
1
SDP20 – Team 7

 1

Tetra Board

Aleck Chen, EE, James Gnall, EE, Varak Mouradian,
EE, and Vincent Nguyen, CSE

Abstract​—Since its emergence in the 1930s, the household
game Battleship has evolved from a pencil and paper game into a
fully-fledged board game. In its current iteration, the board game
requires the use of physical pieces of ships and pegs to play. This
requirement may prove to be quite demanding for those with
physical disabilities. Our focus is to create an authentic
Battleship experience without the use of physical pieces. We will
replace the traditional board game pieces with LEDs and
implement a voice recognition system to play the game. Our team
will seek to deliver a single player version of Battleship where a
human player will compete against a computer. In keeping with
the traditional aspects of Battleship, we will also implement a
speaker to output the results of the player’s movements.

I. I​NTRODUCTION
A. Significance

The tabletop gaming industry has been known to lag behind
other gaming industries when it comes to making their
products more accessible to users. Game designers are prone
to make assumptions about who is going to be playing their
game and that in turn alienates demographics who struggle to
play by the developer’s rules. As explained in an interview
with Dr. Michael Heron of Meeple Like Us, an organization
dedicated to promoting game accessibility, the requirement of
tight physical placements and the inability to verbalize your
instructions would turn many away from playing these types
of board games [1]. Adapting a classic board game like
Battleship for people with physical impairments is achieved
by simplifying each of the core elements of the game as much
as possible while keeping with the game’s aesthetic. Physical
pieces used to represent ships and pegs to represent attacks
can be relegated to simpler components that would operate
accordingly without requiring players to move these pieces
themselves. These pieces need to be able to operate based on
the input of the player and since we would like to make the
experience as hands free as possible, we will look to rely upon
the player’s verbalization of their instructions to operate. By
replacing physical pieces with LEDs and implementing a
voice recognition system, players will only need to speak into
a microphone to be able to play a game of Battleship.

A. Context and Existing Products
The issue of accessibility in board games has been an issue

for a long time and people have already tried to solve this

1

problem. For example, BrickSimple has created a version of
the Battleship game that can be played using the Google Glass
eyewear. This accomplishes a hands-free approach that our
team is looking to solve as well by implementing a voice
recognition system and the ability to play against other Google
Glass users. The game is programmed to allow users to play
the game at their leisure when they are completing other
everyday tasks. The layout of this iteration is the traditional
two boards per player layout for Battleship, all of which is
displayed on the corner of the eyewear’s screen. The
commands are inputted through a voice recognition system
that accepts two corresponding numbers between 1-7 to
represent a section on the gridded board. Once a command is
received, the game will process it accordingly and deliver
appropriate feedback on whether it was deemed a hit or miss.
This version of Battleship promotes portability by being able
to operate anywhere at any time. But as innovative as this
design may be, most people do not want to be distracted by a
game of Battleship when they are conducting their daily
activities. The game is meant to be completed at the
convenience of both players and nowhere is more convenient
then in your own home. This makes the Google Glass
component unnecessary when most people wish to conduct
this game in a less distracting environment, unlike outside
during the day.

Another design alternative that promoted more accessible
play is shown on our mobile devices. With an abundance of
applications found online nowadays, it comes as no surprise
that classic board games like Battleship have made their way
onto the online marketplace. One such mobile version of
Battleship is known as Fleet Battle found on Android devices.
This follows the traditional gameplay of Battleship but also
includes many animations to enhance the experience while
playing on your mobile devices. This is a welcome addition to
a classic game and may prove that the future of board games is
to end up on the mobile applications market. But in terms of
addressing how accessible this application may be for those
with physical disabilities, this game does not seem to address
those concerns. With no voice recognition system to input in
commands, the application prompts players to use the touch
screen features on their smart devices to manually pick the
point they wish to attack. This may prove to be quite an
uncomfortable task for those with physical disabilities as when
they would try to play this game with physical pieces. These
movements needed by players may turn this demographic
away from this title and that is something our group is looking
to avoid.

