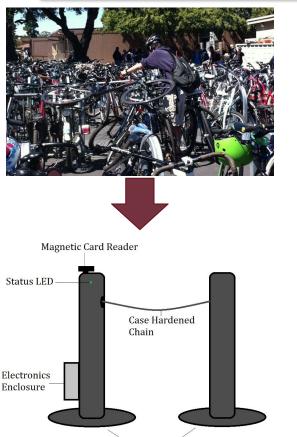


Team 13 - SmartRack

Preliminary Design Review

October 11th, 2019

Problem Statement


- Bike racks are typically full and unorganized
- No guarantee of a spot

Problem Statement: Solution

- SmartRack!
- Reserve bike rack ahead of time
- Real-time feedback on bike rack availability
- Lock and unlock with UCard

UMassAmherst

Team Roles

Arthur, CSE, Mobile Application Development

Fedor, EE, PCB Lead, PCB Development

3

Andrew, EE, Hardware Fabrication

UMassAmherst

Alessy, EE, Manager, MagSwipe & Raspberry Pi Development

Current Alternatives

UMassAmherst

Bikeep

Bikeep

Pros:

- Solar Powered (Optional)
- Secure Bar Locking

Cons:

- Expensive (>\$100 per individual spot + shipping)
- No reservations
- Must buy RFID card to use without phone

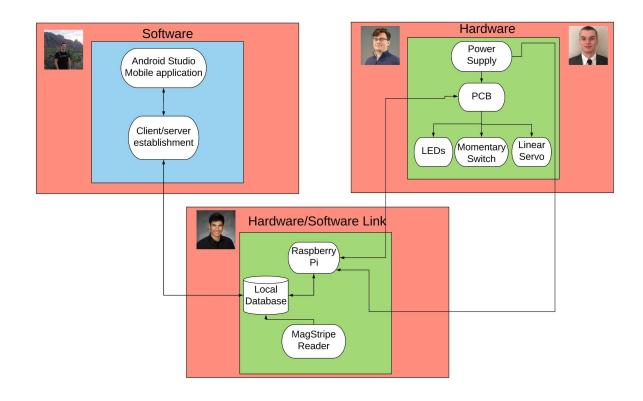
vadeBike

Pros:

- Chain Lock
- Small Storage Space

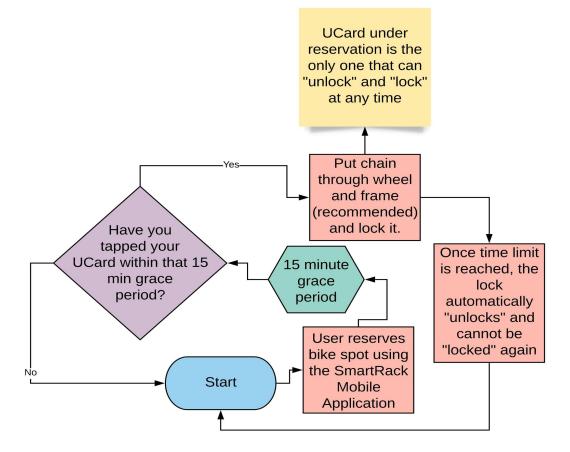
Cons:

- No Mobile App
 - No Reservations
 - Pay for Spot
- Geographical Limitation


System Specifications

- Mobile application reservation w/ map view
- 15 minute grace period
- Embedded Locking System
- UCard Compatibility (Stripe Reader)
- Raspberry Pi
- Time Permits: Screen (on-site reservations)

Current Alternatives Comparison


	Bikeep	vadeBike	SmartRack
Mobile App	YES	NO	YES
Reservations	NO	NO	YES
Free for User	NO	NO	YES
Power Source	Solar or AC Power (220V/24V)	AC Power (220V/24V)	AC Power (120V)

