Comprehensive Design Review

Team 14 Dan Emerson, James Finn, Harrison Liu, Long Nguyen

Advisor: Professor Holcomb

UMassAmherst Team 14

Problem Statement

Sorting mail is a mundane and routine task that can be significantly enhanced through automation. Automation would improve the cost efficiency compared to a traditional mail carrier.

Currently there are no automated last-mile delivery implementations available on the market. We plan to fulfill this gap by designing a small scale automatic mail sorter for individual office mailbox arrays.

System Specifications

- 1. Support standard envelope size of 4¹/₈ in x 9¹/₂ in
- Hopper dispenses exactly 1 letter to be processed with 95% accuracy
- 3. Identify correct letter destination by reading with 99% accuracy (QR/typed/handwritten)
- Deliver letter into correct mailbox by tilting mechanism with 95% accuracy
- 5. Capable of sorting 1,000 letters per day

UMassAmherst Block Diagram

CDR Deliverables

- 1. Identify correct letter destination by reading typed fonts
- 2. Deliver letters to mailboxes across 2-axes
- 3. Establish and fabricate housing location for Raspberry Pi and camera
- 4. Implement motor driving circuit on PCB
- 5. Implement tray tilting mechanism that deposits letter into box

Motor Driver PCB

Motor Driver PCB

Image Processing

- Using a Raspberry Pi camera v2, takes picture of envelope with the picamera and time libraries
- OpenCV and Tesseract OCR are used to process the image, detect the text, and read it
- First, the image is preprocessed through cropping and downsampling to remove excess pixels
- Then uses a deep learning-based text detector (EAST: Efficient and Accurate Scene Text detector) to locate the region of text
- Loops through bounded region and pad area of interest
- Feed padded area to image_to_string function which returns recognized text

Processing Speed

Sans serif fonts are standard for USPS printing labels. Tested in Arial and Times New Roman across varying sizes (16-48pt)

Image Processing Implementation	Raspberry Pi Version	Average Address Processing Time (Across 20 trials)			
Barcode	3	20.5 seconds			
Barcode	4	3.6 seconds			
Typed text	4	10.7 seconds			
Typed text + preprocessing	4	8.1 seconds			

Dispense Mechanism V1

- V1: Wheel pulls letter under fixed gate, long side forward
 - Letters unbalanced
 - Prone to jamming or dispensing 2 letters at once

Dispense Mechanism V2

- V2: Compliant Mechanism, letters rest on stack, pull through with motor
 - Difficult to grab only bottom letter
 - Dependent on weight of stack

Dispense Mechanism V3

 V3: V1 → Thicken wheel, orient short side forward, rigid gate, keep weight on top of stack ~constant

Dispense Mechanism

- V1: Wheel pulls letter under fixed gate, long side forward
 - Letters unbalanced
 - Prone to jamming or dispensing 2 letters at once
- V2: Compliant Mechanism, letters rest on stack, pull through with motor
 - Difficult to grab only bottom letter
 - Dependent on weight of stack
- V3: V1 → Thicken wheel, orient short side forward, keep weight on top of stack ~constant

Dispense Mechanism Version	Accuracy in Dispensing Exactly 1 Letter (Across 20 trials)		
V1	80%		
V2	67%		
V3	95%		

2 Axis Gantry

- Implemented horizontal and vertical axes
- 2 lead screws needed, one on each side of vertical gantry
 - High weight of horizontal stage weights down the vertical axis
 - Uneven torque lead screw of vertical stage
 - Rails on each side of lead screw help even out torque on stepper motors

Alternative 2 Axis Gantry

- Switch double beams to horizontal axis.
- Less load on vertical axis.
- Need to raise mailbox on stilts to mount horizontal lead screw and rails on underside.
- More natural position for tilt tray

Delivery Mechanism

- Holding torque of stepper motors not strong enough to support off center mount
- Lightest delivery tray could hold equilibrium but could not reset position after delivering letter
- Plan: Implement dispense mechanism style wheel to push letter into mailbox rather than tipping

FPR Specifications

- 1. Support standard envelope size of 4¹/₈ in x 9¹/₂ in
- Hopper dispenses exactly 1 letter to be processed with 95% accuracy
- Identify correct letter destination by reading with 99% accuracy (QR/typed/handwritten)
- Deliver letter into correct mailbox by tilting mechanism with 95% accuracy
- 5. Capable of sorting 1,000 letters per day

Gantt Chart

					16-Mar	23-Mar	30-Mar	6-Apr	13-Apr
Implemer	t "like-names	" feature fo	or img. pro	c. (Harrison)					
		Install second lead screw (Dan)							
		Finalize dispense tray (Dan)							
		Add start/stop button (Long)							
		Optimize code (James)							
		Finishing touches (All)							
				FPR (All)					

Demo

Demo Video