B. Societal Impacts
To create a welcoming experience for players with physical

disabilities, our group is looking to remove any feature that
may prove too difficult to perform while also maintaining the
traditional gameplay of the board game. We first begin by

2
SDP20 – Team 7

looking into replacing physical pieces with electrical devices
that will represent the game’s pieces and adapt to any situation
found throughout the experience. We found that light emitting
diodes are perfect for representing our physical pieces as they
can be easily programmed to match the situation we would
like to present. Now, looking at how we would like the game
to be operated by players that is achievable by all,
implementing a voice recognition system has proven to be the
perfect solution to our problem. Using vocal inputs to
designate where a player wants to attack is the least physically
involved way of playing Battleship, so we looked to
implement this feature as effectively as possible. These main
features work in tandem to simulate the experience of playing
Battleship for those who have had trouble in the past when
playing these types of board games. People who struggled
with placing pieces into small holes on the boards will now
have the ability to play this board game unobstructed by the
physically demanding features found in previous iterations.

C. Requirements Analysis and Specifications

Requirements Specification Value

Portability Double-Sided Briefcase 12” x 6” x 9”

Game Board 4 Boards 8” x 8” per board

Display DotStar LED 5V supply

Sound Speaker “Hit”
“Miss”
“Sunken Ship”

Voice Control 1 Microphone Alphanumeric Commands
i.e. Alpha 3

Power External 5V Wall Mount 5V

Table I: Requirements and Specifications

II. D​ESIGN

Figure I: Final Product

A. Overview
Board games require physical movement, and those with

poor motor skills struggle or will not have a chance to play. To
approach this problem, we decided to use voice recognition.
We want to eliminate as much of the physical movement
required to play as possible. Our design specifications are
shown in Table I.

The heart of our system is a Raspberry Pi 4, which is
responsible for processing real-time voice recognition and the
gameplay for our board games. The Pi will take in audio input
from the microphone and process user commands. Then, it
will update the LED boards and output correct sounds for the
user.

The specification of requiring a double sided briefcase
mainly affected the way that the four boards of LEDs were
able to be implemented and connected. The necessity of
portability ensured that the LEDs would need to be sturdy
enough to be folded up for transportation. This resulted in the
LEDs being soldered together with unequal spacing from
vertical to horizontal. Originally a perfectly symmetrical 8x8
square of LEDs was planned for but the more solders required
to connect the LEDs the less sturdy they were found to be. To
combat this, wider spaced strips were bought and then
connected together at the end of each row instead of each one
soldered to the next.

For our game boards, we decided to use the dotstar LEDs to
light up the board for either a “miss”, a “hit”, a “sunken ship”,
and the different types of ships that you have available on your
board. With the dotstar LEDs, we had very reasonable power
usage for lighting up all 4 boards which contain 256 LEDs in
total. With our current power consumption for the boards and
raspberry pi, we are able to scale down the amount of voltage
needed from our pcb. The only problem with the use of these
LEDs was the fact that we could not physically replace each
LED to its corresponding grid. In order to replace a single
LED, we would need to replace the entire row of LEDs with
our current configuration. This would require us to resolder on
a new strip of LEDs to replace the row which would be
inconvenient. Although the replacement of an individual LED
would be a hassle, it is worth the tradeoff in terms of power
for us to use them as it would be very unlikely that an LED
would burn out due to the very minimal power consumption.

For our display, we chose to use the dotstar LEDs over
many different types of displays. For Tetra Board, we wanted
to keep as much of the old aesthetic of battleship with a
slightly more modern approach to the game. With that being
said, there were many options for different displays we could
have used like neopixels, 4 pin LEDs, and a touch screen
display. We didn’t use the neopixels as they weren’t
synchronized with the raspberry pi clock even though they
consumed around the same power as the dotstar LEDs. For the
4 pin diode LEDs, these were too power hungry and if we
wanted to power all 4 boards with them, it would consume an

3
SDP20 – Team 7

excessive amount of power that we couldn’t continuously
power up unless it was directly supplied from the wall. To add
to this, with a constant high power consumption, the risk of
burning out an LED would be high and this would cause many
problems when it comes to replacing each individual LED on
the grid. The 4 pin LEDs would also be much harder to solder
together, risking the structural integrity of our boards. Lastly,
we did not choose a touch screen display because we wanted
to keep our product as hands-free as possible. We could have
had a screen display and still used voice recognition, but we
wanted to keep the old aesthetic and truly make a unique
product that isn’t just another screen display out there on the
market. Although the screen display would have a much more
modern look and structural integrity inside the briefcase, the
cost of getting 4 screens for the entire board would be too high
to be justifiable for this product. All in all, the dotstar LEDs
have a good combination of compatibility, aesthetic, power
consumption, and cost.

