
SDP20 – TEAM 14 1

Automated Mail Sorter

Daniel Emerson, ME, James Finn, CSE, Harrison Liu, CSE, and Long Nguyen, CSE

Abstract​—Sorting mail is a mundane and routine task that

can be significantly enhanced through automation.
Automation would improve the cost efficiency compared to a
traditional mail carrier. Currently there are no automated
last-mile delivery implementations available on the market.
We plan to fulfill this gap by designing a small scale automatic
mail sorter for individual office mailbox arrays. Our design
will feature a hopper system that dispenses one 4 ⅛” x 9 ½”
envelope at a time into a delivery tray. From there, a photo
will be taken of envelope, and barcode image processing will
be applied on the photo to determine the address of the
recipient. Finally, the delivery tray will move the envelope to
the corresponding mailbox height and return to its original
position. A tilting delivery mechanism will be implemented in
further designs. This process repeats until the hopper is
empty.

I. I​NTRODUCTION

S​orting letters is a part of every step of mail delivery. It is
routine, mundane, and traditionally fulfilled by manual
human labor. We want to focus on addressing the last stage
in the mail delivery process, specifically after the mail has
been delivered to the appropriate building address. Often in
large buildings there are walls of mailbox arrays. When the
letters arrive in the building, someone has to read through
each letter address and deposit the letter into the correct
mailbox. Our product can be mounted on each wall of
mailbox arrays to automate the last stage of the mail
delivery process.

A. Significance
Our project has the potential to reduce mundane and

routine tasks in mail sorting, especially in the context of big
buildings with mailbox arrays. This can help free up time
for other more important tasks and increase productivity.
Additionally, machine labor is much cheaper than human
labor, allowing our product to make a financial impact by
saving human labor costs. “Delivery is the Postal Service’s
largest cost center accounting for more than 40 percent of
expenses, and having carriers manually sort mail takes time
and money. Carrier routes are configured to take eight hours
to complete, and those eight hours include time spent in the
office . . . primarily manually sorting mail, as well as time
spent on the street” [1].

B. Context and Existing Products
Mail sorting has been a problem long before our project.

Traditionally, it has been a task for humans to manually sort
letters into corresponding mailboxes. This is a primary
solution that our product will aim to compete against.

On the market right now, there is another large scale
solution for mail sorting, the OPEX mail matrix, with the
smallest possible model costing around $180,000 [2]. This
product is mainly used in very large mail sorting centers,
before they are sent off to the last mile of the delivery. The
goal of our project is not to automate large mail centers, but
to automate the last stage of mail delivery, to put letters into
the correct mailbox once the letters arrive at the correct
address. Ultimately, our product and the OPEX mail matrix
both seek to automate the mail delivery process, but we
target different stages in the mail delivery process. Both our
product and the OPEX mail matrix also need to compete
against manual human labor.

C. Societal Impacts
As with any automation project, we must consider that

we are automating jobs that people rely upon. Such is the
nature of innovation and technological advancement. Our
mail sorter will still require one person to load letters into
the hopper and resolve any jams of the machine. When
visiting UMass Mail Services, we received a variety of
responses regarding our project. The manager and
supervisor seemed impressed and enthusiastic to hear the
outcome of our project. The mail sorters and receptionist
replied to the tune of, “so you are replacing our jobs?”

D. Requirements Analysis and Specifications

Requirement Specification Value

image processing accuracy in
recognizing
typed font

90 % accuracy≥

speed letters processed
per day

 1000≥
letters/day

delivery accuracy of
bringing the
delivery tray to
the correct
position

 95% accuracy≥

dispensing accuracy of
dispensing
exactly 1 letter

 75% accuracy≥

Table 1: Requirements and Specifications for MDR

SDP20 – TEAM 14 2

II. D​ESIGN

A. Overview
To automate the mail sorting process we will create an

autonomous system designed to complete the task
mentioned above. The main technologies we will use to
solve the problem are image processing and motor control.
At its simplest level, the project overview can be described
as the following: Take a photo of a letter, process the
letter’s address, then move motors a certain amount based
on the address.

