
SDP20 – Team 7

1

Abstract—Since its emergence in the 1930s, the household

game Battleship has evolved from a pencil and paper game into a

fully-fledged board game. In its current iteration, the board game

requires the use of physical pieces of ships and pegs to play. This

requirement may prove to be quite demanding for those with

physical disabilities. Our focus is to create an authentic

Battleship experience without the use of physical pieces. We will

replace the traditional board game pieces with LEDs and

implement a voice recognition system to play the game. Our team

will seek to deliver a single player version of Battleship where a

human player will compete against a computer. In keeping with

the traditional aspects of Battleship, we will also implement a

speaker to output the results of the player’s movements.

I. INTRODUCTION

A. Significance

The tabletop gaming industry has been known to lag behind

other gaming industries when it comes to making their

products more accessible to users. Game designers are prone

to make assumptions about who is going to be playing their

game and that in turn alienates demographics who struggle to

play by the developer’s rules. As explained in an interview

with Dr. Michael Heron of Meeple Like Us, an organization

dedicated to promoting game accessibility, the requirement of

tight physical placements and the inability to verbalize your

instructions would turn many away from playing these types

of board games [1]. Adapting a classic board game like

Battleship for people with physical impairments is achieved

by simplifying each of the core elements of the game as much

as possible while keeping with the game’s aesthetic. Physical

pieces used to represent ships and pegs to represent attacks

can be relegated to simpler components that would operate

accordingly without requiring players to move these pieces

themselves. These pieces need to be able to operate based on

the input of the player and since we would like to make the

experience as hands free as possible, we will look to rely upon

the player’s verbalization of their instructions to operate. By

replacing physical pieces with LEDs and implementing a

voice recognition system, players will only need to speak into

a microphone to be able to play a game of Battleship.

B. Context and Existing Products

The issue of accessibility in board games has been an issue

for a long time and people have already tried to solve this

problem. For example, BrickSimple has created a version of

the Battleship game that can be played using the Google Glass

eyewear [2]. This accomplishes a hands-free approach that our

team is looking to solve as well by implementing a voice

recognition system and the ability to play against other Google

Glass users. The game is programmed to allow users to play

the game at their leisure when they are completing other

everyday tasks. The layout of this iteration is the traditional

two boards per player layout for Battleship, all of which is

displayed on the corner of the eyewear’s screen. The

commands are inputted through a voice recognition system

that accepts two corresponding numbers between 1-7 to

represent a section on the gridded board. Once a command is

received, the game will process it accordingly and deliver

appropriate feedback on whether it was deemed a hit or miss.

This version of Battleship promotes portability by being able

to operate anywhere at any time. But as innovative as this

design may be, most people do not want to be distracted by a

game of Battleship when they are conducting their daily

activities. The game is meant to be completed at the

convenience of both players and nowhere is more convenient

then in your own home. This makes the Google Glass

component unnecessary when most people wish to conduct

this game in a less distracting environment, unlike outside

during the day.

Another existing product that promoted more accessible

play is shown on our mobile devices. With an abundance of

applications found online nowadays, it comes as no surprise

that classic board games like Battleship have made their way

onto the online marketplace. One such mobile version of

Battleship is known as Fleet Battle found on Android devices

[3]. This follows the traditional gameplay of Battleship but

also includes many animations to enhance the experience

while playing on your mobile devices. This is a welcome

addition to a classic game and may prove that the future of

board games is to end up on the mobile applications market.

But in terms of addressing how accessible this application may

be for those with physical disabilities, this game does not seem

to address those concerns. With no voice recognition system

to input in commands, the application prompts players to use

the touch screen features on their smart devices to manually

pick the point they wish to attack. This may prove to be quite

an uncomfortable task for those with physical disabilities as

when they would try to play this game with physical pieces.

These movements needed by players may turn this

demographic away from this title and that is something our

group is looking to avoid.

