz, CSE,
Xiaoyang Pan, CSE, and Minting Chen, CSE

Abstract—The current research practices used by biologists who
are studying endangered animals have many limitations. For
instance, tranquilization is potentially dangerous to an animal
and requires a lot of manpower and training. A better system
would allow researchers to collect large amounts of data on
animals easily without disturbing them. One system that would
accomplish this is a network of cameras that would be designed
to take photographs to make 3D models. Ideally, this system
would be low-power, easy to deploy and operate in remote areas,
and reliable at generating 3D models.

I. INTRODUCTION

[1. THE goal of this project is to create an
integrated camera trap system that can be deployed by
biologists in the wild to create 3D models of endangered
megafauna.

A. Significance
Many people are concerned about the extinction of certain

species of animals. This includes governments, scientists, and
the public. People do care about the health of the animals, but
the way people gather information from the animals can
potentially be harmful. In the past, people used to tranquilize
endangered animals, set up traps, or utilize other remoting
sensing technologies. If scientists and researchers collect
information through these methods, the process might be
potentially disruptive, harmful, and dangerous for animals and
for them. Additionally, certain species of endangered animals,
such as the tiger quoll can be elusive [19]. Therefore, a system
that gathers meaningful information from animals where
minimum interference is required.

B. Context and Existing Products
Currently, there is a wide variety of camera traps which can

be bought usually in the range of $40 to $100 [11]. The main
market for these traps is hunters and biology researchers who
want single still photographs of the animals they are interested
in. These traps can also be set to take video.
Last year, Professor Duncan Irschick, who is a biology
professor at UMass Amherst and the manager of the 3D Digital
Life project, [16] which aims to create high-quality 3D models
of animals, had a graduate student (Nino Figliola) from the MIE
department investigate whether these traps can be used in a way
that would take photos for generating 3D models.

1

 M. Haimowitz (email: mhaimowitz@umass.edu)
A. Datta (email: anamitradatt@umass.edu)

The issue that came up was that if the cameras were all set up
to take photos, they would get triggered at different times, and
there was really no way around this lack of coordination. A
different approach was to set the cameras to take video and then
try and stitch all the videos together to find the same frame, and
then use that to make the models. The issue with that, however,
was that with video the individual frames are of much lower
quality (i.e. the fewer number of pixels), and thus not suitable
for 3D reconstruction.

It should also be mentioned that there is networking for
camera traps, just not the kind we want. Currently there are
camera traps that can connect with 4G phones (intended for
hunters) that can transmit video over the cell network [1]. The
issue is that this cannot be configured with more than 4 cameras
at a time, so this would not work for our purposes (since we will
need many more cameras), and they are not meant to be used in
the same area.

C. Societal Impacts
This project is intended to be used by biologists studying

endangered animals. Currently there are about 41,000
endangered species and 16,000 critically endangered
species [2]. To give some examples using famous species, there
are only about 2,500 giant pandas (Ailuropoda Melanoleuca)
left in the wild and only about 4,000 tigers (panthera tigris). The
main causes of the deaths of these animals are hunting and the
spread of human development into previously wild areas. Also,
as bad as it is by itself to see one species go extinct, there are
also knock-on effects from extinction since it could destabilize
the entire ecosystem.

The reason why this project is important is that it will not
only allow researchers to learn about the number of animals in
a particular area, but it will help gather data about the health of
those animals. In particular, one very important piece of data
researchers want to learn is the weight of the animals because
that lets the researcher know how much food the animal is
getting. By using pre-existing algorithms, a researcher can
estimate the weight of an animal from a 3D model, which is
what our system helps create. Of course, it is possible to get this
data through tranquilization, but this can be difficult and cause
political issues. In many of the countries where the research is
taking place having foreign researchers go in and interfere with
these animals (which can be a source of national pride) may be
offensive. So, our design choice was made with the goal in mind
of being totally non-invasive to the animal.

D. Requirements Analysis and Specifications
Our system has many specifications and requirements in

order to ensure proper synchronization of the images
generated by the system, a proper setup of the system so it can

M. Chen (email: mintingchen@umass.edu)
X. Pan (email: xiaoyangpan@umass.edu)

Camera Trap 3D

2
SDP20 – Team 15

accurately take automatic photos for long periods of time, and
proper design of the system so it is scalable, portable, and
compact enough to be set up easily and readily deployable in
the field.

In order to generate an accurate 3D model, the 2D images
must be synchronized within 0.1 seconds of each other, or else
the model will be distorted and inaccurate. Our system will be
ensured to take photos within 0.1 seconds of each other 95%
of the time. This is our most important requirement for our
system. Having high-quality images helps to improve 3D
models so the system must generate 8K resolution images,
which is the highest resolution possible for images. Our
system uses a Raspberry Pi Camera V2 module which can
generate 8K quality photos, so we meet this specification.
 For the design of the system, we need to specify how the
cameras will be placed and how long the system will run for.
The cameras should be able to be connected wirelessly
through Wi-Fi by up to 8 meters of each other. With this
networking range, the system should be able to detect the
presence of animals using their PIR sensors from 1-5 meters
up to 95% of the time. The system should be able to run for at
least 72 hours; this requires less than 370mA of power
consumption for each device. The system will also have long-
distance transmission of information, so a user can get
information about the system from a long-range. We will send
information about battery life and the number of photos taken
within a range of 1-3 km.
 It is very important for this system to be easily deployable
and operational in the field. We decided that our system
should be easy to set up by a non-expert in less than 45
minutes. It should also be portable since we need to set up the
system in remote areas without an Internet connection or
power outlets. It should also be scalable if someone wants to
add more devices into the network without affecting the
performance of the system. All requirements and
specifications of the system are given in Table 1.

