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Abstract—The current research practices used by biologists who 
are studying endangered animals have many limitations. For 
instance, tranquilization is potentially dangerous to an animal 
and requires a lot of manpower and training. A better system 
would allow researchers to collect large amounts of data on 
animals easily without disturbing them. One system that would 
accomplish this is a network of cameras that would be designed 
to take photographs to make 3D models. Ideally, this system 
would be low-power, easy to deploy and operate in remote areas, 
and reliable at generating 3D models.  

I. INTRODUCTION 

[1. THE goal of this project is to create an 
integrated camera trap system that can be deployed by 
biologists in the wild to create 3D models of endangered 
megafauna.  

A. Significance 
Many people are concerned about the extinction of certain 

species of animals. This includes governments, scientists, and 
the public. People do care about the health of the animals, but 
the way people gather information from the animals can 
potentially be harmful. In the past, people used to tranquilize 
endangered animals, set up traps, or utilize other remoting 
sensing technologies. If scientists and researchers collect 
information through these methods, the process might be 
potentially disruptive, harmful, and dangerous for animals and 
for them. Additionally, certain species of endangered animals, 
such as the tiger quoll can be elusive [19]. Therefore, a system 
that gathers meaningful information from animals where 
minimum interference is required.  

B. Context and Existing Products 
Currently, there is a wide variety of camera traps which can 

be bought usually in the range of $40 to $100 [11]. The main 
market for these traps is hunters and biology researchers who 
want single still photographs of the animals they are interested 
in. These traps can also be set to take video. 
Last year, Professor Duncan Irschick, who is a biology 
professor at UMass Amherst and the manager of the 3D Digital 
Life project, [16] which aims to create high-quality 3D models 
of animals, had a graduate student (Nino Figliola) from the MIE 
department investigate whether these traps can be used in a way 
that would take photos for generating 3D models.  
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The issue that came up was that if the cameras were all set up 
to take photos, they would get triggered at different times, and 
there was really no way around this lack of coordination. A 
different approach was to set the cameras to take video and then 
try and stitch all the videos together to find the same frame, and 
then use that to make the models. The issue with that, however, 
was that with video the individual frames are of much lower 
quality (i.e. the fewer number of pixels), and thus not suitable 
for 3D reconstruction.  

It should also be mentioned that there is networking for 
camera traps, just not the kind we want. Currently there are 
camera traps that can connect with 4G phones (intended for 
hunters) that can transmit video over the cell network [1]. The 
issue is that this cannot be configured with more than 4 cameras 
at a time, so this would not work for our purposes (since we will 
need many more cameras), and they are not meant to be used in 
the same area.  

C. Societal Impacts 
This project is intended to be used by biologists studying 

endangered animals. Currently there are about 41,000 
endangered species and 16,000 critically endangered 
species [2]. To give some examples using famous species, there 
are only about 2,500 giant pandas (Ailuropoda Melanoleuca) 
left in the wild and only about 4,000 tigers (panthera tigris). The 
main causes of the deaths of these animals are hunting and the 
spread of human development into previously wild areas. Also, 
as bad as it is by itself to see one species go extinct, there are 
also knock-on effects from extinction since it could destabilize 
the entire ecosystem. 

The reason why this project is important is that it will not 
only allow researchers to learn about the number of animals in 
a particular area, but it will help gather data about the health of 
those animals. In particular, one very important piece of data 
researchers want to learn is the weight of the animals because 
that lets the researcher know how much food the animal is 
getting. By using pre-existing algorithms, a researcher can 
estimate the weight of an animal from a 3D model, which is 
what our system helps create. Of course, it is possible to get this 
data through tranquilization, but this can be difficult and cause 
political issues. In many of the countries where the research is 
taking place having foreign researchers go in and interfere with 
these animals (which can be a source of national pride) may be 
offensive. So, our design choice was made with the goal in mind 
of being totally non-invasive to the animal. 

 

D. Requirements Analysis and Specifications 
Our system has many specifications and requirements in 

order to ensure proper synchronization of the images 
generated by the system, a proper setup of the system so it can 
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accurately take automatic photos for long periods of time, and 
proper design of the system so it is scalable, portable, and 
compact enough to be set up easily and readily deployable in 
the field.  

In order to generate an accurate 3D model, the 2D images 
must be synchronized within 0.1 seconds of each other, or else 
the model will be distorted and inaccurate. Our system will be 
ensured to take photos within 0.1 seconds of each other 95% 
of the time. This is our most important requirement for our 
system. Having high-quality images helps to improve 3D 
models so the system must generate 8K resolution images, 
which is the highest resolution possible for images. Our 
system uses a Raspberry Pi Camera V2 module which can 
generate 8K quality photos, so we meet this specification.  
    For the design of the system, we need to specify how the 
cameras will be placed and how long the system will run for. 
The cameras should be able to be connected wirelessly 
through Wi-Fi by up to 8 meters of each other. With this 
networking range, the system should be able to detect the 
presence of animals using their PIR sensors from 1-5 meters 
up to 95% of the time. The system should be able to run for at 
least 72 hours; this requires less than 370mA of power 
consumption for each device. The system will also have long-
distance transmission of information, so a user can get 
information about the system from a long-range. We will send 
information about battery life and the number of photos taken 
within a range of 1-3 km.  
    It is very important for this system to be easily deployable 
and operational in the field. We decided that our system 
should be easy to set up by a non-expert in less than 45 
minutes. It should also be portable since we need to set up the 
system in remote areas without an Internet connection or 
power outlets. It should also be scalable if someone wants to 
add more devices into the network without affecting the 
performance of the system. All requirements and 
specifications of the system are given in Table 1.  
 