To enhance the experience of tabletop games like
Battleship, we sought to add an external speaker that would
play the appropriate sounds associated with the corresponding
moves made during the game. Each of these distinct sounds
would notify players that they have either damaged, missed or
sunk the opposing player’s ship. We used a wired speaker that
was connected to the Raspberry Pi to play sounds after every
move. We would eventually look to integrate a speaker that
was compact enough to house somewhere around the briefcase
so that it can be easily transported with the rest of the device.

For our voice recognition design, we chose to use one
central microphone for both players in the game. The
alternative to the single microphone would be using multiple
headsets for each player. Having two headsets would be much
easier for the voice recognition as the microphone would be
picking up sounds directly from the respective players. The
problem with this is the portability aspect of our product. We
want to keep this product as hands-free as possible and using
the headsets would take away from that. Although the voice
recognition would be slightly more accurate with the
individual headsets, this is a tradeoff we are willing to take as
we have taken many measures to improve the voice
recognition system itself.

To meet our power requirements so that our game board can
maintain portability, we sought to design a voltage regulator
PCB. The electronic hardware would receive a DC voltage
input from a wall outlet and the PCB would then distribute 5V
and 3A to all necessary hardware components. The
components to be supplied were Raspberry Pi and the 4 LED
boards. The PCB would be housed within the briefcase so that
the board can be taken and used anywhere near a wall outlet.

The block diagram of our system is shown below in Figure II.

Figure II: Block Diagram

B. Microphone
The microphone that is interfaced with the Raspberry Pi is a

standard 3.5mm omnidirectional microphone. The microphone
can pick up sound with equal gain from all directions of the
microphone. The Raspberry Pi does not have an onboard
microphone jack. For this reason, we used a USB adapter to
interface the microphone. To use this microphone, we needed
to install the PyAudio and SpeechRecognition Python
libraries. PyAudio allows us to use Python to play and record
audio streams.

C. Speaker
We do not have a dedicated speaker for our system yet, but

we used a standard speaker with a 3.5mm port to connect to
the onboard 3.5mm jack on the Raspberry Pi. To correctly
output sounds through the speaker, we adjusted the Alsa
configuration file to set the universal output for the Pi.
Additionally, we used the SimpleAudio Python package which
provides cross-platform, dependency-free audio playback
capability for Windows and Linux. We also created our own
library of existing sounds (8 bit .wav files) to indicate “Hit”,
“Miss”, and “Sunk”.

4
SDP20 – Team 7

D. LEDs

Figure III: Battleship LED Layout

For our version of the Battleship game, we are
implementing LED boards in order to make the game more
customizable and visually appealing. Skills from ECE 211 and
212 were used for this portion of the project like soldering and
power analysis of the LED boards. There will be a total of four
boards for our final project, one board for your ship placement
and another board for tracking your opponent’s board for each
player in the two-player mode of this game. The two boards
for each player will be perpendicular to each other with the
ship placement board parallel to the floor as the base and the
attack tracking board will be placed vertically. The two sets of
boards will be divided by a double-sided suitcase.

The LEDs that we are using for the boards are Adafruit
DotStar LEDs. [2] These were the LEDs we chose to use as it
was individually addressable by the Raspberry Pi and included
internal multiplexing. The DotStar has four different traces
which are the power, clock, data, and ground. The timing
between the microcontroller commands to the LEDs are
important for the fluidity of the game and this makes the
DotStar the best choice for the board as its clock timing is
synced to the microcontrollers processing. This enables us to
properly light up the corresponding LEDs without having any
delays that could possibly interrupt the clock cycle. The board
layouts themselves are arranged as an 8x8 LED grid shown in
Figure III, where an individual LED represents a tile on your
board that can be used to place parts of your ship.

Another reason for our choice of the DotStar is its power
efficiency. A strip of 30 LEDs consumes a total of 9 watts of
power with a 5 volt power supply which will drive 1.8 amps of
current. At face value, this seems like a high amount of power
being consumed if the LEDs are constantly on over the
duration of a game that can take up to 20 minutes, but these
are the specifications of the LEDs at maximum brightness. For

our implementation of the LEDs, we will be using a brightness
of just 10% that can be controlled by the microcontroller. At
maximum brightness, the LEDs were far too bright to look at
without being blinded, so we chose to use 10% of its
maximum brightness which is still very visible. At 10%
brightness, each LED will consume approximately 30 mW of
power. The colors for the DotStar that consume this much
power are only the primary colors which are red, blue, and
green. Colors that are mixed like purple or yellow will
consume less power than 30 mW per LED. With all four
boards completely lit up in the primary colors, the power
consumed will be 7.68 W. This will be the power consumption
of all 256 LEDs on the boards. This scenario will only be for a
very short amount of time as all four boards would only be
completely lit up at the very end of a Battleship game. Using
our current brightness for the LEDs, it is very power efficient
compared to other potential LEDs.