Requirements Specifications

Synchronization Photographs from the cameras are
synchronized within 0.1 seconds,
95% of the time

Photo quality The best possible resolution, 8K,
3280*2464 resolution

Detection Range Detects the presence of animals at 1-
5 meters, 95% of the time

Networking Range Cameras need to be connected
wirelessly up to 8 meters

Battery Life Lasts at least 72 hours

Power
Consumption

Less than 370 mA

Long distance
transmission range

Statistics on battery life and number
of photos taken in range of 1-3
kilometers

Easy to deploy and
operate

Can be set up in less than 45
minutes by a non-expert

Portable Needs to be portable to set up in
remote environments with no
Internet connection or power outlets

Scalable Can add multiple cameras easily to
the network and will not affect
performance of the system, up to 25
cameras

Table 1: Requirements and Specifications

II. DESIGN

A. Overview
For our final system, we used three cameras, each attached to

its own Raspberry Pi. Our system follows a central/edge
paradigm where one of the camera modules is a central listening
to the sensor data for when to take a picture and the other
modules respond to the main module’s message of when to take
the picture. These modules are connected through Wi-Fi as part
of an ad-hoc network and they communicate messages with
each other through a protocol called MQTT (Message
Queueing Telemetry Transport). The main module contains a
sensor, an RTC (Real-time clock), and a PCB to keep track of
how much battery is left in the power brick attached to the
module. Our system also has a software UI that can be used to
view photos taken by the system from a mobile phone through
an app as part of short data transmission.

In our final product we had to find balance and make
compromises in order to meet all of our requirements. For
instance, in our power specification we could have gotten much
more battery life if we hadn’t gone with a Raspberry Pi, but we
needed to do that in order to get a camera that had good
resolution. Similarly, making our system easy to use meant that
we probably had to sacrifice a decent amount of performance.
During our initial prototyping phase in the fall we controlled the
system through SSH (command line), which made improving
our code very fast. But, for using our final product we
developed a mobile app, which can interact with the software
on the Raspberry Pi which is a lot more complicated to
implement and gives the user less control. A further limitation
we had to consider was how big a battery we should get. Of
course a bigger battery gives our system a longer life, but this
comes at the expense of money and also makes the system
larger and more difficult to move around.

To further elaborate on our system, we are required to take
multiple 2D images of an animal that is within the range of our
system. We need to take multiple photos of the same animal
from different angles to construct the 3D image for the purpose
of analysis by the researchers. For taking multiple photos over
a long time, we need multiple cameras that consume very little

3
SDP20 – Team 15

power. These cameras must also be connected wirelessly for
proper photo synchronization. We need synchronization to a
high degree of accuracy because the animals are always
moving, and we can only construct a high-quality 3D model if
the photos are taken at the same instant. For wireless connection
within our system, we considered using either Wi-Fi or
Bluetooth. Wi-Fi has a bigger range (up to 300 feet) than
Bluetooth and it can connect many devices together through a
DHCP server, whereas Bluetooth can only connect 7 or 8
devices with the present technology, which does not meet our
scalable requirement. However, Wi-Fi does use more power
than Bluetooth, but not by much, and we can lower power
consumption within our system through using a less intensive
Operating System, disabling Input/output ports, etc. which is
discussed in other sections.

To connect the cameras wirelessly through Wi-Fi, we attach
them to a separate module or computer. We decided to attach
the camera module to a Raspberry Pi. The other alternative we
considered is to network the cameras themselves (that is trying
to build around some pre-existing camera trap). Adding
networking to a camera trap is much more difficult and
complex. It also does not serve a purpose in the long term.
Firstly, every camera has different hardware and software, so to
network them, we must commit to a technology that can
ultimately defeat the purpose of having a scalable, open, and
configurable system. Not to mention, adding all the features to
the cameras themselves makes the system as complex as a
computer. Presumably, after adding all the features, it will
consume as much power as a normal Operating System. Also,
if, at a later time, you want to make the cameras more intelligent
based on synchronization, it will be limited by the capabilities
of the cameras which are not within our control. Also, adding a
Pi to the camera module gives us the power of making a more
robust, configurable, scalable, and open system. Every Pi
comes with an operating system that runs a TCP/IP stack. So,
we can implement any kind of networking protocol or software
package/product on top of this if our requirements change. The
module we chose to use is the Raspberry Pi Zero W. This
Raspberry Pi model uses very little power and can last a long
time. The Pi also has a built-in Wi-Fi chip that can connect to
Wi-Fi. The DHCP server for Wi-Fi will be set up on the central
Raspberry Pi as part of an ad-hoc network.

These photographs are synchronized to within 0.1 seconds,
with an accuracy of 95%. These photos will be used to generate
an accurate 3D reconstruction of the animal captured using a
3D reconstruction software such as Meshroom or Blender. The
photos must be in good quality to generate an accurate 3D
model. We have used a Raspberry Pi Camera Module V2,
which can take photos with 8K resolution, 3280 * 2464
resolution. The photo session (when multiple cameras capture
an image of an animal at the same time) will be triggered by a
central camera module(s) using a PIR (Passive Infrared) sensor
(which detects motion by an animal within the camera’s field
of view). The central camera broadcasts a message to all other
cameras through a protocol called MQTT (Message Queueing
Telemetry Transport). We can ensure that timing is correct
among all cameras if we add an RTC (real-time clock) into the
system. The Pi does not have a real-time clock. It gets from the
Internet from an NTP (Network Time Protocol) server. Since

our system is designed to work without the Internet (is not
needed), we will add an RTC on the main Raspberry Pi, which
will serve as the central clock for our captive camera network.