Requirements Specifications 

Synchronization Photographs from the cameras are 
synchronized within 0.1 seconds, 
95% of the time 

Photo quality The best possible resolution, 8K, 
3280*2464 resolution 

Detection Range Detects the presence of animals at 1-
5 meters, 95% of the time 

Networking Range Cameras need to be connected 
wirelessly up to 8 meters 

Battery Life Lasts at least 72 hours 

Power 
Consumption 

Less than 370 mA 

Long distance 
transmission range 

Statistics on battery life and number 
of photos taken in range of 1-3 
kilometers 

Easy to deploy and 
operate 

Can be set up in less than 45 
minutes by a non-expert 

Portable Needs to be portable to set up in 
remote environments with no 
Internet connection or power outlets 

Scalable Can add multiple cameras easily to 
the network and will not affect 
performance of the system, up to 25 
cameras 

 
Table 1: Requirements and Specifications 

II. DESIGN 

A. Overview 
For our final system, we used three cameras, each attached to 

its own Raspberry Pi. Our system follows a central/edge 
paradigm where one of the camera modules is a central listening 
to the sensor data for when to take a picture and the other 
modules respond to the main module’s message of when to take 
the picture. These modules are connected through Wi-Fi as part 
of an ad-hoc network and they communicate messages with 
each other through a protocol called MQTT (Message 
Queueing Telemetry Transport). The main module contains a 
sensor, an RTC (Real-time clock), and a PCB to keep track of 
how much battery is left in the power brick attached to the 
module. Our system also has a software UI that can be used to 
view photos taken by the system from a mobile phone through 
an app as part of short data transmission.  

In our final product we had to find balance and make 
compromises in order to meet all of our requirements. For 
instance, in our power specification we could have gotten much 
more battery life if we hadn’t gone with a Raspberry Pi, but we 
needed to do that in order to get a camera that had good 
resolution. Similarly, making our system easy to use meant that 
we probably had to sacrifice a decent amount of performance. 
During our initial prototyping phase in the fall we controlled the 
system through SSH (command line), which made improving 
our code very fast. But, for using our final product we 
developed a mobile app, which can interact with the software 
on the Raspberry Pi which is a lot more complicated to 
implement and gives the user less control. A further limitation 
we had to consider was how big a battery we should get. Of 
course a bigger battery gives our system a longer life, but this 
comes at the expense of money and also makes the system 
larger and more difficult to move around.  

To further elaborate on our system, we are required to take 
multiple 2D images of an animal that is within the range of our 
system. We need to take multiple photos of the same animal 
from different angles to construct the 3D image for the purpose 
of analysis by the researchers. For taking multiple photos over 
a long time, we need multiple cameras that consume very little 
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power. These cameras must also be connected wirelessly for 
proper photo synchronization. We need synchronization to a 
high degree of accuracy because the animals are always 
moving, and we can only construct a high-quality 3D model if 
the photos are taken at the same instant. For wireless connection 
within our system, we considered using either Wi-Fi or 
Bluetooth. Wi-Fi has a bigger range (up to 300 feet) than 
Bluetooth and it can connect many devices together through a 
DHCP server, whereas Bluetooth can only connect 7 or 8 
devices with the present technology, which does not meet our 
scalable requirement.  However, Wi-Fi does use more power 
than Bluetooth, but not by much, and we can lower power 
consumption within our system through using a less intensive 
Operating System, disabling Input/output ports, etc. which is 
discussed in other sections.  

To connect the cameras wirelessly through Wi-Fi, we attach 
them to a separate module or computer. We decided to attach 
the camera module to a Raspberry Pi. The other alternative we 
considered is to network the cameras themselves (that is trying 
to build around some pre-existing camera trap). Adding 
networking to a camera trap is much more difficult and 
complex. It also does not serve a purpose in the long term. 
Firstly, every camera has different hardware and software, so to 
network them, we must commit to a technology that can 
ultimately defeat the purpose of having a scalable, open, and 
configurable system. Not to mention, adding all the features to 
the cameras themselves makes the system as complex as a 
computer. Presumably, after adding all the features, it will 
consume as much power as a normal Operating System. Also, 
if, at a later time, you want to make the cameras more intelligent 
based on synchronization, it will be limited by the capabilities 
of the cameras which are not within our control. Also, adding a 
Pi to the camera module gives us the power of making a more 
robust, configurable, scalable, and open system. Every Pi 
comes with an operating system that runs a TCP/IP stack. So, 
we can implement any kind of networking protocol or software 
package/product on top of this if our requirements change. The 
module we chose to use is the Raspberry Pi Zero W. This 
Raspberry Pi model uses very little power and can last a long 
time. The Pi also has a built-in Wi-Fi chip that can connect to 
Wi-Fi. The DHCP server for Wi-Fi will be set up on the central 
Raspberry Pi as part of an ad-hoc network. 

