Acoustic Battleship

Evaluated by: Professor Maciej Ciesielski Professor Christopher Hollot

Department of Electrical and Computer Engineering

Team Members

Liam Weston (Group Manager)

Justin Forgue

Adrian Sanmiguel

Xinyu Cao

Department of Electrical and Computer Engineering

Problem Statement

Board games have failed to adapt to the technological advances of today's market. Traditional board games have fallen out of favor. Implementing embedded systems could help to provide a jolt to the industry.

How do we plan to do this?

Problem Statement

- Provide an aesthetically pleasing, functional, scalable, and robust interface
- Applying these characteristics to Battleship

Problem Statement

- Our solution will put an interactive spin on a classic game
- Accuracy based game using a ping pong ball to provide low-latency, responsive feedback
- Will follow an adapted set of guidelines to Battleship
- Using localization from a network of microphones to detect if a target is hit

Game Demo

Player A plays, miss

Display for A

Display for B

Player B

Game Demo

Player B plays, hits

Display for A

Display for B

Player A

Player B

System Requirements & Specifications

Table of Requirements and Specifications

Requirement	Specifications	Value
Accuracy	Distance Error	<= 5 cm
Responsiveness	Response Time	<= 500 ms

Components: Microphone, LED, ADC, Microcontroller, Display, Ping-Pong Ball, transparent glass table

Block Diagram

Microphone Sensors

- Implement 16 electret omnidirectional condenser microphones (CMA-4544PF) to optimize source localization in 2-Dimensional space
- Operating frequency: 20Hz 20kHz
 Frequency of human conversation: 85Hz 255 Hz
 Frequency of Ping Pong hitting a surface: 5.9kHz 7.3kHz

Microphone Sensors

Microphones sensors will be omnidirectional

Analog Digital Converter (ADC)

Time of Arrival

Signal Waveforms of Sensor Array

Algorithms

d = t * s

sound source
 acoustic sensor

t: time duration from sound source to sensor
s = 340 m/s (sound of speed in air)
d: distance from sound source to sensor

$$p = \frac{a+b+c}{2}$$

$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

$$h_a = 2\frac{A}{a} \qquad h_b = 2\frac{A}{b} \qquad h_c = 2\frac{A}{c}$$

Algorithms

Department of Electrical and Computer Engineering

Microcontroller Function

- Takes input from the ADCs and clock
- Once the input of an ADC goes high the system time is stored
- The 16 time stamps are compared to calculate a location on the board
- The location is matched to a LED
- The relevant LED is switched through the output of a PWM signal

Technical Alternatives

FPGA (compared to microcontroller)

- Pro: flexible and reduce system components
- Con: more complex and takes more time

Camera vision (compared to microphone sensor)

- Pro: easier to track the motion, more precise
- Con: more complex and resource intensive.

Infrared sensors (compared to microphone sensor)

- Pro: more accurate, more responsive
- Con: expensive, need a lot

Non-Technical Alternatives

Ping-Pong Score Keeping (compared to Battleship)

- Pro: more interesting
- Con: not represent the precision we are looking to achieve; more edge cases

Electric Dart Game (compared to Battleship)

- Pro: straightforward; represent the precision
- Con: less technically advanced and less interesting

Prototype Budget

- (16) Microphone Sensors: \$15.00
- Passive Components: \$5.00
- (1) Arduino Microcontroller: \$23.00
- Playing Surface: \$80.00
- (200) RGB LED: \$56.00

Total: \$179.00 Budget Remaining: \$321.00

MDR Prototype

- System on a single board for one player
- Using Arduino as microcontroller
- Calculate coordinates and light up LED accordingly
- Error distance less than 8 cm.
- Response time less than 1 s

Question?

Department of Electrical and Computer Engineering