Another part of the project is telemetry. For this project, we
plan to send updates about the status of the system within a
couple of kilometers (1 – 3 km). This is useful because the
researcher may not want to approach the area where the cameras
are set up since that could leave a scent trail that could scare
away animals. To accomplish this, we will use XBee Radio
Frequency modules to send information about the network such
as battery life and statistics on photos taken Our block diagram
of the system is shown in Figure I.

Fig 1. Block Diagram of the Integrated Camera Trap System

B. Technical Block – Networking and Synchronization

For our system, we are using Wi-Fi to connect each of the
different modules so they can send messages between each
other. The network design is based on a central and edge
paradigm, in which one module listens to commands and sends
the commands to the other edge nodes within the network. For
this reason, we have chosen a star topology for our network.
The central module is the main node and the edge cameras are
the peripheral nodes. The central module runs a DHCP server
for the entire network of camera modules. How the cameras will
send information between each other is with Message Queueing
Telemetry Transport (MQTT) Protocol. MQTT is a lightweight
messaging protocol in which devices send messages to each
other with a publish and subscribe model. One module (the
central module) will act as the publisher, who will broadcast a
message to the other edge modules, who will serve as
subscribers. The subscribers connect to a topic or channel
where they will receive information. The distribution of
messages through these different channels is maintained by a
MQTT Broker. For the MQTT Broker, we are using a free,
open-source software called Mosquitto which provides the
service for our network. Figure 2 shows the model of the MQTT
Protocol The broker is also going to run on the central
module. A passive infrared (PIR) sensor is attached to the
central module. [17] When the PIR sensor detects an animal
within the camera’s field of view, the central module will send
a message using MQTT to the other camera modules connected
to the MQTT Broker and the Wi-Fi network. The central
module will start the process of taking a photo. When these edge

4
SDP20 – Team 15

modules receive the message, they will start the process of
taking a photo. The process is asynchronous, the central module
does not wait for the edges to respond. For that reason, the
whole system is responsive to new events, like another animal
triggering the cameras. An asynchronous process does not mean
that the photos themselves will not be synchronized. This whole
process takes less than 0.1 seconds without the overhead of
being monitored by the central module. This allows taking
synchronized photos without interruption within 0.1 seconds
latency. In the photo session, all cameras have a photo of the
animal at that moment. The idea is to get all the images of the
edge cameras onto the central module. How we achieve this is
through FTP (File transfer protocol). Each camera module will
log into the main camera module and place its photo in a
separate directory for the photo set. The photos have a camera
number, set number, and time by which they can be tracked,
identified, and processed.

Fig. 2. Structure of a Publish-Subscribe model using MQTT

The central module will have a static IP address and a hostname
which the edge modules can easily connect to. We will set up a
local name server for naming the central module, the MQTT
Broker. This will ensure that even if the IP address of the broker
and the central module changes, it will not affect the operation
of the system. The system will be flexible to host the different
servers on different machines without changing the programs.
However, the edge modules can run on dynamic IP addresses
managed by the DHCP server. If, however, the client feels the
necessity to have a set naming convention for the edges, it can
be done with minimum configuration changes.

To ensure synchronization, all modules need to have the
same set time. However, the Raspberry Pi does not have an in-
built clock [12]. The clock is set using the Internet. The clock
is synced from an NTP (Network Time Protocol) Server. The
problem with this is that we cannot ensure Internet access in
remote environments where our devices will be placed. As a
result, every device in our network will have an arbitrary
software clock time once they are rebooted. In addition, since
the modules themselves are not synced together, and software
clocks are unreliable and prone to delay, each module will have
different times, which is a huge deterrent to measure our goal.
Also, it will be impossible to find out the time and
synchronization of the photos, which will be used to make the
3D model. For this reason, we are adding a real-time clock (PCF

8523) [18] to the central module, which will keep track of the
time. The edge modules can receive the real-time from the
central module through SSH (Secure Shell). The edge modules
will routinely query the central module for the real-time with a
cron job (automated running script) and will update their
software clocks to the main module’s time.

C. Technical Block - Power Consumption and
Monitoring

An important specification we need to meet is having good
power consumption because that enables us to either get longer
total battery life or buy cheaper (low capacity) batteries. The
specification was 72 hours. We are using 26800mAh batteries,
which give us enough power for the system to meet this
requirement. [13]. For MDR, we agreed on meeting a 24-hour
battery life specification with our evaluators and we exceeded
this significantly.

To give a rough estimate in order to meet our 72-hour spec
we will need to consume roughly 370mA on average. This is
somewhat less than what a full Raspberry Pi (3B+) does while
running code, so we had to figure out ways of reducing current
draw. The primary thing that can be done is manually disabling
certain buses on the Raspberry Pi chip and this reduced power
considerably. Turning off the bus that goes to the USB ports can
kill about 130mA of power, likewise, killing HDMI reduces by
about 20mA. All these methods of reducing power should not
affect performance for our system.

So, that takes us to about maybe 220mA, and if we want to
get more we have a couple more easy things we can do, but
there are also certain power-saving techniques we could do on
top of that to get really-low power, but some of those would
come with downsides. For the tricky things, we could do things
like underclock the CPU and try and change the way our code
is structured. Also, we could do things like try to kill daemons
running in the background, turn off LEDs or change to a more
lightweight operating system. These latter things do not make
too big of a dent, but they can add up, so that overall we might
be able to get something approximating 150mA if things go
well. This would mean a 172-hour battery life, which would be
148% more than what we originally had as our specifications.