These photographs are synchronized to within 0.1 seconds, 
with an accuracy of 95%. These photos will be used to generate 
an accurate 3D reconstruction of the animal captured using a 
3D reconstruction software such as Meshroom or Blender. The 
photos must be in good quality to generate an accurate 3D 
model. We have used a Raspberry Pi Camera Module V2, 
which can take photos with 8K resolution, 3280 * 2464 
resolution. The photo session (when multiple cameras capture 
an image of an animal at the same time) will be triggered by a 
central camera module(s) using a PIR (Passive Infrared) sensor 
(which detects motion by an animal within the camera’s field 
of view). The central camera broadcasts a message to all other 
cameras through a protocol called MQTT (Message Queueing 
Telemetry Transport). We can ensure that timing is correct 
among all cameras if we add an RTC (real-time clock) into the 
system. The Pi does not have a real-time clock. It gets from the 
Internet from an NTP (Network Time Protocol) server. Since 

our system is designed to work without the Internet (is not 
needed), we will add an RTC on the main Raspberry Pi, which 
will serve as the central clock for our captive camera network. 

Another part of the project is telemetry. For this project, we 
plan to send updates about the status of the system within a 
couple of kilometers (1 – 3 km). This is useful because the 
researcher may not want to approach the area where the cameras 
are set up since that could leave a scent trail that could scare 
away animals. To accomplish this, we will use XBee Radio 
Frequency modules to send information about the network such 
as battery life and statistics on photos taken Our block diagram 
of the system is shown in Figure I. 

 
 
Fig 1. Block Diagram of the Integrated Camera Trap System 

  
B.  Technical Block – Networking and Synchronization 

For our system, we are using Wi-Fi to connect each of the 
different modules so they can send messages between each 
other. The network design is based on a central and edge 
paradigm, in which one module listens to commands and sends 
the commands to the other edge nodes within the network. For 
this reason, we have chosen a star topology for our network. 
The central module is the main node and the edge cameras are 
the peripheral nodes. The central module runs a DHCP server 
for the entire network of camera modules. How the cameras will 
send information between each other is with Message Queueing 
Telemetry Transport (MQTT) Protocol. MQTT is a lightweight 
messaging protocol in which devices send messages to each 
other with a publish and subscribe model. One module (the 
central module) will act as the publisher, who will broadcast a 
message to the other edge modules, who will serve as 
subscribers. The subscribers connect to a topic or channel 
where they will receive information. The distribution of 
messages through these different channels is maintained by a 
MQTT Broker. For the MQTT Broker, we are using a free, 
open-source software called Mosquitto which provides the 
service for our network. Figure 2 shows the model of the MQTT 
Protocol The broker is also going to run on the central 
module.  A passive infrared (PIR) sensor is attached to the 
central module. [17] When the PIR sensor detects an animal 
within the camera’s field of view, the central module will send 
a message using MQTT to the other camera modules connected 
to the MQTT Broker and the Wi-Fi network. The central 
module will start the process of taking a photo. When these edge 
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modules receive the message, they will start the process of 
taking a photo. The process is asynchronous, the central module 
does not wait for the edges to respond. For that reason, the 
whole system is responsive to new events, like another animal 
triggering the cameras. An asynchronous process does not mean 
that the photos themselves will not be synchronized. This whole 
process takes less than 0.1 seconds without the overhead of 
being monitored by the central module. This allows taking 
synchronized photos without interruption within 0.1 seconds 
latency. In the photo session, all cameras have a photo of the 
animal at that moment. The idea is to get all the images of the 
edge cameras onto the central module. How we achieve this is 
through FTP (File transfer protocol). Each camera module will 
log into the main camera module and place its photo in a 
separate directory for the photo set. The photos have a camera 
number, set number, and time by which they can be tracked, 
identified,  and processed.    

 

 
Fig. 2. Structure of a Publish-Subscribe model using MQTT 
 
The central module will have a static IP address and a hostname 
which the edge modules can easily connect to. We will set up a 
local name server for naming the central module, the MQTT 
Broker. This will ensure that even if the IP address of the broker 
and the central module changes, it will not affect the operation 
of the system. The system will be flexible to host the different 
servers on different machines without changing the programs. 
However, the edge modules can run on dynamic IP addresses 
managed by the DHCP server. If, however, the client feels the 
necessity to have a set naming convention for the edges, it can 
be done with minimum configuration changes.  

To ensure synchronization, all modules need to have the 
same set time. However, the Raspberry Pi does not have an in-
built clock [12]. The clock is set using the Internet. The clock 
is synced from an NTP (Network Time Protocol) Server. The 
problem with this is that we cannot ensure Internet access in 
remote environments where our devices will be placed. As a 
result, every device in our network will have an arbitrary 
software clock time once they are rebooted. In addition, since 
the modules themselves are not synced together, and software 
clocks are unreliable and prone to delay, each module will have 
different times, which is a huge deterrent to measure our goal. 
Also, it will be impossible to find out the time and 
synchronization of the photos, which will be used to make the 
3D model. For this reason, we are adding a real-time clock (PCF 

8523) [18] to the central module, which will keep track of the 
time. The edge modules can receive the real-time from the 
central module through SSH (Secure Shell). The edge modules 
will routinely query the central module for the real-time with a 
cron job (automated running script) and will update their 
software clocks to the main module’s time.  