Tetra Board

Aleck Chen, EE, James Gnall, EE, Varak Mouradian, EE, and Vincent Nguyen, CSE

SDP20 – Team 7

2

C. Societal Impacts

To create a welcoming experience for players with physical

disabilities, our group is looking to remove any feature that

may prove too difficult to perform while also maintaining the

traditional gameplay of the board game. We first begin at

looking into replacing physical pieces with electrical devices

that will represent the game’s pieces and adapt to any situation

found throughout the experience. We found that light emitting

diodes are perfect for representing our physical pieces as they

can be easily programmed to match the situation we would

like to present. Now, looking at how we would like the game

to be operated by players that is achievable by all,

implementing a voice recognition system has proven to be the

perfect solution to our problem. Using vocal inputs to

designate where a player wants to attack is the least physically

involved way of playing Battleship, so we looked to

implement this feature as effectively as possible. These main

features work in tandem to simulate the experience of playing

Battleship for those who have had trouble in the past when

playing these types of board games. People who struggled

with placing pieces into small holes on the boards will now

have the ability to play this board game unobstructed by the

physical demanding features found in previous iterations.

D. Requirements Analysis and Specifications

Requirements Specification Value

Portability Double-Sided Briefcase 12” x 6” x 9”

Game Board 4 Boards 8” x 8” per board

Display DotStar LED 5V supply

Sound Speaker “Hit”
“Miss”
“Sunken Ship”

Voice Control 1 Microphone Alphanumeric Commands
i.e. Alpha 3

Power External 5V Wall Mount 5V

Table I: Requirements and Specifications

II. DESIGN

Figure I: Final Product

A. Overview

Board games require physical movement, and those with

poor motor skills struggle or will not have a chance to play. To

approach this problem, we decided to use voice recognition.

We want to eliminate as much of the physical movement

required to play as possible. Our design specifications are

shown in Table I.

The heart of our system is a Raspberry Pi 4 [4], which is

responsible for processing real-time voice recognition and the

gameplay for our board games. The Pi will take in audio input

from the microphone and process user commands. Then, it

will update the LED boards and output correct sounds for the

user. The block diagram of our system is shown below in

Figure II.

Figure II: Block Diagram

B. Microphone

The microphone that is interfaced with the Raspberry Pi is a

standard 3.5mm omnidirectional microphone [5]. The

microphone can pick up sound with equal gain from all

directions of the microphone. The Raspberry Pi does not have

an onboard microphone jack. For this reason, we used a USB

adapter to interface the microphone. To use this microphone,

we needed to install the PyAudio and SpeechRecognition

Python libraries. PyAudio allows us to use Python to play and

record audio streams.

SDP20 – Team 7

3

C. Speaker

We do not have a dedicated speaker for our system yet, but

we used a standard speaker with a 3.5mm port to connect to

the onboard 3.5mm jack on the Raspberry Pi. To correctly

output sounds through the speaker, we adjusted the Alsa

configuration file to set the universal output for the Pi.

Additionally, we used the SimpleAudio Python package which

provides cross-platform, dependency-free audio playback

capability for Windows and Linux. We also created our own

library of existing sounds (8 bit .wav files) to indicate “Hit”,

“Miss”, and “Sunk”.

D. LEDs

Figure III: Battleship LED Layout

For our version of the Battleship game, we are

implementing LED boards to make the game more

customizable and visually appealing. Skills from ECE 211 and

212 were used for this portion of the project like soldering and

power analysis of the LED boards. There will be a total of four

boards for our final project, one board for your ship placement

and another board for tracking your opponent’s board for each

player in the two-player mode of this game. The two boards

for each player will be perpendicular to each other with the

ship placement board parallel to the floor as the base and the

attack tracking board will be placed vertically. The two sets of

boards will be divided by a double-sided suitcase.

The LEDs that we are using for the boards are Adafruit

DotStar LEDs [6]. These were the LEDs we chose to use as it

was individually addressable by the Raspberry Pi and included

internal multiplexing. The DotStar has four different traces

which are the power, clock, data, and ground. The timing

between the microcontroller commands to the LEDs are

important for the fluidity of the game and this makes the

DotStar the best choice for the board as its clock timing is

synced to the microcontrollers processing. This enables us to

properly light up the corresponding LEDs without having any

delays that could possibly interrupt the clock cycle. The board

layouts themselves are arranged as an 8x8 LED grid shown in

Figure III, where an individual LED represents a tile on your

board that can be used to place parts of your ship.