One other feature of the Raspberry Pi that should be
mentioned is the lack of any way to measure current from the
Pi itself (it can display voltages on certain buses but there is no
way of displaying current). In order to get these measurements,
we used a USB ammeter [14]. Part of our hardware component
is an analog ammeter that will feed back into the central
Raspberry Pi via the GPIO pins. This will allow the raspberry
pi to know how much power has been consumed and can send
this information to the software user interface and through long-
distance transmission.

D. Technical Block – 3D Reconstruction
Part of the software running on the Raspberry Pi will have to

calibrate settings for the photography so that the photos that get
taken of the animal are suitable for 3D reconstruction. There is
a ‘sport’ mode which is better for photographing moving
objects than the default settings. But even in that case the shutter

5
SDP20 – Team 15

speed can be too slow because the algorithm is trying to still get
a good amount of lighting. This will make the 3D reconstruction
difficult because the photographs need to be nearly
simultaneous for the reconstruction to work since the software
uses common reference points. So, if the object is in different
places in different photos, it will confuse the software.

Good shutter speed for our purposes is approximately 8ms,
but this can cause modest dimming/darkening. Since Raspberry
Pis are not able to open the aperture, we would have to
compensate for this by increasing ISO/Brightness which
reduces how nice the photos will look but won’t necessarily
make them harder to use for 3D model generation. It may also
help to artificially boost contrast since that would make
common reference points/pixels more pronounced. This is
because the way the Meshroom (3D Reconstruction Software
Works) is that the algorithms try and look for common
reference points and shapes in all of the input photos and then
use that to estimate the placement of the cameras[Citation 15].
Also, since each camera comes with a different focal length and
lens width, the program can estimate the volumes of different
objects that are in the scene.

Currently we can configure our cameras so that they can
communicate, and all choose the same photography setting, and
that worked in our MDR for getting good photos, but we may
want to improve on this.

To demonstrate that our photos were of the appropriate
quality we made a 3D model of a stuffed moose we had by
taking photos of it using our raspberry pi camera. We did two
versions of this. First, we took 26 photos using ‘auto’ mode,
then we took 32 photos using our custom anti-blur settings (8ms
shutter speed, 60/100 brightness, 60/100 contrast) and that also
was turned into a 3D model. Before, we started Irschick said
that we would probably need about 25 – 30 cameras to get a
good model of an animal since there are a lot of different angles
and crevices to cover.

In both cases, the model was successfully generated, and we
got good detail on all parts of the animal (legs, underbelly, back,
sides). We have attached our 3D reconstructions which are in
the standard .obj format to our website.

E. Technical Block – Power Monitoring System
The power monitoring system is composed of a current

sensor, model ACS-723 [3], an analog to digital converter,
model MCP-3008 [20], two USB connectors, some resistors,
and some capacitors. It is attached to the central Raspberry Pi.
The main goal is to collect the power information so that the
users can receive this information through long-distance
transmission. Then, they would know when the rechargeable
battery should be replaced—the connections are shown in
Figure 3. Two USB connectors connect to the power output of
the power brick and the power supply of Raspberry Pi Zero. The
current is measured by the current sensor ACS 723; the output,
analog voltage, of the current sensor, is converted into digital
signals by the analog-to-digital converter. The ADC connects
to the Raspberry Pi through Serial Peripheral Interface (SPI), so
digital information can be received by the Raspberry Pi. The
voltage is obtained using the equation V = x*3.3/1023, where x

is the output of the ADC. The instantaneous current
measurement is obtained with the formula I = (V - 2.5)/0.4,
where V is the output of the current sensor. By summing the
instantaneous current, the current measurement over a specified
period can be computed, and multiplied by 5, which is the
constant output voltage of the GPIO pin of Raspberry Pi, to
obtain the power information. Power usage is calculated from
dividing the power information by the total amount of power of
a power brick. The users will know when they should replace
the power brick after they obtain power usage.

Fig. 3. Power Monitoring System.

F. Technical Block – Implementing System to Detect
Presence of Animals Using Multiple Sensors

Our goal is to trigger the system to take pictures when there
is an animal in the middle of the field of view of all cameras.
Ideally, the modules of the camera trap will be arranged in a
circle as shown in Figure 1 (consider a small system with four
modules for now.) The field of view of the camera on each
module is 62.2 degrees, [4] and the maximum distance between
cameras is 8 meters apart based on our project specification.
Therefore, the common field of view of all cameras will be a
circle-like area in the center of the camera trap with a maximum
approximate diameter of 4.83 meters., represented as the blue
area in Figure 1. To avoid false-positive triggering of using only
one sensor, we decided to use two sensors for the triggering
system. For example, shown in Figure 2, assuming there is only
one sensor, the appearance of animals outside of the common
field of view (blue circle) could trigger the system too.
However, the use of two sensors solves the problem with the
fields of view of two sensors overlapping inside of the blue
circle, as shown in Figure 2, with two sensors installed in two
separate camera modules at a 90-degree angle ideally. One
sensor is on the central module and the other is on a secondary
module. The system could only be triggered when both sensors
sense something. The sensors we use are Passive Infrared (PIR)
sensors, which measure infrared light radiating from an object
in the field of view. [5] By assuming the size of animals is small
or equal to 1.5 meters, we could calculate that the sensing area
has a diameter of 1.83 meters and the field of view of the sensor
is 25.8 degrees in this case. Therefore, with the system set up as
shown in Figure 2, the system could successfully trigger the
modules to take a picture only if there is an animal in the
common field of view of all cameras.