C. Technical Block - Power Consumption and 
Monitoring 

An important specification we need to meet is having good 
power consumption because that enables us to either get longer 
total battery life or buy cheaper (low capacity) batteries. The 
specification was 72 hours. We are using 26800mAh batteries, 
which give us enough power for the system to meet this 
requirement. [13]. For MDR, we agreed on meeting a 24-hour 
battery life specification with our evaluators and we exceeded 
this significantly.  

To give a rough estimate in order to meet our 72-hour spec 
we will need to consume roughly 370mA on average. This is 
somewhat less than what a full Raspberry Pi (3B+) does while 
running code, so we had to figure out ways of reducing current 
draw. The primary thing that can be done is manually disabling 
certain buses on the Raspberry Pi chip and this reduced power 
considerably. Turning off the bus that goes to the USB ports can 
kill about 130mA of power, likewise, killing HDMI reduces by 
about 20mA. All these methods of reducing power should not 
affect performance for our system.  

So, that takes us to about maybe 220mA, and if we want to 
get more we have a couple more easy things we can do, but 
there are also certain power-saving techniques we could do on 
top of that to get really-low power, but some of those would 
come with downsides. For the tricky things, we could do things 
like underclock the CPU and try and change the way our code 
is structured. Also, we could do things like try to kill daemons 
running in the background, turn off LEDs or change to a more 
lightweight operating system. These latter things do not make 
too big of a dent, but they can add up, so that overall we might 
be able to get something approximating 150mA if things go 
well. This would mean a 172-hour battery life, which would be 
148% more than what we originally had as our specifications. 

One other feature of the Raspberry Pi that should be 
mentioned is the lack of any way to measure current from the 
Pi itself (it can display voltages on certain buses but there is no 
way of displaying current). In order to get these measurements, 
we used a USB ammeter [14]. Part of our hardware component 
is an analog ammeter that will feed back into the central 
Raspberry Pi via the GPIO pins. This will allow the raspberry 
pi to know how much power has been consumed and can send 
this information to the software user interface and through long-
distance transmission. 

D. Technical Block – 3D Reconstruction 
Part of the software running on the Raspberry Pi will have to 

calibrate settings for the photography so that the photos that get 
taken of the animal are suitable for 3D reconstruction. There is 
a ‘sport’ mode which is better for photographing moving 
objects than the default settings. But even in that case the shutter 
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speed can be too slow because the algorithm is trying to still get 
a good amount of lighting. This will make the 3D reconstruction 
difficult because the photographs need to be nearly 
simultaneous for the reconstruction to work since the software 
uses common reference points. So, if the object is in different 
places in different photos, it will confuse the software.  

Good shutter speed for our purposes is approximately 8ms, 
but this can cause modest dimming/darkening. Since Raspberry 
Pis are not able to open the aperture, we would have to 
compensate for this by increasing ISO/Brightness which 
reduces how nice the photos will look but won’t necessarily 
make them harder to use for 3D model generation. It may also 
help to artificially boost contrast since that would make 
common reference points/pixels more pronounced. This is 
because the way the Meshroom (3D Reconstruction Software 
Works) is that the algorithms try and look for common 
reference points and shapes in all of the input photos and then 
use that to estimate the placement of the cameras[Citation 15]. 
Also, since each camera comes with a different focal length and 
lens width, the program can estimate the volumes of different 
objects that are in the scene.  

Currently we can configure our cameras so that they can 
communicate, and all choose the same photography setting, and 
that worked in our MDR for getting good photos, but we may 
want to improve on this.  

To demonstrate that our photos were of the appropriate 
quality we made a 3D model of a stuffed moose we had by 
taking photos of it using our raspberry pi camera. We did two 
versions of this. First, we took 26 photos using ‘auto’ mode, 
then we took 32 photos using our custom anti-blur settings (8ms 
shutter speed, 60/100 brightness, 60/100 contrast) and that also 
was turned into a 3D model. Before, we started Irschick said 
that we would probably need about 25 – 30 cameras to get a 
good model of an animal since there are a lot of different angles 
and crevices to cover.  

In both cases, the model was successfully generated, and we 
got good detail on all parts of the animal (legs, underbelly, back, 
sides). We have attached our 3D reconstructions which are in 
the standard .obj format to our website.  

E. Technical Block – Power Monitoring System 
The power monitoring system is composed of a current 

sensor, model ACS-723 [3], an analog to digital converter, 
model MCP-3008 [20], two USB connectors, some resistors, 
and some capacitors. It is attached to the central Raspberry Pi. 
The main goal is to collect the power information so that the 
users can receive this information through long-distance 
transmission. Then, they would know when the rechargeable 
battery should be replaced—the connections are shown in 
Figure 3. Two USB connectors connect to the power output of 
the power brick and the power supply of Raspberry Pi Zero. The 
current is measured by the current sensor ACS 723; the output, 
analog voltage, of the current sensor, is converted into digital 
signals by the analog-to-digital converter. The ADC connects 
to the Raspberry Pi through Serial Peripheral Interface (SPI), so 
digital information can be received by the Raspberry Pi. The 
voltage is obtained using the equation V = x*3.3/1023, where x 

is the output of the ADC. The instantaneous current 
measurement is obtained with the formula I = (V - 2.5)/0.4, 
where V is the output of the current sensor. By summing the 
instantaneous current, the current measurement over a specified 
period can be computed, and multiplied by 5, which is the 
constant output voltage of the GPIO pin of Raspberry Pi, to 
obtain the power information. Power usage is calculated from 
dividing the power information by the total amount of power of 
a power brick. The users will know when they should replace 
the power brick after they obtain power usage. 