Block Diagram

State Machine Diagram

UMassAmherst

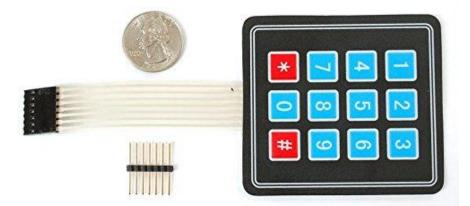
8

Plan A: Mini MagStripe Reader

UMassAmherst

• 16 Digit ISO Number + 8 Digit Student ID (Track 2)

• Parsing done with configuration tool

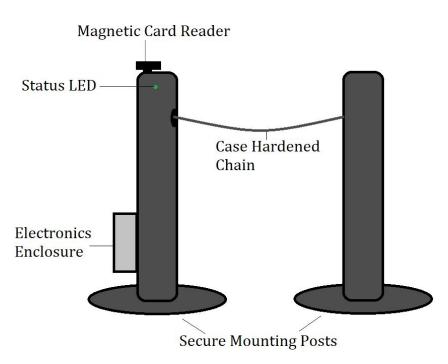


Plan B: Digital Passcode

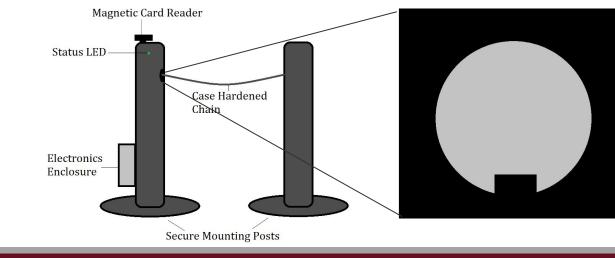
UMassAmherst

- 3 x 4 Keypad
- 4 digit, single-use password
- Connects easily with any Raspberry Pi model
- Code displayed through Mobile Application

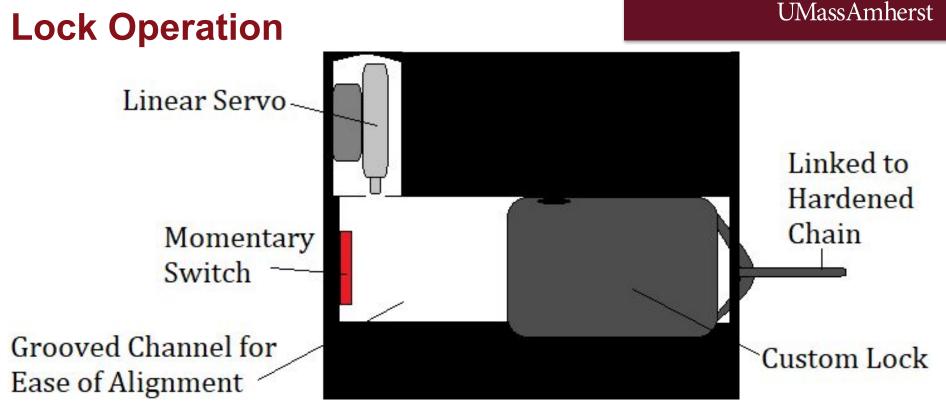
Raspberry Pi


- Raspberry Pi 3 B+
- Raspberry Pi Universal Power Supply (5V, 2.5 Amps)
- 1GB of local data
- Python Programming Language

Frame Design


- Implement UMass single bike rack
- Compact and replicable
- Design discourages unauthorized use




Lock Design

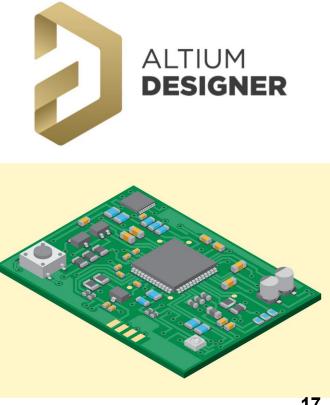
- Custom fabricated steel cylinder at the end of the chain
- User-friendly grooved channel to make locking simple
- Rack will not lock unless card is swiped