6
SDP20 – Team 15

Fig 4. (left) Common view of all cameras

 (right) Arrangement of two sensors

G. Technical Block – Long Distance Transmission
Long-range transmission is an add-on feature of our system.

We aim for transmitting a short message about the remaining
battery life and the number of pictures has been taken to the
user every day in a range of two miles so the user could know
when the battery should be replaced. For next semester, we will
use the XBee modules, which transmit data via radio frequency
[6], to accomplish this goal. These XBee modules have been
FCC certified. The transmitter of the XBee module will be
attached to the central module since we will have a battery
monitoring system on the mater module too. The receiver of the
XBee module could be connected to devices like a laptop or a
mobile phone to receive the message from the transmitter.

H. Technical Block - Mobile App
The mobile app was created so that a non-expert could

operate the system, and easily view photos. The app was
designed for Android phones, and designed using android
studio. The reason android was chosen was that it allows the
app to be easily shared with new phones, in contrast to the
iphone system which requires the app to be distributed through
the app store, which is an involved process.

The basic functions of the app are debugging, turning on the
system, and viewing the photos and statistics. The debugging
part is important because it is possible that one of the sensors or
cameras could not be working, or the network could be not
working too. If the researcher set up the system in a location
and thought he was properly turning on the system without
debugging then he could come back a day later, and the pictures
wouldn’t be there. So allowing for debugging makes sure the
researcher has a basic awareness of what’s going on.

Once the researcher is sure that the system is set up properly
he can enable the system to take photos, and can leave the
system to work on its own. Another part of the system is
monitoring and viewing the photos while the system is running.
The app allows for moving the photos from the master
raspberry pi to the phone, and also see how many photos total
have been taken. There is also a way to view statistics on how
much power is being consumed, and this information comes
from the PCB. All of this information allows the user to have
confidence that the system is working correctly in real time.

In order for the app to function there needs to be code
working on the phone (client side) and on the raspberry pi
(server side) that sets up a socket and transfers information back
and forth. On the client side the coding is in java and the UI is
in the standard Android studio format, and what happens when

a button is clicked is that a text string is sent over the connection
to the Raspberry Pi telling it what to do. On the Raspberry Pi
side the code that receives the messages from the phone
interacts with the code that controls whether to take a photo or
not, and also can transmit data back to the phone. For instance,
if the Raspberry Pi gets a request to send over the photos it will
do that over the same socket connection, and deposit the photos
in the SD card through FTP.

Fig. 4. Pages of Mobile App

III. THE PRODUCT

A. Product Overview
For our final product we built on what we did during our first

semester, and primarily added on features that made the system
easier to use and more reliable.

For our hardware we created an enclosure and also created a
PCB to measure power consumption. The purpose of the
enclosure is to make it so that the person using our system (a
biologist) can deploy our system remotely without being
affected by the weather. The enclosure has been designed so
that it can fit the battery, and the camera module, and so things
are organized for the researcher and there aren’t a tangle of
wires.

The purpose of the PCB which we added this semester is to
measure power in a way that can be sent to the user. One way
to measure power is to use a USB ammeter, and these are fairly
cheap. But the data produced by the ammeter is only shown on
an LCD display, and can’t be recorded by the user. Therefore
what our PCB does is it reads the information on the current
then feeds that information back into the pi through the GPIO
pins, and then that information can be stored and/or sent to the
user to analyze battery power consumption.

For software this semester, our team worked on creating an
app and integrating that with our existing software in order to
communicate and control what the Master raspberry pi was
doing. The app is designed to be easy to use and allows the user
to set up the system so that he or she can check and make sure
that the motion sensors are working, and the cameras are
working. Also, when the researcher enables the system the
researcher can get notifications, and also view the pictures on
the phone. This makes it much easier to use for the average
person who may not know about how to use a command line
tool.

7
SDP20 – Team 15

Lastly, one more subsystem we added this semester in order
to make our system into a better product was adding a long
distance transmission system that can send information to the
researcher up to about 2km. This means the researcher can get
information on battery life and also see how many photos were
taken over the previous day. This is important to the researcher
because humans can leave scent trails that animals may pick up,
so they may be wary of going near an area that the researcher
had previously visited.

Fig. 5. Product Sketch

B. Electronic Hardware Component
 A schematics of the power monitoring system is demonstrated
in Figure 5. The design is done using Altium and fabricated. A
circuit is built in a breadboard according to the schematics,
using a current sensor ACS 723, an analog-to-digital converter
MCP 3008, a Raspberry Pi Zero, and several capacitors and
resistors. A voltage source and a resistor are utilized to test the
efficiency of the system, and the values computed by the
Raspberry Pi is similar to the theoretical results, by dividing the
voltage by the resistor values. Then, the printed circuit board
and a hand-soldered protoboard are implemented to measure
the current delivered from the power brick to the Raspberry Pi
Zero. The physical implementation is shown in Figure 3. From
the power monitoring system, the Raspberry Pi Zero can
receive continuous reading about power consumption.