Our future boards for the project will have these LEDs
evenly spaced out which will be approximately 8 by 8 inches
to simulate the real-life Battleship game boards. The LEDs are
currently soldered together, connecting each LED
horizontally, then at the end of the row it is soldered to the
next row below it. The Raspberry Pi sends data one way down
the LED rows for them to function properly. We plan to have
one PCB that can power all four boards. One of the boards is
going to contain the PCB which will be the master board and
that will be connected to the other 3 boards in parallel. The
PCB is necessary for two player mode as our current design
can only handle two LED boards. The Raspberry Pi only has
two output pins to power two of the boards, so it is not
feasible to just have the Raspberry Pi alone. With the PCB
powering the four LED boards, the Raspberry Pi will solely
send data to the boards to process commands taken in from the
voice recognition software. This makes sure our Raspberry Pi
does not overheat or burnout from constantly providing power
to the boards. We plan to use a 5 volt wall mount to power the
entire board setup.

E. Processing

Microcontroller
The microcontroller we opted to use was the Raspberry Pi

4. The Pi 4 offers the processing power that our system
requires for real time speech recognition. It also provides more
than adequate storage space for the voice recognition library
and the data for the games we will implement. Moreover, it
has on-board Wi-Fi for our online speech recognition and
many GPIO pins to interface the LED boards, microphone,
and speaker.

To get started, we downloaded NOOBS, an installer for
Raspbian, onto a formatted SD card. The Raspberry Pi
automatically installs Raspbian with the installer on the SD
card. Raspbian is a modified version of Debian Linux, which

5
SDP20 – Team 7

we are familiar with. Raspbian comes with Python 2 by
default. Before this project, we were not yet proficient in
Python. Python 3 is generally easier to learn and it is future
proof. For this reason, we installed and used Python 3. Many
of today’s developers use and create libraries strictly for
Python 3 and these are not backwards compatible with Python
2. In our case, the SpeechRecognition library, SimpleAudio
package, and Adafruit_Blinka package are only made
available for Python 3. Additionally, Python 3 has faster
runtimes and the community support for Python 3 is
significantly better.

Getting started with the Adafruit DotStar LEDs was a
simple process. We needed to install the Adafruit_Blinka
package that provides CircuitPython support in Python. This
package allows for full control over the individual RGB LEDs
for each board. The DotStar LEDs came in LED strips which
are addressable as a 1D array; LEDs are indexed starting at 0
to X-1, where X-1 is the last LED at the end of the strip. We
needed to account for this as we need each board to be
represented as a 2D array. The first row of LEDs are
addressed from 0-7, the second row is 15-8, and so on.

Voice Recognition
For our MDR prototype, we chose to utilize a speech

recognition package. A handful of packages for speech
recognition exist on PyPI. The SpeechRecognition library acts
as a wrapper for several speech APIs. SpeechRecognition
requires PyAudio to interact with the microphone interfaced
on the Raspberry Pi. We have tested the offline package,
pocketsphinx, and google-cloud-speech.

Pocketsphinx was the only library that works offline, and
thus most suitable for our project in terms of portability.
However, we encountered many issues such as inaccurate
speech recognition and its specific language model for
English. At first, we used the default library and language
model. It could pick up sentences accurately in a quiet
environment. However, we did not want the entire English
library. In an attempt to solve this issue, we created our own
library for specific words to pick up. However, it continued to
pick up words in the library that were not said, even in quiet
environments.

In our testing, Google Speech Recognition was more
accurate than pocketsphinx. Google-cloud-speech is an online
voice recognition API that enables us to convert audio to text.
This API applies powerful neural network models to the audio
file that the Pi will send to Google. It returns a string of text.
This method is very accurate, but in our testing, it takes up to
10 seconds to process a command.

In the second half of the year, we were able to implement a
Butterworth filter for preprocessing speech before sending the
audio file to Google Speech to Text. Moreover, we also
implemented our own database for post-processing the output
from Google Speech to Text. This significantly improved our

voice recognition software, especially in noisy environments.

Battleship

The code for the battleship gameplay is written in python to
program the Raspberry Pi. Programming techniques learned in
both ECE 122 and ECE 242 have been utilized to complete
this portion of the project. While these classes were taught in
java and we are programming in Python, the ability to
manipulate multidimensional arrays of objects as well as input
and output data are invaluable skills that bridge languages.
The gameplay currently only includes a single player mode in
which the user can play against a Computer Programmed
User.