Another reason for our choice of the DotStar is its power

efficiency. A strip of 30 LEDs consumes a total of 9 watts of

power with a 5-volt power supply which will drive 1.8 amps

of current. At face value, this seems like a high amount of

power being consumed if the LEDs are constantly on over the

duration of a game that can take up to 20 minutes, but these

are the specifications of the LEDs at maximum brightness. For

our implementation of the LEDs, we will be using a brightness

of just 10% that can be controlled by the microcontroller. At

maximum brightness, the LEDs were far too bright to look at

without being blinded, so we chose to use 10% of its

maximum brightness which is still very visible. At 10%

brightness, each LED will consume approximately 30 mW of

power. The colors for the DotStar that consume this much

power are only the primary colors which are red, blue, and

green. Colors that are mixed like purple or yellow will

consume less power than 30 mW per LED. With all four

boards completely lit up in the primary colors, the power

consumed will be 7.68 W. This will be the power consumption

of all 256 LEDs on the boards. This scenario will only be for a

very short amount of time as all four boards would only be

completely lit up at the very end a Battleship game. Using our

current brightness for the LEDs, it is very power efficient

compared to other potential LEDs.

Our future boards for the project will have these LEDs

evenly spaced out which will be approximately 8 by 8 inches

to simulate the real-life Battleship game boards. The LEDs are

currently soldered together, connecting each LED

horizontally, then at the end of the row it is soldered to the

next row below it. The Raspberry Pi sends data one way down

the LED rows for them to function properly. We plan to have

one PCB that can power all four boards. One of the boards is

going to contain the PCB which will be the master board and

that will be connected to the other 3 boards in parallel. The

PCB is necessary for two player mode as our current design

can only handle two LED boards. The Raspberry Pi only has

two output pins to power two of the boards, so it is not

feasible to just have the Raspberry Pi alone. With the PCB

powering the four LED boards, the Raspberry Pi will solely

send data to the boards to process commands taken in from the

voice recognition software. This makes sure our Raspberry Pi

does not overheat or burnout from constantly providing power

to the boards. We plan to use a 5-volt wall mount to power the

entire board setup.

E. Processing

Microcontroller

The microcontroller we opted to use was the Raspberry Pi

4. The Pi 4 offers the processing power that our system

requires for real time speech recognition. It also provides more

than adequate storage space for the voice recognition library

and the data for the games we will implement. Moreover, it

has on-board Wi-Fi for our online speech recognition and

many GPIO pins to interface the LED boards, microphone,

and speaker.

SDP20 – Team 7

4

To get started, we downloaded NOOBS, an installer for

Raspbian, onto a formatted SD card. The Raspberry Pi

automatically installs Raspbian with the installer on the SD

card. Raspbian is a modified version of Debian Linux, which

we are familiar with. Raspbian comes with Python 2 by

default. Before this project, we were not yet proficient in

Python. Python 3 in generally easier to learn and it is future

proof. For this reason, we installed and used Python 3. Many

of today’s developers use and create libraries strictly for

Python 3 and these are not backwards compatible with Python

2. In our case, the SpeechRecognition library, SimpleAudio

package, and Adafruit_Blinka package are only made

available for Python 3. Additionally, Python 3 has faster

runtimes and the community support for Python 3 is

significantly better.

Getting started with the Adafruit DotStar LEDs was a

simple process. We needed to install the Adafruit_Blinka

package that provides CircuitPython support in Python. This

package allows for full control over the individual RGB LEDs

for each board. The DotStar LEDs came in LED strips which

are addressable as a 1D array; LEDs are indexed starting at 0

to X-1, where X-1 is the last LED at the end of strip. We

needed to account for this as we need each board to be

represented as a 2D array. The first row of LEDs is addressed

from 0-7, the second row is 15-8, and so on.