Fig 6. A sample schematics of the powering monitoring system

C. Product Functionality
 For our CDR we were able to implement everything shown in
our block diagram in Fig. 1. For CDR our demo consisted of 3
modules, a phone, a router, a PCB, and a long distance
transmission system. During our demo we showed that the
system was synchronized, as was the case during MDR, by
holding up phones with clocks on them to demonstrate that our
system was synchronized to within 100ms. We also had a demo
for our PCB which involved showing that the power readouts
could be seen on the phone. For our router we had it set up so

that anyone could connect, and we showed this using our
phones.
 One critical part of our demo was being able to run the system
via the mobile app which we did. Before our demo we were able
to take screenshot videos of what it was like to use the mobile
app. These videos show that the system can be enabled by a
user, and also when the user requests it the photos can be moved
over to the phone and viewed. We included these videos as links
during our CDR presentation.
 One part of our demo that only partially worked however was
the router system we had set up. Originally we had wanted to
create a router that ran off one of our Raspberry Pis, but since
this was unreliable we went back to using a store-bought router
for our demo since it was more reliable.

D. Product Performance
 All of our specifications were met during CDR and we
demonstrated this by repeating our demos from MDR and also
adding new demos to show that the app worked, the enclosure
worked, the long distance transmission worked, and the PCB
worked. We recorded videos of all of our demos and included
these as links in our CDR powerpoint.
 The first and most basic demo we had was proving timing
synchronization and we did this by showing a clock taken from
all three cameras, and this was included in our CDR powerpoint
as a set of three photos. For power system monitoring we far
exceeded our requirement since we switched to Raspberry Pi
zeros which mean that we were using about 150mA of power
which was far under our requirement.
 The other requirements we met this semester were related to
the hardware we incorporated this semester. For our power
monitoring system we had a PCB and this gave accurate
readouts to the phone that matched the current reading the USB
ammeter was giving us, so we have high confidence in its
accuracy. For the long distance transmission system we
demonstrated the range by sending messages from a known
location at umass (near physical sciences) to the art center and
calculating the distances, and we included this video in our
CDR presentation.
 The last requirement we had was to demonstrate the
functionality of the mobile app, we showed this during our in-
person demos, but also took recordings of the app being used
and included this as links in our presentation.
 Finally, we had to demonstrate that our project was portable,
compact, and could be used in remote locations. This was
accomplished by using 3D printed enclosures that were
waterproof and could store the cameras and the batteries. This
means that the camera modules would be easy to handle and
move around.

IV. CONCLUSION
 We built a system of Raspberry Pis where each Raspberry Pi
takes photos within 0.2 seconds. The MQTT is the network
protocol used to exchange messages between a central
Raspberry Pi and edge Raspberry Pis through IP. Then, we test
the power consumption of one Raspberry Pi. A USB amps and
power meter measures the power consumption for 15 hours

8
SDP20 – Team 15

without consistently taking the images, and the average is
127mAh. Based on the information, each camera will be able to
run for at least 24 hours with a portable battery of 26800 mAh.
There is a hardware user interface. It keeps track of how much
power is left in the battery of a camera module. We also test
infrared triggering systems. We first initialize only one infrared
sensor, attached to the central Raspberry Pi. Once the sensor
detects any motion, all three cameras will take images. Then,
we add one sensor to one edge Raspberry Pi. Only when two
infrared sensors both detect motion, then all the cameras take
photos together. Adding one sensor to the system ensures
animals are in the common views of all cameras when the
Raspberry Pis take a photo. Then, we transform 2D images of a
toy moose into a 3D model. The 3D model presents meaningful
information on the body of the moose and demonstrates that the
image quality is sufficient to create a great 3D model.
 In the following semester, we will both improve on what we
have done and add new features to our system. For improving
the system, we will test the power consumption of cameras
continuously taking photos and transmitting data. We want to
know what the battery life in the worst case will be. At the same
time, we must control the number of triggers when animals stay
in the view of the cameras to avoid unnecessary memory usage
and battery usage. The shutter speed of cameras is also a
concern because blurring might occur in the image depending
on the speed of the animal. Moreover, the new features will
include a mobile user interface, a battery monitoring system, a
long-distance transmission system, and outdoor
implementation. Every new feature gets us closer to the goal of
a robust and simple system for the users, but it also led the main
problem, which is the integration of individual components.
More tests will be done next semester to check if the system
altogether.

ACKNOWLEDGMENT
We would like to thank Professor Duarte for being our

advisor for this project. He has given a lot of insight and
guidance in this project. We would like to thank our evaluators
Professors Irwin and Vouvakis for their useful questions and
feedback. We would like to thank Professor Hollot, Baird
Soules, Chuck Malloch, and Francis Caron for their advice and
setting up and maintaining the SDP program. Last and most
importantly, we would like to thank Professor Irschick and
Professor Schmidt for the idea of the project and their
continuous support, and the help with their invaluable
knowledge in the subject domain of camera traps.

REFERENCES
[2. “Overcoming the Challenges of Studying Endangered

Animals,” The Scientist Magazine®. [Online]. Available:
https://www.the-scientist.com/careers/overcoming-the-
challenges-of-studying-endangered-animals-64368.
[Accessed: 19-Dec-2019].

[3. S. Bs, “4x4 Matrix Membrane Keypad (#27899),” p. 5.
[4. “ACS723LLCTR-05AB-T Allegro MicroSystems |

Sensors, Transducers | DigiKey” [Online]. Available:
https://www.digikey.com/product-detail/en/allegro-

microsystems/ACS723LLCTR-05AB-T/620-1641-1-
ND/4948877. [Accessed: 19-Feb-2020].

[5. “Field of view of V2 camera - Raspberry Pi Forums.”
[Online]. Available:
https://www.raspberrypi.org/forums/viewtopic.php?t=154
155. [Accessed: 19-Dec-2019].