To begin, both the CPU and the player have their board
layouts randomly generated. The ships can be anywhere on the
board, but they will always be continuous in either a
horizontal or vertical direction, never diagonal. Eventually the
ability to manually set ship locations will be implemented,
although the rules of how ships can be set will still apply. It
has one difficulty setting in which the computer guesses
random locations on the board until it gets a hit, and then
guesses spots around that hit until a boat is sunk. Once the
boat is sunk, the CPU goes back to randomly attacking spaces.

Going forward, two additional difficulty settings of the CPU
will be added to accommodate players looking for a
challenging experience. The difficulty level will have the most
impact towards the end of the game, when there will be
locations that could not fit a ship that a more difficult CPU can
choose not to target in its random guesses. If a boat is dunk for
the player or computer, then the computer will recognize that
and notify the player. It will also notify the player if either the
CPU or the player wins the game and ends it. A second player
option will also be added next semester, allowing for two
users to play against each other.

III. P​ROJECT​ M​ANAGEMENT

Goal Status

The ability to play
against CPU

Accomplished

Quick Play mode Accomplished

Board lights up
correctly on hit or miss

Accomplished

Speaker projects sounds
for gameplay

Accomplished

Table II: Proposed MDR Deliverables

Our team has consistently met both with our advisor and
amongst ourselves throughout the semester, allowing us to

6
SDP20 – Team 7

progress effectively through the challenges this project has
provided. Through frequent communication between group
members over text and in person, we were able to collaborate
to accomplish almost all our MDR goals, as shown above in
Table II. We were able to successfully generate the code
required to set up the boats for both the CPU and a player at
the start of each game, the gameplay itself with one level of
difficulty for the CPU, and the ability to light up the board to
properly display the game as well as emit sounds out of the
speaker corresponding to the game events. The two LED
boards promised were created successfully. They were
soldered together and attached to a piece of cardboard so they
stayed in place. We currently have two options for inputting
moves, one on the keyboard and one through voice command.

The one aspect of our project that we were not able to fulfill
completely for MDR was having the speaker work
simultaneously with the voice command. When the voice
command input is active, there is a feedback loop that results
in a very irritating sound being emitted from the speaker.
When the keyboard input is active however, the speaker works
perfectly fine, emitting the programmed hit, sink, and miss
sounds at the proper times. The voice recognition works
decently well, however in its current state it is somewhat slow,
as well as very inaccurate if there is more than a small amount
of background noise.

Figure IV: Gantt Chart

While we have progressed quite well and a large portion of
the project has been completed, there is still a good deal of
work to be done. Figure IV, shown above, outlines our plans
to continue steady progress next semester. Vincent will begin
the semester by working on solving the issue with the speaker.
He will then implement the code to allow a second option of
setup with manual setup of ships. His main task for next
semester will be helping to implement a more functional voice
recognition software as that is what most of our project centers
around. James will spend the beginning of the semester adding
features to the gameplay such as difficulty levels to the CPU,
and the ability to play a player versus player game. He will
also assist Vincent in developing the enhanced voice
recognition functionality. Varak’s main task will be to design
and set up the PCB, Aleck may assist him as well when
needed. Once that is completed, he and Aleck are going to
move on to setting up the housing of Tetra Board, a suitcase,
ensuring that it looks good while also maintaining all of the
functionality we desire. Aleck’s main task of next semester

will be putting together the third and fourth arrays of LEDs, as
well as setting up the original two arrays in a more
aesthetically appealing and sturdy fashion. If time permits, he
will then move on to adding the additional games of tic tac toe
and Connect 4 to Tetra Board. As CDR comes closer we will
all work on that presentation as well as delegate further tasks
to those who have the least left to do with their given duties.

To complete all these challenging tasks on time, we will
have to continue to work diligently and rigorously. As there
are many more potential challenges, we will keep up with
regularly meeting as a group to problem-solve new issues as
they arise and make changes to who is working on what and
when if a critical component is stalling. In order to come as far
as we have, we have all had to contribute a great deal, and we
plan to come into next semester with that same tenacity to
complete Tetra Board as a well-designed, fully functional
finished product by FDR.

IV. The Product

A. ​Product Overview

At the time of CDR Tetra Board had all of its components
working but they were not all housed in the locations where
they would have been for the final demo. Shown below in
Figure V is the plan for the final demo, detailing where each
of the core components of the block diagram would be
located.