Voice Recognition

 For our MDR prototype, we chose to utilize a speech

recognition package. A handful of packages for speech

recognition exist on PyPI. The SpeechRecognition library acts

as wrapper for several speech APIs. SpeechRecognition

requires PyAudio to interact with the microphone interfaced

on the Raspberry Pi. We have tested the offline package,

pocketsphinx, and google-cloud-speech.

Pocketsphinx was the only library that works offline, and

thus most suitable for our project in terms of portability.

However, we encountered many issues such as inaccurate

speech recognition and its specific language model for

English. At first, we used the default library and language

model. It could pick up sentences accurately in a quiet

environment. However, we did not want the entire English

library. To solve this issue, we created our own library for

specific words to pick up. However, it continued to pick up

words in the library that were not said, even in quiet

environments.

In our testing, Google Speech Recognition was more

accurate than pocketsphinx. Google-cloud-speech is an online

voice recognition API that enables us to convert audio to text.

This API applies powerful neural network models to the audio

file that the Pi will send to Google. It returns a string of text.

This method is very accurate, but in our testing, it takes up to

10 seconds to process a command.

Battleship

The code for the battleship gameplay is written in python to

program the Raspberry Pi. Programming techniques learned in

both ECE 122 and ECE 242 have been utilized to complete

this portion of the project. While these classes were taught in

java and we are programming in Python, the ability to

manipulate multidimensional arrays of objects as well as input

and output data are invaluable skills that bridge languages.

The gameplay currently only includes a single player mode in

which the user can play against a Computer Programmed

User.

To begin, both the CPU and the player have their board

layouts randomly generated. The ships can be anywhere on the

board, but they will always be continuous in either a

horizontal or vertical direction, never diagonal. Eventually the

ability to manually set ship locations will be implemented,

although the rules of how ships can be set will still apply. It

has one difficulty setting in which the computer guesses

random locations on the board until it gets a hit, and then

guesses spots around that hit until a boat is sunk. Once the

boat is sunk, the CPU goes back to randomly attacking spaces.

Going forward, two additional difficulty settings of the

CPU will be added to accommodate players looking for a

challenging experience. The difficulty level will have the most

impact towards the end of the game, when there will be

locations that could not fit a ship that a more difficult CPU can

choose not to target in its random guesses. If a boat is sunk for

the player or computer, then the computer will recognize that

and notify the player. It will also notify the player if either the

CPU or the player wins the game and end it. A second player

option will also be added next semester, allowing for two

users to play against each other.

III. PROJECT MANAGEMENT

Goal Status

The ability to play
against CPU

Accomplished

Quick Play mode Accomplished

Board lights up
correctly on hit or miss

Accomplished

Speaker projects sounds
for gameplay

Speaker works but not
when the voice
command is on

Table II: Proposed MDR Deliverables

Our team has consistently met both with our advisor and

amongst ourselves throughout the semester, allowing us to

progress effectively through the challenges this project has

provided. Through frequent communication between group

members over text and in person, we could collaborate to

accomplish almost all our MDR goals, as shown above in

Table II. We could successfully generate the code required to

set up the boats for both the CPU and a player at the start of

each game, the gameplay itself with one level of difficulty for

SDP20 – Team 7

5

the CPU, and the ability to light up the board to properly

display the game as well as emit sounds out of the speaker

corresponding to the game events. The two LED boards

promised were created successfully. They were soldered

together and attached to a piece of cardboard so they stay in

place. We currently have two options for inputting moves, one

on the keyboard and one through voice command.

The one aspect of our project that we were not able to fulfill

completely for MDR was having the speaker work

simultaneously with the voice command. When the voice

command input is active, there is a feedback loop that results

in a very irritating sound being emitted from the speaker.

When the keyboard input is active however, the speaker works

perfectly fine, emitting the programmed hit, sink, and miss

sounds at the proper times. The voice recognition works

decently well, however in its current state it is somewhat slow,

as well as very inaccurate if there is more than a small amount

of background noise.