 

 
Fig. 3. Power Monitoring System. 

 
F. Technical Block – Implementing System to Detect 
Presence of Animals Using Multiple Sensors 

Our goal is to trigger the system to take pictures when there 
is an animal in the middle of the field of view of all cameras. 
Ideally, the modules of the camera trap will be arranged in a 
circle as shown in Figure 1 (consider a small system with four 
modules for now.) The field of view of the camera on each 
module is 62.2 degrees, [4] and the maximum distance between 
cameras is 8 meters apart based on our project specification. 
Therefore, the common field of view of all cameras will be a 
circle-like area in the center of the camera trap with a maximum 
approximate diameter of 4.83 meters., represented as the blue 
area in Figure 1. To avoid false-positive triggering of using only 
one sensor, we decided to use two sensors for the triggering 
system. For example, shown in Figure 2, assuming there is only 
one sensor, the appearance of animals outside of the common 
field of view (blue circle) could trigger the system too. 
However, the use of two sensors solves the problem with the 
fields of view of two sensors overlapping inside of the blue 
circle, as shown in Figure 2, with two sensors installed in two 
separate camera modules at a 90-degree angle ideally. One 
sensor is on the central module and the other is on a secondary 
module. The system could only be triggered when both sensors 
sense something. The sensors we use are Passive Infrared (PIR) 
sensors, which measure infrared light radiating from an object 
in the field of view. [5] By assuming the size of animals is small 
or equal to 1.5 meters, we could calculate that the sensing area 
has a diameter of 1.83 meters and the field of view of the sensor 
is 25.8 degrees in this case. Therefore, with the system set up as 
shown in Figure 2, the system could successfully trigger the 
modules to take a picture only if there is an animal in the 
common field of view of all cameras. 
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Fig 4. (left) Common view of all cameras  

  (right) Arrangement of two sensors 

G. Technical Block – Long Distance Transmission 
Long-range transmission is an add-on feature of our system. 

We aim for transmitting a short message about the remaining 
battery life and the number of pictures has been taken to the 
user every day in a range of two miles so the user could know 
when the battery should be replaced. For next semester, we will 
use the XBee modules, which transmit data via radio frequency 
[6], to accomplish this goal. These XBee modules have been 
FCC certified. The transmitter of the XBee module will be 
attached to the central module since we will have a battery 
monitoring system on the mater module too. The receiver of the 
XBee module could be connected to devices like a laptop or a 
mobile phone to receive the message from the transmitter.  

H. Technical Block - Mobile App 
The mobile app was created so that a non-expert could 

operate the system, and easily view photos. The app was 
designed for Android phones, and designed using android 
studio. The reason android was chosen was that it allows the 
app to be easily shared with new phones, in contrast to the 
iphone system which requires the app to be distributed through 
the app store, which is an involved process.  

The basic functions of the app are debugging, turning on the 
system, and viewing the photos and statistics. The debugging 
part is important because it is possible that one of the sensors or 
cameras could not be working, or the network could be not 
working too. If the researcher set up the system in a location 
and thought he was properly turning on the system without 
debugging then he could come back a day later, and the pictures 
wouldn’t be there. So allowing for debugging makes sure the 
researcher has a basic awareness of what’s going on.  

Once the researcher is sure that the system is set up properly 
he can enable the system to take photos, and can leave the 
system to work on its own.  Another part of the system is 
monitoring and viewing the photos while the system is running. 
The app allows for moving the photos from the master 
raspberry pi to the phone, and also see how many photos total 
have been taken. There is also a way to view statistics on how 
much power is being consumed, and this information comes 
from the PCB. All of this information allows the user to have 
confidence that the system is working correctly in real time.  

In order for the app to function there needs to be code 
working on the phone (client side) and on the raspberry pi 
(server side) that sets up a socket and transfers information back 
and forth. On the client side the coding is in java and the UI is 
in the standard Android studio format, and what happens when 

a button is clicked is that a text string is sent over the connection 
to the Raspberry Pi telling it what to do. On the Raspberry Pi 
side the code that receives the messages from the phone 
interacts with the code that controls whether to take a photo or 
not, and also can transmit data back to the phone. For instance, 
if the Raspberry Pi gets a request to send over the photos it will 
do that over the same socket connection, and deposit the photos 
in the SD card through FTP.  

Fig. 4. Pages of Mobile App 

III. THE PRODUCT 

A. Product Overview   
For our final product we built on what we did during our first 

semester, and primarily added on features that made the system 
easier to use and more reliable.  