Chain Design

- Utilizing chain allows for universal design
- Traditional round steel chain is susceptible to tampering
- Two ways to improve security:
 - Case hardening
 - Hexagonal Links

Identifying Occupancy

- LED used as status indicator for each rack
- Utilize servo resistance reading to indicate status of a rack
- Can also be used to identify availability of spots on rack in conjunction with reservation system in software

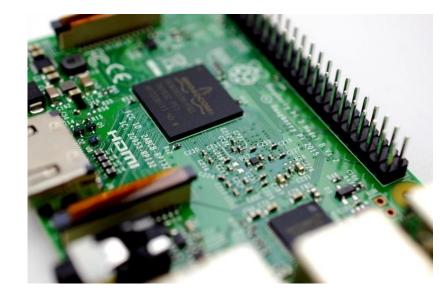


PCBA Design

- Will be designed in Altium
- Interactions with all electrical components
 - LEDs
 - MagStripe
 - \circ Actuator
- Controls Distribution of Power

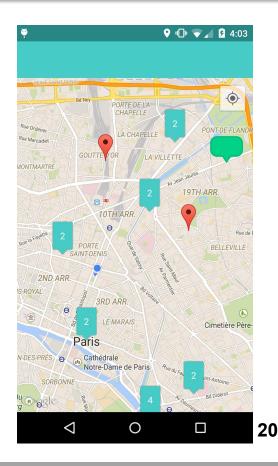
Power Options

- Low Power Consumption
- Several Options
 - Solar
 - USB
 - External Power Supply
 - Batteries
 - AC to DC Adapter



Connecting to Raspberry Pi

- Receives Information from Pi
- Transmits Information to sensors
 - States for LEDs
 - States for Actuator
 - Is the lock in place
- Transmits sensor data to Pi

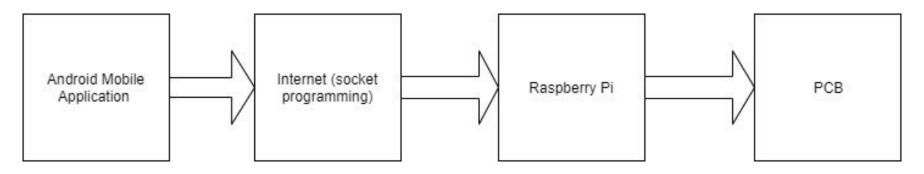


UMassAmherst

App Development

- Android Studio
 - o UI
 - Map view
 - Prompts user to specify their student ID
 - Transmission of ID and timestamp
- Socket programming Raspberry Pi listening for signals from Android app

UMassAmherst


Raspberry Pi Network Capabilities

- 2.4 / 5 GHz Dual-band wireless LAN
- Problem: Raspberry Pi may be slightly out of range of eduroam
- Solution: ModMyPi Long-range WiFi dongle
 - 100m straight line range

BL UEWAY	

Networking Infrastructure

UMass student ID/timestamp sent through network
Int and Time data types (4 bytes, 8 bytes respectively)

Electronics Enclosure (IP-67)	\$30
MagSwipe Reader	\$40 - \$50
Plan B: Key Pad	\$7-\$10
Raspberry Pi 3 B+	\$30 - \$40
Frame and Lock Materials	\$50
Power Supply	\$25
Linear Servo	\$89

MDR Deliverables - Arthur

- Basic Android Studio application
 - Ability to transmit 8-digit integer/timestamp

MDR Deliverables - Andrew

- Prototype model of the rack with custom components 3D printed
- Lock mechanism operating time < 3 sec (Based on 50:1 gearing servo speed)

MDR Deliverables - Alessy

- Communication link between the Raspberry Pi and the Mobile Application
- Configuration tool setup
 - MagStripe Reader data can be manipulated
- Set up local database to support all incoming data

MDR Deliverables - Fedor

- PCB prototype on a breadboard
 - Working interaction between components
 - LEDs
 - Actuator
 - Momentary Switch
 - Ability to regulate power between components

Thank you

Questions and/or comments?