Figure IV: Gantt Chart

While we have progressed quite well and a large portion of

the project has been completed, there is still a good deal of

work to be done. Figure IV, shown above, outlines our plans

to continue steady progress next semester. Vincent will begin

the semester by working on solving the issue with the speaker.

He will then implement the code to allow a second option of

setup with manual setup of ships. His main task for next

semester will be helping to implement a more functional voice

recognition software as that is what most of our project centers

around. James will spend the beginning of the semester adding

features to the gameplay such as difficulty levels to the CPU,

and the ability to play a player versus player game. He will

also assist Vincent in developing the enhanced voice

recognition functionality. Varak’s main task will be to design

and set up the PCB, Aleck may assist him as well when

needed. Once that is completed, he and Aleck are going to

move on to setting up the housing of Tetra Board, a suitcase,

ensuring that it looks good while also maintaining all the

functionality we desire. Aleck’s main task of next semester

will be putting together the third and fourth arrays of LEDs, as

well as setting up the original two arrays in a more

aesthetically appealing and sturdy fashion. If time permits, he

will then move on to adding the additional games of tic tac toe

and Connect 4 to Tetra Board. As CDR comes closer we will

all work on that presentation as well as delegate further tasks

to those who have the least left to do with their given duties.

To complete all these challenging tasks on time, we must

continue to work diligently and rigorously. As there are many

more potential challenges, we will keep up with regularly

meeting as a group to problem-solve new issues as they arise

and make changes to who is working on what and when if a

critical component is stalling. To come as far as we have, we

have all had to contribute a great deal, and we plan to come

into next semester with that same tenacity to complete Tetra

Board as a well-designed, fully functional finished product by

FDR.

IV. CONCLUSION

Project Tetra Board is slightly behind schedule, but it is far

from unsalvageable. For MDR we met three of our four goals

completely, and the fourth goal was somewhat met. Despite

not fully achieving our original MDR goals yet, we have still

made a very sizeable amount of progress towards a fully

functioning prototype. We are currently working together to

try and solve the issue we are having with our speaker before

we come back from winter break.

 Looking forwards, we plan to spend a significant amount of

time and effort in designing our PCB and refining the voice

recognition software. We will also continue adding

components such as the other two boards and more options

within the battleship game. Once we have achieved a working

prototype, we will look to play around with adding more

games to Tetra Board, such as Connect 4 and Tic Tac Toe and

possible a game that we come up with ourselves. We may also

add more manually operated components that could be used in

the case that someone with less severe physical impairments

were in a noisy location and still wanted to play.

ACKNOWLEDGMENT

Our group would like to thank our advisor, Professor

Polizzi, for giving us phenomenal insight and advice

throughout our project.

REFERENCES

[1] Rollins, Brandon. “How to Develop Visually and Physically Accessible
Board Games.” Brandon the Game Dev, 13 Nov. 2019

[2] Sepalla, J. Timothy. “GlassBattle puts Battleship on your face with
Google Glass.” Engadget, 8 Jul. 2013

[3] “We talk to Smuttlewerk about what distinguishes Fleet Battle from

other Battleship style games.” Pocket Gamer, 1 Dec. 2017

[4] Raspberry Pi Model 4 Datasheet. Raspberry Pi Ltd. Jun. 2019

[5] Lavalier Lapel Microphone with Headphone jack 3.5mm Lapel Clip-on

Omnidirectional Condenser Microphone. PoP Voice

[6] Burgess, Phillip. “Adafruit DotStar LEDs.” Adafruit Learning System,
26 Nov. 2019

APPENDIX

A. Design Alternatives

4-Pin Diode LED

The main design alternatives for our project were the choice

of LEDs for the Battleship boards. Our initial implementation

of the LEDs was to use four pin LEDs. These LEDs were not

addressable by the Raspberry Pi, which would cause many

problems with running the Battleship gameplay software. We

could not send commands to these LEDs to light them

different colors. The LEDs were also limited in color

SDP20 – Team 7

6

selection. The main problem with these LEDs were its power

consumption. They did not have an option to adjust the

brightness from the Raspberry Pi and more importantly they

did not include multiplexing. These LEDs would consume

much more power than we would want over the period of a 10

to 20-minute game of Battleship which is not reasonable. This

would make the LEDs very prone to burning out after

extended amounts of time of being lit up.