Figure V: Product Sketch

Label A is the microphone, which we have clipped to the top
of the case where it can pick up the audio input from each
player. Label B points to the speaker which would be placed at
the top of the middle section of the case near the microphone.

7
SDP20 – Team 7

Label C points to the center of the case, inside of which the
Raspberry Pi which handles all of the processing would be
located and connected to the boards, speaker, and microphone.
Lastly, label D points to two of the LED boards, the other two
boards are on the other side of the case. The PCB would also
be located inside the middle section connecting to the boards
and the Pi to power the system. This would also have a cord
connecting to the side coming from a wall mount to provide
power to the PCB. Shown below in Figure VI is a picture of
Tetra Board set up to present for CDR.

Figure VI: State of Tetra Board at CDR

As can be seen in the picture, the four boards are inside of the
briefcase holding all 256 LEDS. At this time our PCB had not
been shipped so we have the power supply setup in the
breadboard seen off to the left. The microphone is attached to
the desk shown hanging down in the top left of the image. It
was set up for easier use since it was to be used while sitting at
the computer at that time. We were still using a separate
speaker at that time; it is not shown in this image.

Electronic Hardware Component

Production of the PCB began at the end of the Fall semester.
The goal for our electronic hardware component was that our
design needed to be supplied enough power to function while
also maintaining the portability specification we had set for
our team. Both the Raspberry Pi and all 4 of the LED boards
needed to be supplied with ample power. The Raspberry Pi 4
Model B our team had been using required a 5V 3A input to
function according to its datasheet. After researching about the
power requirements and running our own set of power
consumption tests, we determined that all 4 LED boards

would also need a 5V 3A input to function. Since we wanted
our game board to be portable, we decided to have our PCB
receive input from an AC-DC converter that is connected to a
wall outlet. The goal was to populate the PCB inside the
briefcase, allowing a small opening in which the hardware
component would receive the wall outlet’s input. The most
appropriate voltage regulator our team found to distribute the
ample power requirements was the LM2596,T which can
output 5V 3A while receiving a 12V DC input. Our team
deemed that both the LED boards and the Raspberry Pi needed
to be supplied by separate voltage regulator circuits to avoid
one hardware component from siphoning the current from the
other component. The schematic below represents two
LM2596T circuits from their respective datasheets sharing the
same input but having separate outputs.

Figure VII: PCB circuit schematic

Before our CDR presentation, our team was able to test one
LM2596T circuit to see how well our game board functioned
with that input. The picture below depicts the successful test
we ran with our circuit. One LM2596T circuit was able to
supply enough power to all 4 LED boards. Unfortunately, the
fabricated PCB did not arrive before CDR and we were not
able to populate our PCB onto our game board.

8
SDP20 – Team 7

Figure VIII: Electronic Hardware Component implemented with
design

C. ​Product Functionality

At the time of CDR, the Tetra Board was fully functioning and
the product was demonstrated to our evaluators in person. Our
speech recognition required a lot of troubleshooting and
improvement throughout both semesters. We tried multiple
voice-recognition libraries, including AWS Transcribe and
Google Speech to Text. Our solution to reducing noise was to
preprocess audio using a Butterworth filter and post-process
using a database of common mistakes received from Google
Speech to Text. Moreover, at the beginning, the LEDs did not
work well and we thought our Pi was not working properly.
However, we found that using SPI and I2C pins instead of I/O
pins on the Pi provided a much better, reliable connection to
the LEDs. We did not run into any issues implementing
software to the Pi or software to display the LEDs. In the end,
all of our components in the block diagram were working
properly.

Figure II: Block Diagram Shown Again

D. ​Product​ ​Performance

At the time of CDR, we had met most of our products
specifications. Looking at table I from earlier we can see the
different specifications that our product was going to meet.
We successfully implemented alphanumeric commands from
Alpha 1 through 8 to hotel 1 through 8. We had fully
implemented our speaker that was able to sound off on a “hit”,
“miss”, and a “sunken ship” with their own respective sounds.
For our lights on the board, we implemented dotstar LEDs
which only require a 5V source for all 256 LEDs in order to
function properly with all different colors at our desired
brightness. The entire product is housed inside a double-sided
briefcase with all four boards implemented inside of it. A
picture of the boards housed inside the briefcase can be seen
above from figure VI. The one specification that we did not
have at the time of CDR was the external 5V wall mount. We
had planned to implement this for FPR, as it would have been
extraneous to implement the wall mount when the PCB for our
product was implemented inside our product. We had also
planned to use an external wall mount of 12V instead of 5V as
our product had changed with the use of our PCB now being a
step down voltage regulator at 5V, so it wouldn’t have made
sense for us to continue using the 5V wall mount. All in all,
our product had met most of the specifications from table I
with just a slight change in the Power specification. In terms
of using the product itself, We had very fast response times
from when commands were input into the microphone to have
the right position on the 8x8 grid light up. We were able to
implement different colors and also had a robust speech
recognition working for our set of commands that were needed
to play battleship on our product.