[6. “Passive infrared sensor,” Wikipedia. 10-Dec-2019.
[7. “XBee 3 Pro Module - RP-SMA Antenna - WRL-15131 -

SparkFun Electronics.” [Online]. Available:
https://www.sparkfun.com/products/15131. [Accessed:
19-Dec-2019].

[8. IUCN 2019. The IUCN Red List of Threatened Species.
Version 2019-3. http://www.iucnredlist.org. Downloaded
on 10 December 2019.

[9. “2019 Camera Traps for Researchers,” Trail Cam Pro.
[Online]. Available:

 https://www.trailcampro.com/pages/camera-traps-for-researchers.
[10. D. Soni and A. Makwana, “A Survey On MQTT: A

Protocol of Internet of Things,” International Conference
On Telecommunication, Power Analysis And Computing
Techniques, Apr. 2017.

[11. H. Mohammadmoradi, O. Gnawali, and A. Szalay,
“Accurately initializing real time clocks to provide
synchronized time in sensor networks,” 2017
International Conference on Computing, Networking and
Communications (ICNC), 2017.

[12. “TRAIL CAMERA SELECTION GUIDE,” Trail Cam
Pro. [Online]. Available:
https://www.trailcampro.com/pages/trail-camera-
selection-guide.

[13. “Adding a real time clock,” Adafruit. [Online]. Available:
https://learn.adafruit.com/adding-a-real-time-clock-to-
raspberry-pi.

[14. “Prime 26800mAh 5.5A 3-Port Power Bank,” Ravpower.
[Online]. Available:
https://www.ravpower.com/products/rp-pb41-26800mah-
power-bank.

[15. “YOTINO USB Volatage/Amps Power Meter Computer
Cables Tester Multimeter Test Speed of Charger Power
Bank,” NorthStar Data. [Online]. Available:
http://northstar-data.com/Multimeter-Test-Speed-of-
Charger-Power-Bank-YOTINO-USB-476256/.

[16. “Natural Feature Extraction,” Alice Vision. [Online].
Available: https://alicevision.org/#photogrammetry.

[17. Digital Life. [Online]. Available: http://digitallife3d.org/.
[18. “PIR Motion Sensor,” Ada Fruit. [Online]. Available:

https://cdn-learn.adafruit.com/downloads/pdf/pir-passive-
infrared-proximity-motion-sensor.pdf.

[19. “Real-Time Clock (RTC) and calendar,” NXP
Semiconductors. [Online]. Available:
https://www.nxp.com/docs/en/data-sheet/PCF8523.pdf.

[20. J. Crothers, “Victoria's threatened tiger quolls prove
camera-shy in conservation bid,” ABC News. [Online].
Available: https://www.abc.net.au/news/2017-02-
11/conservationists-hunt-to-catch-the-elusive-tiger-quoll-
on-camera/8258990

[21. “MCP3008-I/P Microchip Technology | Integrated
Circuits (ICs) | DigiKey” [Online]. Available:

9
SDP20 – Team 15

https://www.digikey.com/product-detail/en/microchip-
technology/MCP3008-I-P/MCP3008-I-P-ND/319422.
[Accessed: 19-Feb-2020].

APPENDIX

A. Design Alternatives
Large parts of this project were determined already before we

started working because Prof. Irschick had a general sense of
what he wanted and what the general design of our system
should look like. However, our team had independence within
this overall framework to make certain design choices and make
judgements on what the costs vs. benefits of certain decisions
were.

One of the biggest design choices we had to make from the
start was deciding whether to base our camera system around
using store-bought camera traps or building our own system
from scratch. The first approach was suggested by Shira
Epstein, and Prof. Duarte brought this up as a possibility
initially. There are a couple of issues with this approach. Firstly,
having store-bought cameras be networked together would
mean we would have to crack open these cameras and start
soldering things to them which would allow them to be
network. The issue with this is that although we would be able
to do this for our SDP project, the goal is for this to be deployed
and used by biologists who would not have a lot of technical
training. So, it made much more sense to go with Raspberry Pis
which anyone can assemble, and where a lot of the software is
easy to install.

Also, another issue with the store-bought camera traps is that
they use proprietary software and so interfacing with them
would have been a challenge. Furthermore, if we want our
project to be open source, if we were using these proprietary
cameras, that could mean we could be at the whims of these
camera-trap companies. If, for instance, the company we were
buying from discontinued their camera in a year or two that
could mean our project would be in a bad situation because the
biology researchers could not get the hardware platform
anymore. For all these reasons, it made the most sense to go
with the Raspberry Pis as the main platform for our system and
not store-bought camera traps.
B. Technical Standards

One of the main standards we wanted to follow for our
project was having it be open source so that it could be easily
replicated by researchers elsewhere. In order to do this we
published all of our code publicly on Github, and so anyone can
download that.

For our hardware we made sure to use publicly available
electronic devices like the Raspberry Pi that are widely used
and can be bought easily on Amazon or other online retailers.
This means that if future engineers want to improve on our
system they can since it is a widely used system, and the parts
are easily accessible and cheap to buy.

For software, the code was in Python on the Raspberry Pi
side which is standard, and for the Android app we used
Android studio code which is also standard and widely used.

For our long distance transmission system we used XBEE
which is a signal centered around 2.4GHz which is available for
amateur systems like our own.