We divided the project into three main subsystems. First
we have the dispense mechanism, of which the goal is to
dispense exactly one letter from a hopper into the staging
area. Second is the processing unit, which completes all
image processing. Third is the delivery mechanism, which
is the subsystem responsible for moving the letter from the
staging area to the appropriate mailbox. Figure 1 shows a
block diagram of how these subsystems interact with each
other. Each subsystem is described in depth below.

Figure 1: MDR Block Diagram

B. Dispense Mechanism
The dispensing mechanism, as seen in Figure 2, consists

of a hopper, gate, servo motor, and a chute. The hopper is
built out of wood and sized to be roughly larger than the
size of the standard 9 ¼” by 4 ⅛” letters. There is a plate of
stainless steel on the bottom of the hopper to reduce friction
for the bottommost letter. The stepper motor is mounted
below the hopper, with a rubberized wheel protruding
through a slit in the bottom of the hopper. This wheel grips
the bottom letter when rotated, pushing the letter out of the
hopper. An adjustable gate made of aluminum sits at the
front of the hopper to prevent more than one letter from
being dispensed at a time. In our testing for MDR, the
dispense mechanism typically achieved a success rate of
~80%, and typically dispensed two letters on the 5th
rotation. This systematic error will need to be addressed
with a new or modified design of the dispense mechanism
for FPR to achieve our specification of “accurately
dispenses exactly one letter 95% of the time.”

Figure 2: Dispensing Mechanism

C. Processing Unit
For our processing unit, we decided to use a Raspberry Pi

3 equipped with 1.2 GHz processing speed and 1 GB RAM
[3]. This will be transitioned to a Raspberry Pi 4 equipped
with 1.5 GHz processing speed and 1 GB RAM, but by
MDR we did not have the right cables shipped to the lab in
time so we could not operate on the RPi 4. All files that we
use on the RPi 3 are cross-compatible with the RPi 4. We
also have an RPi Camera Module v2 with 8 megapixel
camera quality attached through the camera port.

The main functions that the RPi accomplishes for our
project are image processing, motor actuation/control, and
storing the mailbox database.

The projects main program, main.py, was written in
Python. At its core it consists of a while loop, within which
functions for image processing and motor control are called
in a sequential order. The main program ensures that the
system works as a cohesive unit, even when met by
challenging edge cases. For example, in the case that a letter
is unmarked and no address can be derived, the main
program will deliver the letter to a ‘junk’ mailbox.
Importantly, the main program also tells the system to stop
operating when there are no more letters in the hopper by
breaking the loop.

The mailbox database is stored within main.py. It keeps a
list of the addresses on the mailbox. Each address
corresponds to a number of motor steps. When it receives
the address from image processing, it inputs the number of
motor steps to rotate as a parameter for the motor programs.

For motor actuation and control, we made Python
programs to control each motor’s movement in terms of
direction and rotational distance. These motor programs run
on the RPi and send signals from the RPi’s GPIO pins to
the appropriate motor drivers, which in turn move the
appropriate motors.

For image processing by MDR, we were able to take a
photo of the envelope, locate the position of the barcode
from that photo, and decipher the recipient’s address from
the barcode. This was accomplished using the Pyzbar and
OpenCV Python libraries. First, the RPi system calls
camera.py which takes a photo and stores it to

SDP20 – TEAM 14 3

‘envelope.jpg’.
Then, the RPi system calls barcode.py which takes in the

envelope.jpg image, converts the image to grayscale, and
then locates the barcode and decodes it using the Pyzbar
function decode(). The recipient’s address is then stored in
‘address.txt’ for the delivery mechanism to reference.

To test the accuracy for reading barcodes, we conducted
a test of 30 different addresses and envelope orientations.
Some of the addresses were long barcodes like McLaughlin,
while others were short like Hollot. The envelope was
barcode was placed horizontally, tilted, and flipped upside
down in respect to the camera angle. Out of all 30 tests, the
program was still able to decode the barcode 28 out of 30
times for an accuracy of 93.33%.