Neopixels

Another design alternative that we tried to use were the

Neopixels. The Neopixels were a better option than the 4-pin

diode LEDs as they were individually addressable by the

Raspberry Pi and offered multiplexing. This solved the two

issues with the 4-pin diodes as the Raspberry Pi was not able

to individually light up each LED and copious amounts of

power being consumed constantly. The problem we faced with

the Neopixels was its internal clock when being addressed by

the Raspberry Pi. The clock signals were not synced, and this

would cause inaccuracies in the timing of commands to be

processed by the Raspberry Pi until an LED would light up.

The complexity of the clock timing made the Neopixels a bad

choice for our project.

B. Testing Methods

For testing methods, we have implemented ways to test if

we are taking in the correct inputs from the microphone. One

of the ways to test this was to develop test cases in the voice

recognition software to tell us what words and letters the

microphone is picking up. The voice recognition software

would print out whatever we spoke into the microphone to see

if it would pick up the words we were saying. Sometimes the

microphone would pick up words instead of numbers or

unwanted spaces and to combat this, we implemented code

that would parse these unwanted spaces and numbers to

decipher whether it was a valid or invalid command.

In addition, we also had code in our Battleship software that

showed the player’s ship and attack board. The board would

update based on the inputs from the microphone and be

processed by the microcontroller. This helped us make sure

that the LED board were taking in the correct data from the

Raspberry Pi so the correct LED would be lit up

corresponding to the visual display from the software in the

command prompt.

C. Team Organization

Varak has been taking charge of doing most of the

administrative work to help keep us on pace for deadlines like

bench side meetings, PDR, MDR, and weekly meetings. He

has additionally been helping debug complications of our

project. Vincent has been doing most of the ordering for the

parts, facilitating the software for the voice recognition, and

making sure the software and hardware are compatible. James

has been facilitating the software for the Battleship gameplay

to make sure it is compatible with the voice recognition. He

and Vincent have been working together to make sure the

software is working properly. Aleck has been working on the

hardware side with the LED boards and making sure the

hardware is compatible with the software.

So far, our current team organization is working well. The

team organization was not assigned at the beginning of the

semester, rather individual team members took the initiative,

and these were the eventual roles that stemmed from that.

With everyone working on their respective tasks, we can make

good progress on our project. We are working well in our

current roles and there have not been many problems as team

members are willing to help others out when problems arrive.

Overall, the current team structure is proving to be successful

and we hope that we can keep this up for CDR as there will be

some differences in tasks for each team member.

D. Beyond the Classroom

Aleck has developed skills with hardware debugging and

figuring out problems with the LEDs when they are not

functioning properly. James became proficient in python and

continued to improve upon his software skills. Varak learned

how to regulate power supply amongst all the LEDs and how

to implement speaker control during gameplay. Vincent has

developed skills in speech recognition and become proficient

in Python while doing so. He also learned how to set up a

Raspberry Pi for development and how to interface different

components on the Pi. He has developed software and

hardware debugging skills as a result.

When it comes to projects that incorporate both hardware

and software, debugging is a necessary skill to have.

Regardless of skill level for either, it is important that the

hardware is compatible with the software and vice versa. As

professionals, we want to remove all the bugs that we can and

provide a good user experience for those testing our product.

E. Budget

For our project, we have used approximately 40% of our

overall budget up to this point. This is not too bad as our

projected cost for the other two boards and the PCB should not

bring us over the total budget given to us by the ECE

department. So far, our spending can be seen in Table III,

which is shown below.

Raspberry Pi 4 $48.01

DotStar LEDs x2 $49.90

HDMI $5.98

2-sided Briefcase $27.16

Microphone $12.99

Adaptor $7.99

Micro SD Card $9.40

Testing Components $23.87

SDP20 – Team 7

7

Total $185.30

Table III: Costs