V. C​ONCLUSION
Looking forward, we plan to integrate the PCB together

with the entire product to ensure that it works as a whole. We
will also continue adding components such as the other two
boards and more options within the battleship game. We will
look to play around with adding more games to Tetra Board,
such as Connect 4 and Tic Tac Toe and possibly a game that
we come up with ourselves. We may also add more manually
operated components that could be used in the case that
someone with less severe physical impairments were in a
noisy location and still wanted to play.

A​CKNOWLEDGMENT
Our group would like to thank our advisor, Professor

Polizzi, for giving us phenomenal insight and advice
throughout our project.

R​EFERENCES
[1] Rollins, Brandon. “How to Develop Visually and Physically Accessible

Board Games.” ​Brandon the Game Dev​, 13 Nov. 2019

9
SDP20 – Team 7

[2] Burgess, Phillip. “Adafruit DotStar LEDs.” Adafruit Learning System,

26 Nov. 2019
[3] IEEE Standard for Information Technology--Portable Operating System

Interface (POSIX(R)) Base Specifications, Issue 7," in ​IEEE Std
1003.1-2017 (Revision of IEEE Std 1003.1-2008)​ , vol., no., pp.1-3951,
31 Jan. 2018 doi: 10.1109/IEEESTD.2018.8277153

[4] IEEE Std 802.15.1-2005 – Part 15.1: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Wireless Personal
Area Networks (WPANs)"​. ​IEEE Standards Association​.
doi​:​10.1109/IEEESTD.2005.96290​. ​ISBN​ ​0-7381-4707-9​. Retrieved
June 30, 2011.

A​PPENDIX

A. Design Alternatives

4-Pin Diode LED

The main design alternatives for our project were the choice
of LEDs for the Battleship boards. Our initial implementation
of the LEDs was to use four pin LEDs. These LEDs were not
addressable by the Raspberry Pi, which would cause many
problems with running the Battleship gameplay software. We
could not send commands to these LEDs to light them
different colors. The LEDs were also limited in color
selection. The main problem with these LEDs was its power
consumption. They did not have an option to adjust the
brightness from the Raspberry Pi and more importantly they
did not include multiplexing. These LEDs would consume
much more power than we would want over the period of a 10
to 20-minute game of Battleship which is not reasonable. This
would make the LEDs very prone to burning out after
extended amounts of time of being lit up.

Neopixels

Another design alternative that we tried to use were the
Neopixels. The Neopixels were a better option than the 4-pin
diode LEDs as they were individually addressable by the
Raspberry Pi and offered multiplexing. This solved the two
issues with the 4-pin diodes as the Raspberry Pi was not able
to individually light up each LED and copious amounts of
power were consumed constantly. The problem we faced with
the Neopixels was its internal clock when being addressed by
the Raspberry Pi. The clock signals were not synced, and this
would cause inaccuracies in the timing of commands to be
processed by the Raspberry Pi until an LED would light up.
The complexity of the clock timing made the Neopixels a bad
choice for our project.

B. Technical Standards

The IEEE 802.11 protocol specifies media access control and
physical layer protocols for communication via wireless local
area network communication which our voice recognition
software and text to speech software utilized.

1074-2006 - IEEE Standard for Developing a Software Project
Life Cycle Process (Game Software Development)

● Stage 1: Planning and Requirement Analysis
● Stage 2: Defining Requirements
● Stage 3: Designing the Product Architecture
● Stage 4: Building or Developing the Product
● Stage 5: Testing the Product
● Stage 6: Deployment in the Market and Maintenance

The 1074-2006 standard defines how a Software Project Life
Cycle is created and can be used by anyone tasked with
creating and maintaining a project either entirely composed of
or merely containing software. As shown above, there are six
stages of the process which end in the deployment and
maintenance of the system. Tetra Board obviously did not get
to that stage but when programming the strategy encouraged
by this standard was loosely followed.