D. Delivery Mechanism
The delivery mechanism moves the letter in the y axis to

the correct mailbox in MDR. For FPR the delivery
mechanism will need to move in both the x and y
directions. The delivery mechanism consists of one Bosch
R146520000 Linear Actuator, one 5mm to ¼” flexible shaft
coupling, one NEMA 23 stepper motor, and one stepper
motor driver [4]. The linear actuator was found in the M5
scrap room, and has worked well for MDR, but will be
replaced by a lead screw for FPR. The current linear
actuator catches and causes the motor to stall briefly. This
results in positional error of <5% on the longest letter
delivery. In our testing we manually corrected this
positional error at the end of every testing cycle. If this
problem persists we will need to purchase some sort of
encoder to obtain positional data and create a feedback loop
that corrects the position of the gantry at the end of every
delivery.

We will also need to drastically speed up the rate of
delivery for FPR. This will be in part resolved by the new
lead screw, which has a larger pitch than the ball screw in
the current linear actuator. This means the lead screw
converts one rotation into a larger translational motion, but
will require more torque. Hopefully this will not be an issue
with the large NEMA 23 stepper motors, but with the
additional weight of the horizontal gantry, we may need to
explore stronger motors.

Another potential challenge in building out the two axis
gantry for FPR will be the precise alignment of all the
components. We will need to achieve perfect parallelism
between the guide rails and the lead screw to ensure smooth
operation.

For FPR we will also need to implement a mechanism to
move the letter from the delivery tray into the mailbox. We
have considered two methods, a tray tilting mechanism or a
letter pushing mechanism. Part of this decision revolves
around whether we will consider if the mailboxes are full,
and how we process this knowledge. If we need to place
letters on top of a partially full mailbox the letter pushing

mechanism will be the better solution.

E. Motor Driver Circuit Board
For MDR, we opted to use a product available on the

market, the Pololu DRV-8825 stepper motor driver chip [5].
We only needed to get one stepper motor running, and we
needed to do so as soon as possible to get our prototype
started and meet MDR deadlines. Because of this, designing
and manufacturing our own custom stepper driver would
not be feasible, so we opted for a product already available
on the market. Now that we can drive one stepper motor
with one driver chip, we can scale it up to driving four or
more motors on four or more chips as needed.

Our next step will be to move away from products
available on the market. Currently, the only motor driver
chips on the market at chips that only support one single
motor driver. This means that if we needed to drive five
motors, we would need five corresponding motor driver
chips. To move away from this messy solution available,
we plan to design a custom PCB to hold our own stepper
motor drivers. Centralizing all of our motor drivers onto
one single PCB carries two significant advantages: easy and
simple wiring and better centralized cooling for heat
dissipation. Having all of our motor drivers together on one
board will allow us to simply wire the whole board to our
RPi, instead of having four or more motor driver chips all
wired back to the RPi from all directions. Putting all of our
motor drivers onto one centralized PCB will also allow us
to implement better cooling solutions as needed. If we
needed to, we could simply use one big fan to cool the
whole custom PCB, instead of having to use four or more
smaller fans, each fan distributed to each motor driver chip.
After we finish implementing our custom PCB solution for
the motor drivers, we can start to explore microstepping to
smooth out the motion of our stepper motors. As of right
now on our prototype, our stepper motor makes too much
noise and vibrations during its operation. Microstepping
will help reduce both noise and vibrations, but will also
reduce the torque on the motors. We will need to find a
balance between noise, vibrations, and torque with
microstepping.

We did not have to do much testing to verify the function
of our motor driver. It either works or it does not, and it can
turn on or it cannot turn on. If the motor driver can turn on
power for the motor, thus making the motor move, then we
knew it was working. We encountered no issues with this
part of our prototype.

III. P​ROJECT​ M​ANAGEMENT
We have accomplished all of the goals that were set for

MDR and successfully demonstrated our prototype. Our
prototype currently incorporates a 1-D array of mailboxes,
stacked vertically on top of each other. We have a staging
and delivery tray that is mounted on a 1-axis gantry which

SDP20 – TEAM 14 4

allows us to move the tray along the mailboxes. We have a
hopper that holds a stack of letters that can dispense letters
down a slide onto the staging tray. We have an RPi camera
that takes an image for image processing. Finally, we have
an RPi that processes the image to match the letter to a
mailbox, then sends signals to the motors to deliver the
letter to said mailbox height. All of these components
functioned together for a successful MDR demo. With that
said, our product still needs to be polished both in terms of
aesthetics and functionality. First, we need to scale our
prototype to support 2-axis movement instead of 1-axis.
Second, we need to implement a final delivery mechanism
that deposits the each letter once it arrives at the appropriate
mailbox. Third, we would like to implement typed text
reading for image processing, These are the most immediate
3 goals for us. After completing these 3 tasks, we will still
need to polish the final product aesthetically as well as sure
all subsystems operate smoothly together.