For our hardware we created an enclosure and also created a 
PCB to measure power consumption. The purpose of the 
enclosure is to make it so that the person using our system (a 
biologist) can deploy our system remotely without being 
affected by the weather. The enclosure has been designed so 
that it can fit the battery, and the camera module, and so things 
are organized for the researcher and there aren’t a tangle of 
wires.  

The purpose of the PCB which we added this semester is to 
measure power in a way that can be sent to the user. One way 
to measure power is to use a USB ammeter, and these are fairly 
cheap. But the data produced by the ammeter is only shown on 
an LCD display, and can’t be recorded by the user. Therefore 
what our PCB does is it reads the information on the current 
then feeds that information back into the pi through the GPIO 
pins, and then that information can be stored and/or sent to the 
user to analyze battery power consumption.  

For software this semester, our team worked on creating an 
app and integrating that with our existing software in order to 
communicate and control what the Master raspberry pi was 
doing. The app is designed to be easy to use and allows the user 
to set up the system so that he or she can check and make sure 
that the motion sensors are working, and the cameras are 
working. Also, when the researcher enables the system the 
researcher can get notifications, and also view the pictures on 
the phone. This makes it much easier to use for the average 
person who may not know about how to use a command line 
tool.  
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Lastly, one more subsystem we added this semester in order 
to make our system into a better product was adding a long 
distance transmission system that can send information to the 
researcher up to about 2km. This means the researcher can get 
information on battery life and also see how many photos were 
taken over the previous day. This is important to the researcher 
because humans can leave scent trails that animals may pick up, 
so they may be wary of going near an area that the researcher 
had previously visited.  

 

 
Fig. 5. Product Sketch 

 
 

B. Electronic Hardware Component 
    A schematics of the power monitoring system is demonstrated 
in Figure 5. The design is done using Altium and fabricated. A 
circuit is built in a breadboard according to the schematics, 
using a current sensor ACS 723, an analog-to-digital converter 
MCP 3008, a Raspberry Pi Zero, and several capacitors and 
resistors. A voltage source and a resistor are utilized to test the 
efficiency of the system, and the values computed by the 
Raspberry Pi is similar to the theoretical results, by dividing the 
voltage by the resistor values. Then, the printed circuit board 
and a hand-soldered protoboard are implemented to measure 
the current delivered from the power brick to the Raspberry Pi 
Zero. The physical implementation is shown in Figure 3. From 
the power monitoring system, the Raspberry Pi Zero can 
receive continuous reading about power consumption. 

 
Fig 6. A sample schematics of the powering monitoring system 

C. Product Functionality 
  For our CDR we were able to implement everything shown in 
our block diagram in Fig. 1. For CDR our demo consisted of 3 
modules, a phone, a router, a PCB, and a long distance 
transmission system. During our demo we showed that the 
system was synchronized, as was the case during MDR, by 
holding up phones with clocks on them to demonstrate that our 
system was synchronized to within 100ms. We also had a demo 
for our PCB which involved showing that the power readouts 
could be seen on the phone. For our router we had it set up so 

that anyone could connect, and we showed this using our 
phones. 
  One critical part of our demo was being able to run the system 
via the mobile app which we did. Before our demo we were able 
to take screenshot videos of what it was like to use the mobile 
app. These videos show that the system can be enabled by a 
user, and also when the user requests it the photos can be moved 
over to the phone and viewed. We included these videos as links 
during our CDR presentation.  
  One part of our demo that only partially worked however was 
the router system we had set up. Originally we had wanted to 
create a router that ran off one of our Raspberry Pis, but since 
this was unreliable we went back to using a store-bought router 
for our demo since it was more reliable.  
 

D. Product Performance 
  All of our specifications were met during CDR and we 
demonstrated this by repeating our demos from MDR and also 
adding new demos to show that the app worked, the enclosure 
worked, the long distance transmission worked, and the PCB 
worked. We recorded videos of all of our demos and included 
these as links in our CDR powerpoint. 
  The first and most basic demo we had was proving timing 
synchronization and we did this by showing a clock taken from 
all three cameras, and this was included in our CDR powerpoint 
as a set of three photos. For power system monitoring we far 
exceeded our requirement since we switched to Raspberry Pi 
zeros which mean that we were using about 150mA of power 
which was far under our requirement.  
  The other requirements we met this semester were related to 
the hardware we incorporated this semester. For our power 
monitoring system we had a PCB and this gave accurate 
readouts to the phone that matched the current reading the USB 
ammeter was giving us, so we have high confidence in its 
accuracy. For the long distance transmission system we 
demonstrated the range by sending messages from a known 
location at umass (near physical sciences) to the art center and 
calculating the distances, and we included this video in our 
CDR presentation.  
  The last requirement we had was to demonstrate the 
functionality of the mobile app, we showed this during our in-
person demos, but also took recordings of the app being used 
and included this as links in our presentation. 
  Finally, we had to demonstrate that our project was portable, 
compact, and could be used in remote locations. This was 
accomplished by using 3D printed enclosures that were 
waterproof and could store the cameras and the batteries. This 
means that the camera modules would be easy to handle and 
move around.  

