P³

Poor to Proper Posture

December 12, 2019

Advisor: Prof. Wolf

Team Members: Karl Shao, O-Dom Pin, Kiet Tran, Tong Shen

Team members

Karl CSE

Team manager & MCU programming

Tong CSE

MCU programming & Curvature Sensor O-Dom EE

Curvature Sensor & PCB design Kiet EE

Inductive Charging & PCB design

The Problem

The Modern World

- More screen time
- More sitting
- More stationary

P^3 - Our Solution

- Detect User posture using curvature sensor
- Vibrate at the most problematic area to notify user's bad posture instead of forcing the user in uncomfortable position
- Help user to create good habit through their own effort

System Requirements

- Calibrating body posture by standing against the wall and pressing button
- Calibrate hunching position by hunching and pressing button
- Once user hunches at a certain angle, vibration motor will vibrate

System Specification

- Product should be light and power efficient
- Battery powered, should last for 20 hours on average
- User will be notified of hunching within 5 seconds
- Total electronic size within 10 squared cm

Updated Block Diagram for FPR

MDR Block Diagram

Parts used for prototype

- ATTINY416-XNANO
- Vibration Motor
- 2 Buttons
- 1 BendLabs Curvature Sensor
- 2 10K Resistors (pulldown)
- Extension Wires

Cost Breakdown

Quantity	y	Product	Price Per Unit	Total Price
	1	Bendlabs Curvature Sensor	\$50.00	\$50.00
	1	Vibration Motors	\$1.95	\$1.95
	1	ATTINY416-XNANO	\$8.88	\$8.88
	2	10kOhm Resistors	\$0.05	\$0.10
/	2	Tactile Switch	\$0.11	\$0.22
	1	Battery	\$5.95	\$5.95
	1	Inductive Charger Set -5V 500mA max	\$9.95	\$9.95
	1	Shirt	\$0.00	\$0.00
	1	Li-Poly/Li-Ion Charger	\$12.50	\$12.50
	1	Micro USB Breakout Board	\$1.50	\$1.50
			Total Cost:	<mark>\$91.05</mark>

Inductive charger Requirements and Specifications

- Inductively charge Li-ion battery
- Supports power delivered through a micro usb cable.
- Allows for simultaneous charging and use
- Trickle charge to keep battery topped off
- 100mA 500mA Charging current

Battery Selection

Power consumption Worst case consumption: 72.5mA at 4V Typical consumption: 30mA at 4V Estimated 620mAh for a 20hr use Battery Li-lon battery 4V 1000mAh

Software

- BendLabs Library (C++)
- User hunches, send signal to vibration motor to vibrate
- Hysteresis
- Store values for proper posture and hunching posture

ATTINY416-XNANO

- Uses ATtiny416 microcontroller
- SCL
- SDA
- Pins for Buttons
- Ultra Low Power

Flex Sensor Data

Flex sensor measured output at 90 degrees

Sample Mean: 88.6265 deg

Z = 1.96

standard dev = 1.335

95% confident the true mean of our output is 88.6265 \pm 0.413661 deg

Proposed CDR Deliverables

- Implement Lower Back Sensor
- Battery should last for 20 hours
- Replace Buttons controls with Bluetooth
- Designing and constructing PCB for inductive charging with the ATtiny416 microcontroller
- User should be able set trigger points to be notified of hunching
- Consider when user picks up items off floor

MDR Deliverables

- Be able to read the curvature sensor data
- User will be able to recalibrate the curvature sensor based on their correct posture
 - When a certain angle is reached a LED will light up with the vibration motor running
- The battery will be inductively charged.

Gantt Chart

		January			February			March			April		
	Beginning	Mid	End	Beginning	Mid	End	Beginning	g Mid	End	Beginning	Mid	End	
2nd Sensor Implementation (Tong)													
Implement Bluetooth (Karl)													
Inductive Charging PCB Design(Kiet)													
Microcontroller PCB Design (O-Dom)													
Final PCB combination (Kiet +O-dom)					0								
IPX (waterproof design) (O-Dom)													
electronic to shirt design (Kiet)													
box encloser for electronics (Kiet)													
import code into PCB (Karl + Tong))													
CDR Preperation(ALL)													
CDR Presentation (ALL)													
Project Refinement (All)													

Questions?