Figure 3: Gantt Chart

James: Timing and control logic, software architecture
Long: Motor control and actuation, hardware architecture
Harrison: Image processing, text recognition
Dan: Mechanical systems

Dispensing Mechanism: Dan Lead, Long Support

Dan will produce a hopper to hold the letters, Long
will a motor driven mechanism to dispense one
letter at a time. Dan will also produce a slide or
chute to guide the dispensed letter to its staging
area.

Staging Area: Dan Lead
Dan will implement a staging tray to hold the
dispensed letter while its information is processed.
This tray will also be part of the delivery
mechanism, moving along the 2-axis gantry.

Processing Unit: James and Harrison Lead, Long Support
James will be the software system integrator,
stitching together all the software pieces from
Long’s motor control and Harrison’s image
processing. James will ensure that software
operates sequentially and as a cohesive unit by
implementing proper timing constraints and
checking all edge cases.
Harrison will be working on the image processing
and RPi camera aspect of the project,

implementing typed text recognition through
image processing and making sure it is able to be
processed quickly and efficiently.

Delivery Mechanism: Dan Lead, Long Support.
Dan will produce the 2-axis gantry to mount onto
the mailbox array, Long will control the motors to
move the delivery tray along the 2-axis gantry.
Dan will also produce a motor driven tilt
mechanism for the tray to put the letters into its
mailbox, Long will control the motor to tilt the tray
to deliver the letter.

Motor Drivers: Long Lead
Long will produce a custom PCB to house all of
the necessary motor drivers, as well as the code to
run these motor drivers.

Mailbox: Dan Lead
Dan will construct a mailbox array or source one
from UMass Mail Services.

IV. C​ONCLUSION
The current state of the project accomplished all of the

MDR goals we set previously. During our MDR demo, the
dispense mechanism was able to dispense one letter at a
time with 80% accuracy, the barcode reading worked 95%
of the time, and our delivery tray achieved the correct
mailbox height 100% of the time.

In the future, we hope to improve the dispense
mechanism to be able to dispense one letter with 95%
accuracy. We are also working to implement typed text
image processing so that our project is applicable towards
more standard forms of address writing. We will also create
a delivery mechanism to deliver the envelope into the
mailbox.

A​CKNOWLEDGMENT
We would like to especially thank our advisor, Professor

Holcomb, for taking the time and effort in providing critical
feedback and advice when needed. We would also like to
thank our evaluators and SDP coordinators Professor
McLaughin, Moritz, Hollot, Soules, and Caron for their
time. Finally, we would like to thank M5 for allowing us to
use their makerspace, various equipment, and well stocked
materials.

R​EFERENCES

[1] Automation and the Life of the Letter Carrier​, USPS, 10-Oct-2019.

Available: ​https://www.uspsoig.gov/blog/automation-and-life-letter-
carrier

[2] “OPEX Mail Matrix Information,” ​OPEX Mail Matrix Information​,
02-Oct-2019.

[3] Raspberry Pi (Trading) Ltd, Raspberry Pi Compute Module 3+
datasheet. Jan-2019

[4] National Electrical Manufacturers Association, “NEMA 23 Stepper
Motor,” datasheet. Jun-2018.

https://www.uspsoig.gov/blog/automation-and-life-letter-carrier
https://www.uspsoig.gov/blog/automation-and-life-letter-carrier

SDP20 – TEAM 14 5

[5] Texas Instruments, “DRV8825 Stepper Motor Controller IC,”
SLVSA73F datasheet, Apr. 2010 [Revised Jul. 2014].

A​PPENDIX

A. Design Alternatives
During our design phase, we broke the project up into

smaller subsystems when viewing alternatives. There were
good design choices for each subsystem that we considered
before ultimately deciding on our current implementations.