IV. CONCLUSION 
    We built a system of Raspberry Pis where each Raspberry Pi 
takes photos within 0.2 seconds. The MQTT is the network 
protocol used to exchange messages between a central 
Raspberry Pi and edge Raspberry Pis through IP. Then, we test 
the power consumption of one Raspberry Pi. A USB amps and 
power meter measures the power consumption for 15 hours 
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without consistently taking the images, and the average is 
127mAh. Based on the information, each camera will be able to 
run for at least 24 hours with a portable battery of 26800 mAh. 
There is a hardware user interface. It keeps track of how much 
power is left in the battery of  a camera module. We also test 
infrared triggering systems. We first initialize only one infrared 
sensor, attached to the central Raspberry Pi. Once the sensor 
detects any motion, all three cameras will take images. Then, 
we add one sensor to one edge Raspberry Pi. Only when two 
infrared sensors both detect motion, then all the cameras take 
photos together. Adding one sensor to the system ensures 
animals are in the common views of all cameras when the 
Raspberry Pis take a photo. Then, we transform 2D images of a 
toy moose into a 3D model. The 3D model presents meaningful 
information on the body of the moose and demonstrates that the 
image quality is sufficient to create a great 3D model.  
    In the following semester, we will both improve on what we 
have done and add new features to our system. For improving 
the system, we will test the power consumption of cameras 
continuously taking photos and transmitting data. We want to 
know what the battery life in the worst case will be. At the same 
time, we must control the number of triggers when animals stay 
in the view of the cameras to avoid unnecessary memory usage 
and battery usage. The shutter speed of cameras is also a 
concern because blurring might occur in the image depending 
on the speed of the animal. Moreover, the new features will 
include a mobile user interface, a battery monitoring system, a 
long-distance transmission system, and outdoor 
implementation. Every new feature gets us closer to the goal of 
a robust and simple system for the users, but it also led the main 
problem, which is the integration of individual components. 
More tests will be done next semester to check if the system 
altogether. 
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APPENDIX 

A. Design Alternatives 
Large parts of this project were determined already before we 

started working because Prof. Irschick had a general sense of 
what he wanted and what the general design of our system 
should look like. However, our team had independence within 
this overall framework to make certain design choices and make 
judgements on what the costs vs. benefits of certain decisions 
were.  

One of the biggest design choices we had to make from the 
start was deciding whether to base our camera system around 
using store-bought camera traps or building our own system 
from scratch. The first approach was suggested by Shira 
Epstein, and Prof. Duarte brought this up as a possibility 
initially. There are a couple of issues with this approach. Firstly, 
having store-bought cameras be networked together would 
mean we would have to crack open these cameras and start 
soldering things to them which would allow them to be 
network. The issue with this is that although we would be able 
to do this for our SDP project, the goal is for this to be deployed 
and used by biologists who would not have a lot of technical 
training. So, it made much more sense to go with Raspberry Pis 
which anyone can assemble, and where a lot of the software is 
easy to install.  

Also, another issue with the store-bought camera traps is that 
they use proprietary software and so interfacing with them 
would have been a challenge. Furthermore, if we want our 
project to be open source, if we were using these proprietary 
cameras, that could mean we could be at the whims of these 
camera-trap companies. If, for instance, the company we were 
buying from discontinued their camera in a year or two that 
could mean our project would be in a bad situation because the 
biology researchers could not get the hardware platform 
anymore. For all these reasons, it made the most sense to go 
with the Raspberry Pis as the main platform for our system and 
not store-bought camera traps.  
B. Technical Standards  

One of the main standards we wanted to follow for our 
project was having it be open source so that it could be easily 
replicated by researchers elsewhere. In order to do this we 
published all of our code publicly on Github, and so anyone can 
download that.  

For our hardware we made sure to use publicly available 
electronic devices like the Raspberry Pi that are widely used 
and can be bought easily on Amazon or other online retailers. 
This means that if future engineers want to improve on our 
system they can since it is a widely used system, and the parts 
are easily accessible and cheap to buy.   

For software, the code was in Python on the Raspberry Pi 
side which is standard, and for the Android app we used 
Android studio code which is also standard and widely used.  

For our long distance transmission system we used XBEE 
which is a signal centered around 2.4GHz which is available for 
amateur systems like our own.   

 

C. Testing Methods  
We have done two kinds of tests on our system: unit testing 

and integration testing. In unit testing, we have tested the 
central module and edge modules separately for proper 
functionality such as capturing photographs, response to the 
sensors, connecting to the MQTT Broker, etc. In integration 
testing, we have combined the central and edge modules to test 
the functionality of our whole system to take photographs when 
an object is sensed in the cameras’ field of view by exchanging 
MQTT signals between the edge and central modules and 
sending these photos to the central over Wi-Fi through FTP and 
creating a photo set which can be used for the 3D reconstruction 
software. This integration testing also included tests of many 
different parts of our system such as the hardware UI, photo 
settings testing, multiple sensors testing, proper 
synchronization, power consumption, and 3D reconstruction. 

The first and basic test we did was to test the synchronization 
of the photo session event to ensure the timestamp between all 
photos captured in a single session was not beyond 0.1 seconds. 
To test this, we had all cameras take a synchronous photo of a 
clock with the time up to millisecond measurement. To test the 
latency, we read the milliseconds of the clock on each photo of 
each camera and made sure no two cameras differed greater 
than 0.1 seconds in time. 