The IEEE 1003.1 standard defines operating system
environment and interface guideline standardizing command
interpretation as well as utility programs to allow for
portability of source code. It is made up of four main parts,
general terms, concepts, interfaces, and utility and C header
conventions. [3] When using the Raspberry Pi linux was
necessarily used to navigate and operate the software for Tetra
Board.

The IEEE 802.15.1 standard specifies that ​it defines physical
layer (PHY) and ​Media Access Control ​(MAC) specification
for wireless connectivity with fixed, portable and moving
devices within or entering personal operating space. [4] In the
case of our product, we had built in bluetooth capabilities
through our microcontroller that was able to connect with the
speaker if we needed it to be wireless. Currently the onboard
speaker of the product is a part of our product, but the
bluetooth capabilities are available if a customer would want
to freely move the speaker around, granting extra portability
of the product and more personal customization.

C. Testing Methods
For testing methods, we have implemented ways to test if

we are taking in the correct inputs from the microphone. One
of the ways to test this was to develop test cases in the voice
recognition software to tell us what words and letters the
microphone is picking up. The voice recognition software
would print out whatever we spoke into the microphone to see
if it would pick up the words we were saying. Sometimes the
microphone would pick up words instead of numbers or
unwanted spaces and to combat this, we implemented code
that would parse these unwanted spaces and numbers to
decipher whether it was a valid or invalid command.

In addition, we also had code in our Battleship software that
showed the player’s ship and attack board. The board would
update based on the inputs from the microphone and be
processed by the microcontroller. This helped us make sure
that the LED board was taking in the correct data from the

http://standards.ieee.org/findstds/standard/802.15.1-2005.html
http://standards.ieee.org/findstds/standard/802.15.1-2005.html
http://standards.ieee.org/findstds/standard/802.15.1-2005.html
http://standards.ieee.org/findstds/standard/802.15.1-2005.html
https://en.wikipedia.org/wiki/IEEE_Standards_Association
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FIEEESTD.2005.96290
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7381-4707-9
https://en.wikipedia.org/wiki/Media_Access_Control

10
SDP20 – Team 7

Raspberry Pi so the correct LED would be lit up
corresponding to the visual display from the software in the
command prompt.

D. Team Organization
Varak has been taking charge of doing most of the

administrative work to help keep us on pace for deadlines like
bench side meetings, PDR, MDR, and weekly meetings. He
has additionally been helping debug complications of our
project. Vincent has been doing most of the ordering for the
parts, facilitating the software for the voice recognition, and
making sure the software and hardware are compatible. James
has been facilitating the software for the Battleship gameplay
in order to make sure it is compatible with the voice
recognition. He and Vincent have been working together to
make sure the software is working properly. Aleck has been
working on the hardware side with the LED boards and
making sure the hardware is compatible with the software.

So far, our current team organization is working well. The
team organization was not assigned at the beginning of the
semester, rather individual team members took the initiative,
and these were the eventual roles that stemmed from that.
With everyone working on their respective tasks, we can make
good progress on our project. We are working well in our
current roles and there have not been many problems as team
members are willing to help others out when problems arrive.
Overall, the current team structure is proving to be successful
and we hope that we can keep this up for the final product as
there will be some differences in tasks for each team member.

E. Beyond the Classroom
Aleck has developed skills with hardware debugging and

figuring out problems with the LEDs when they are not
functioning properly. James became proficient in python and
continued to improve upon his software skills. Varak learned
how to regulate power supply amongst all the LEDs and how
to implement speaker control during gameplay. Vincent has
developed skills in speech recognition and become proficient
in Python while doing so. He also learned how to set up a
Raspberry Pi for development and how to interface different
components on the Pi. He has developed software and
hardware debugging skills as a result.

When it comes to projects that incorporate both hardware
and software, debugging is a necessary skill to have.
Regardless of skill level for either, it is important that the
hardware is compatible with the software and vice versa. As
professionals, we want to remove all the bugs that we can and
provide a good user experience for those testing our product.

F. Budget
For our project, we have used approximately 40% of our

overall budget up to this point. This is not too bad as our
projected cost for the other two boards and the PCB should not
bring us over the total budget given to us by the ECE

department. So far, our spending can be seen in Table III,
which is shown below.

Raspberry Pi 4 $48.01

DotStar LEDs x2 $49.90

HDMI $5.98

2-sided Briefcase $27.16

Microphone $12.99

Adaptor $7.99

Micro SD Card $9.40

Testing Components $23.87

Total $185.30

Table III: Costs