Processing Unit: We considered using an Arduino Uno, a
Raspberry Pi 4, or a BeagleBone Black to be our main
computing unit. In the end, we chose the Raspberry Pi 4 for
its high computing power for image processing. The
Arduino Uno would simply not have enough computing
power to support our use case. The BeagleBone Black was
a close contender, but it has a lot of GPIO pins that we do
not need, which drives up its price compared to the
Raspberry Pi 4.

Motors: There were a variety of motors we could have
chosen for this project. To drive our 2-axis gantry, we could
use DC motors with closed loop positional feedback to
move the delivery tray, or use stepper motors with no
closed loop feedback. Ultimately, we decided to use stepper
motors for our 2-axis gantry for its very accurate step sizes.
Even if there was significant errors with the motor step
sizes, the error would not accumulate, because it will be
consistent every rotation, every rotation will produce the
same linear motion. This made stepper motors very
appealing to our specification constraints. We did not want
to use a DC motor because we would need some kind of
closed loop feedback to not have positional errors cripple
our product. For our dispensing mechanism, we have the
option of using a servo motor for its controlled speed or a
stepper motor or its accurate step sizes. Our prototype is
currently using a servo motor, which worked well enough
for MDR, but if consistent rotational motion becomes an
issue as we try to achieve a higher dispensing accuracy, we
could switch out the servo motor for a stepper motor.

We will replace the Bosch linear actuator with lead
screws and linear guide rails for FPR. These lead screws
should move faster than the linear actuator and will require
lots of care to properly mount and align. They will also
require more torque to move compared to the linear
actuator.

B. Testing Methods
The primary method that we used to test each of our

subsystems was to run each subsystem in isolation and
record its success and failure over many trials. With enough
data over many trials, we calculated success rates from all
of our trial data. We kept improving each subsystem until
our data showed a success rate high enough to meet the
specifications that we had promised for MDR.

With our image processing subsystem, we manually

placed letters in front of the camera, let our code read the
letters in different orientations and addresses, then noted in
our data if our code was able to identify the correct name in
its image processing. Our data came out to 30 trials, with 28
of them being correct, yielding a success rate of 28/30, or
93.33%.

With our dispensing subsystem, we let the dispenser
dispense many letters, then recorded if each run was a
successful trial with success being exactly 1 letter
dispensed. Our data came out to 20 trials, with 16 being
successful, yielding a success rate of 80%.

With our delivery subsystem, we manually controlled
where the delivery tray should go for each trial, and
recorded whether or not the delivery tray successfully
travelled to the correct mailbox height. Our data came out
to 30 trails, 29 of which were successful, yielding a success
rate of 96.67%.

Overall, our testing was heavily guided by the goals that
we had promised for MDR. We tested each subsystem with
the promised goal in mind. Whenever our subsystem fell
short of a goal, we knew that we had to improve it in order
to meet the numbers we promised. We were only satisfied
after seeing that the data collected in our testing met each
requirement.

C. Team Organization
Each member of our team has a well defined role. James

acts as the team manager and leads in software integration.
Long is the team’s PCB lead and motor control expert.
Harrison is the lead in developing image processing
functions. Dan is the team’s mechanical engineer and thus
oversees the many moving and mechanical aspects of the
project. Overall, our skill sets complement each other well.

For much of the semester, we worked independently on
our given tasks, providing updates to each other when
certain milestones were reached. When we did reach a point
at which we could start integrating our parts together, team
communication and collaborative work went smoothly. The
members that needed to integrate their parts together met at
SDP lab to address any issues that may arise during the
integrating phase. Nonetheless, there are ways we plan to
further improve our team organization and communication
next semester. Most importantly, we will focus on
organizing our thoughts more effectively prior to our
weekly team advising meetings with Professor Holcomb.
Often times this semester, we failed to take full advantage
of our advising meetings by going in unsure of what
material needed to be covered on meeting day. We plan to
fix this by scheduling a team-only meeting the day before
our advising meeting. Having these two weekly meetings
should allow the team to work much more efficiently.

D. Beyond the Classroom
This project has been a valuable learning experience for

SDP20 – TEAM 14 6

us as young developing professionals. We are able to
develop our own project, divide work up into our
corresponding areas of expertise, consult other people,
communicate and all work towards one collective goal. This
has been the biggest project for us so far, and even though
we are only half way through this year long project, we
have already learned a lot about ourselves and how to
function effectively as a team.