 

 
 
Fig 7. Synchronized images of a mile-second clock 
 
Our system needs to run for at least 72 hours without a power 

outlet source. The battery we are using for each Raspberry Pi is 
26800 mAh, so anything running 1100mA will last at least 24 
hours. To achieve our goal of 72 hours, we need each Pi to run 
under 370mA. Our Pi running the code in low power mode 
achieved a power of 230 mA, and a 15 hour test of our idle 
system resulted in 1915 mA (127 mA). 
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Fig 8. Power measurement 
 
Our system can be configured to use more than one sensor 

for infrared triggering. We tested our system to see if it can use 
two sensors to trigger the photo session. If the majority of the 
sensors in the network sense an object in the vicinity of the 
camera’s field of view, they will send MQTT signals among 
each other and trigger the other cameras to take a photo at the 
same instant. The figure below shows the model of our system 
needed for proper photos of animals to be taken, 
 

 
Fig 9. (left) Common view of all cameras  

  (right) Arrangement of two sensors 
 
The photo below shows the results of multiple cameras 

taking synced photos at the same instant by motion sensor 
triggering 
 

 
Fig 10. Synchronized images of a walking person 
 
 
 
 
 
 
 
 
 
 
 
 
One other kind of test we performed was on the mobile 

application. This was done by running the app many times to 
check that all the functionality was working properly, and that 
the debugging, enable function, and the power check were all 

working and photos were being sent from the main module as 
shown in Figure 11.  

Fig. 11. Photos being received by phone through mobile app 
 

We tested power consumption by sending the power reading 
from the Pi to the mobile app. Figure 12 shows the output on 
the mobile app. 

   Fig. 12. Output from power monitoring system from mobile 
app 
 
We also tested long distance transmission by sending a message 
from long distances (500-800 meters) from a Raspberry Pi 
through XBee to an Arduino Xbee Receiver. The test output is 
shown in figure 13 below. 

Fig. 13. Test output of Xbee Receiver 
We also tested the 3D reconstruction using the synced photos 

to see whether we can generate a proper 3D model by testing 
different camera settings. One test consisted of the cameras 
having default settings with max resolution. The other test 
consisted of photos captured by a camera with a higher shutter 
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speed, which produced more accurate results because of less 
motion blurring. We also considered how many photos are 
needed in the photo set to generate an accurate 3D model. The 
photo below shows testing 3D reconstruction on a toy moose.  
 

 
Fig 14. 3D reconstruction result of the synchronized images 

taken by the system using Meshroom 
 

D. Team Organization 
We have organized our team into different sections, each 

plays an important part within our project. Anamitra is in 
charge of networking and synchronization. Max is in charge of 
photo settings, 3D reconstruction, power distribution, and 
software UI. Xiaoyang is in charge of the hardware UI and 
Minting is in charge of multiple sensors connectivity and long-
range transmission. Max is the team manager and Xiaoyang is 
our PCB lead. We have solid teamwork and organizational 
skills. We meet every week to discuss how far we have 
progressed in the project and what we need to accomplish.   

E. Beyond the Classroom 
Anamitra: I have learned how a microcontroller can be used 

in a real-life situation. I gained expertise in the area of IoT 
networks which can communicate with each other to make a 
decision. I have also learned the engineering design aspect of 
an autonomous system which can run by itself with very little 
maintenance. I learned the different tools for manipulating and 
monitoring IoT networks such as MQTT. I also learned system 
administration of a distributed system.    
 Max: During SDP I have gotten experience writing 
software in Python and using Linux, which is useful to me since 
I will be working in software after graduation. There are a lot 
of good resources online (e.g. Message forums, Raspberry Pi 
Documentation) for learning about the software we are 
using.  One thing I have also had to learn along the way with 
this project is about photography (Aperture, ISO, Shutter 
Speed, etc.) and how to get photos that will work well for our 
3D reconstruction. Lastly, as team manager I have gained good 
teamwork and project management experience. 

Minting: For this project, I have learned programming 
languages like Python, MQTT, socket programming for 
coding the raspberry pi an HTML for creating our website. I 
also have a chance to work with the hardware like Raspberry 
Pis and PIR sensors. I also learned to think like an engineer, 
considering multiple methods and possible outcomes. All 
these skills will be very helpful in my career because they are 
very basic and useful. 
 Xiaoyang: As the hardware lead for this project, I 
learned about how to use Altium to design circuits. I worked 
with various hardware components and looked through the data 

sheets to find out how they should be implemented. I also have 
more experience in Python. I understand how to write codes 
according to the physical implementation of the system. The 
connection between hardware and software is important to 
produce a desirable outcome. 
 

F. Budget 

 
Part Total Development Cost 

(Quantity) 
Cost for Each 
Additional 
Module 

Raspberry Pi Zero W $120 (6) 20 

RasPi 8 MP Camera $66 (6) $11 

PCB $40 (1) $0 

XBEE Module $40 (1) $0 

Portable Power Bank $0 (Donated) $45 

Router $70 (2) $0 

SD Card $42 $6 

PIR Sensors $10 (10) $1 

3D Printed Enclosure $15 (3) $5 

Total $403 $88 

 
Table 5: Project budget 

 
 
 