C. Testing Methods
We have done two kinds of tests on our system: unit testing

and integration testing. In unit testing, we have tested the
central module and edge modules separately for proper
functionality such as capturing photographs, response to the
sensors, connecting to the MQTT Broker, etc. In integration
testing, we have combined the central and edge modules to test
the functionality of our whole system to take photographs when
an object is sensed in the cameras’ field of view by exchanging
MQTT signals between the edge and central modules and
sending these photos to the central over Wi-Fi through FTP and
creating a photo set which can be used for the 3D reconstruction
software. This integration testing also included tests of many
different parts of our system such as the hardware UI, photo
settings testing, multiple sensors testing, proper
synchronization, power consumption, and 3D reconstruction.

The first and basic test we did was to test the synchronization
of the photo session event to ensure the timestamp between all
photos captured in a single session was not beyond 0.1 seconds.
To test this, we had all cameras take a synchronous photo of a
clock with the time up to millisecond measurement. To test the
latency, we read the milliseconds of the clock on each photo of
each camera and made sure no two cameras differed greater
than 0.1 seconds in time.

Fig 7. Synchronized images of a mile-second clock

Our system needs to run for at least 72 hours without a power

outlet source. The battery we are using for each Raspberry Pi is
26800 mAh, so anything running 1100mA will last at least 24
hours. To achieve our goal of 72 hours, we need each Pi to run
under 370mA. Our Pi running the code in low power mode
achieved a power of 230 mA, and a 15 hour test of our idle
system resulted in 1915 mA (127 mA).

10
SDP20 – Team 15

Fig 8. Power measurement

Our system can be configured to use more than one sensor

for infrared triggering. We tested our system to see if it can use
two sensors to trigger the photo session. If the majority of the
sensors in the network sense an object in the vicinity of the
camera’s field of view, they will send MQTT signals among
each other and trigger the other cameras to take a photo at the
same instant. The figure below shows the model of our system
needed for proper photos of animals to be taken,

Fig 9. (left) Common view of all cameras

 (right) Arrangement of two sensors

The photo below shows the results of multiple cameras

taking synced photos at the same instant by motion sensor
triggering

Fig 10. Synchronized images of a walking person

One other kind of test we performed was on the mobile

application. This was done by running the app many times to
check that all the functionality was working properly, and that
the debugging, enable function, and the power check were all

working and photos were being sent from the main module as
shown in Figure 11.

Fig. 11. Photos being received by phone through mobile app

We tested power consumption by sending the power reading
from the Pi to the mobile app. Figure 12 shows the output on
the mobile app.

 Fig. 12. Output from power monitoring system from mobile
app

We also tested long distance transmission by sending a message
from long distances (500-800 meters) from a Raspberry Pi
through XBee to an Arduino Xbee Receiver. The test output is
shown in figure 13 below.

Fig. 13. Test output of Xbee Receiver
We also tested the 3D reconstruction using the synced photos

to see whether we can generate a proper 3D model by testing
different camera settings. One test consisted of the cameras
having default settings with max resolution. The other test
consisted of photos captured by a camera with a higher shutter

11
SDP20 – Team 15

speed, which produced more accurate results because of less
motion blurring. We also considered how many photos are
needed in the photo set to generate an accurate 3D model. The
photo below shows testing 3D reconstruction on a toy moose.

Fig 14. 3D reconstruction result of the synchronized images

taken by the system using Meshroom

D. Team Organization
We have organized our team into different sections, each

plays an important part within our project. Anamitra is in
charge of networking and synchronization. Max is in charge of
photo settings, 3D reconstruction, power distribution, and
software UI. Xiaoyang is in charge of the hardware UI and
Minting is in charge of multiple sensors connectivity and long-
range transmission. Max is the team manager and Xiaoyang is
our PCB lead. We have solid teamwork and organizational
skills. We meet every week to discuss how far we have
progressed in the project and what we need to accomplish.

E. Beyond the Classroom
Anamitra: I have learned how a microcontroller can be used

in a real-life situation. I gained expertise in the area of IoT
networks which can communicate with each other to make a
decision. I have also learned the engineering design aspect of
an autonomous system which can run by itself with very little
maintenance. I learned the different tools for manipulating and
monitoring IoT networks such as MQTT. I also learned system
administration of a distributed system.
 Max: During SDP I have gotten experience writing
software in Python and using Linux, which is useful to me since
I will be working in software after graduation. There are a lot
of good resources online (e.g. Message forums, Raspberry Pi
Documentation) for learning about the software we are
using. One thing I have also had to learn along the way with
this project is about photography (Aperture, ISO, Shutter
Speed, etc.) and how to get photos that will work well for our
3D reconstruction. Lastly, as team manager I have gained good
teamwork and project management experience.

Minting: For this project, I have learned programming
languages like Python, MQTT, socket programming for
coding the raspberry pi an HTML for creating our website. I
also have a chance to work with the hardware like Raspberry
Pis and PIR sensors. I also learned to think like an engineer,
considering multiple methods and possible outcomes. All
these skills will be very helpful in my career because they are
very basic and useful.
 Xiaoyang: As the hardware lead for this project, I
learned about how to use Altium to design circuits. I worked
with various hardware components and looked through the data

sheets to find out how they should be implemented. I also have
more experience in Python. I understand how to write codes
according to the physical implementation of the system. The
connection between hardware and software is important to
produce a desirable outcome.

F. Budget

Part Total Development Cost

(Quantity)
Cost for Each
Additional
Module

Raspberry Pi Zero W $120 (6) 20

RasPi 8 MP Camera $66 (6) $11

PCB $40 (1) $0

XBEE Module $40 (1) $0

Portable Power Bank $0 (Donated) $45

Router $70 (2) $0

SD Card $42 $6

PIR Sensors $10 (10) $1

3D Printed Enclosure $15 (3) $5

Total $403 $88

Table 5: Project budget

