
SDP20 – TEAM 3

1

Abstract—As part of pre-flight preparations, drone
operators must check the local weather conditions to ensure a
safe and successful flight. While commercial weather stations can
effectively collect data for a specified area at the macroscale,
weather conditions in that area at the microscale can vary
greatly. Since flight conditions can be greatly affected by these
constraints, drone operators need a more accurate localized
weather map reading for the area of flight. Weather Box will
create this localized map in a network of battery powered sensor
modules to provide drone users with the required information via
a website and application. Our product will allow operators to
quickly decide whether the conditions are suitable for safe drone
flight.

I. INTRODUCTION

EATHER forecasts for certain areas are not the most
accurate since weather stations could be placed miles

apart from each other. Interpolation between stations can be
used to calculate outdoor weather in areas between stations but
depending on the distance this method can be incredibly
unreliable.

A. Significance

Weather has a massive role in many modern infrastructures
and systems, either directly or indirectly. That is why it is so
important to monitor and record weather data. Weather can
affect a huge range of systems such as transportation, the
operation of power systems, and even the ability for public
services to enforce the law or give assistance. Every year,
weather delays cost airlines and customers several billion
dollars [1] [2]. Power systems can be shut down due to issues
like icing or heavy wind [3]. These shutdowns can cost as
anywhere between 30 billion dollars and 130 billion dollars
annually [4]. Wind farms often run their turbines based on
wind and weather predictions to optimize their output to their
costs of operation. In many cases where law enforcement and
public services want to use drones in their operations they
cannot because the weather is too inclement for the drone to
operate safely. For most drone operation, weather can have
drastic effects on flight stability and flight duration. Cold
weather causes batteries to drain faster than usual leading to
shorter flight times. To combat high winds, the blades need to
spin faster to compensate. This causes the battery to drain
faster as well shortening the flight duration even further [17].
High humidity can cause a build up of moisture and could
possibly damage the drone’s electronics [18].

Overall, weather can have a huge impact on the performance
and function of many modern infrastructures and systems. In
many cases, a far more accurate and small-scale rendering of
weather can have a massive impact on the design and

operations of these systems. Airlines can have fewer delays as
they can see exactly where an approaching storm is. Power
grid developers can put more infrastructure in place to reduce
the damage in locations they know will have harsher
conditions. Officers, EMS, and firefighters can be better
equipped to handle, or avoid, harsher weather conditions
during operation and to see what their options are during an
operation.

B. Context and Existing Products

There are a few products on the market that help increase the
resolution of weather forecasts. A common solution for this
problem is the use of weather balloons. There are about 800
locations around the globe that do bidaily releases of weather
balloons to gather atmospheric data in addition to specially
requested launches. Each year the NWS releases about 70,000
weather balloons to gather data [13]. Although weather
balloons are relatively easy to deploy, they only give a single
vertical line of measurements, can only be used once, have a
chance of the payload never being recovered, and have limits
on where they could be deployed. Another solution would be to
have people on the ground with various sensors to take
measurements themselves. Although this could be incredibly
accurate, it is highly inefficient since it requires people to be
present on site and record values at various points when that
might not even be entirely necessary. We refer the interested
reader to Appendix Section A for more details.

C. Societal Impacts

One of our main areas of concern is the public safety aspect
of drone flight. In some cases, it is much too dangerous to fly
a drone outside due to weather conditions such as wind

speeds. Since weather forecasts cannot give an accurate
reading of the weather at a very small area, our system would

Tina Maurer, EE, Anthony Mendez, CSE, Stephan Kim, CSE, and Christian Norton, CSE

Weather Box

W

Table 1: Requirements and Specifications

SDP20 – TEAM 3

2

help drone operators better judge if an area is safe to fly
through. In addition, our system can help weather stations
provide a more accurate forecast to specific areas.

D. Requirements Analysis and Specifications

We required each Weather Box enclosure to be portable, able
to accurately measure wind speed, temperature, humidity,
atmospheric pressure, air quality, dust, and send data remotely.

II. DESIGN

A. Overview

For our solution we have three independent, battery-powered
enclosures that sends weather data via Wi-Fi to our website.
Below is the block diagram of our proposed solution.

Figure 1. Block Diagram

Our block diagram includes four main blocks. The first of
which is the sensor enclosure. The sensor enclosure houses the
sensor PCB with a thermal anemometer, dust sensor, air quality
sensor, and a 3-in-1 temperature, pressure, and humidity sensor.
The next section is the main PCB. This PCB contains the
microcontroller, the power circuit, and the Wi-Fi module. The
main PCB provides power and communicates to the sensor PCB
via ribbon cable. The main PCB is powered by an external
battery pack. The Wi-Fi modules communicate with the Azure
Weather Box web server using the HTTP protocol. The third
block, the web server, handles receiving data from the Weather
Box systems. The last section is the website. The website
displays the map of the sensors and their readings. This data is
retrieved periodically from the web server.

The given specifications in Table 1 presented an interesting
challenge for us. We need a sensing package system that would
be light-weight, power-efficient, measure accurate data
consistently, for under $120. Because we are trying to do so
much with so little money, we had some tradeoffs. The first of
which is the accuracy of the sensors. For example, the
temperature sensor has a range of accuracy of ± 1° Celsius. The
dust sensor had the largest range of inaccuracy. The dust sensor
has a voltage representing no dust between 0 – 1.5 volts.
Outside of the sensors, we opted to go with an AA battery stack
for each system’s power storage. It was much cheaper and
easier to implement than a lithium ion battery. However, it was
slightly heavier than a single lithium ion battery would have

been. Tradeoffs such as these caused us to make compromises
to achieve a well-functioning system that was also within
budget and power constraints.

B. Power Source

One of the specifications of our network of weather sensor
packages is a battery life of at least 24 hours. To meet this
specification, we are using a +12V battery stack of AA
batteries. This creates the voltage line necessary for the thermal
anemometer, as it requires a supply voltage of 9 to 12V. By
creating the battery stack, we allow ourselves a buffer for the
batteries in case they drop below the ideal stack voltage. From
the +12V stack, we previously used an LDO [19], or low
dropout regulator, which is a linear regulator that steps the
+12V down to create a +5V line. We then used a similar LDO
to again step down the voltage and create a +3.3V line for our
MDR prototype. One consideration that we had when
developing a printed circuit board is the constant power
consumption of a linear regulator. Though the linear regulators
we previously used could handle up to 1.5A and allow us to
meet the current power specification (as we are drawing
approximately 110mA and have a battery life of about 28
hours), a switching regulator allowed us to optimize our sensor
packages [19]. This is because the switching regulator is not
always in the “on” state, thus does not constantly regulate,
theoretically using less power, unlike the linear regulator. So,
for CDR, seen in Figure 4, we used switching regulators from
+12V to +5V and from +12V to +3.3V. Though the switching
regulators gave us less of a ceiling in that the maximum current
they could handle is 500mA, it was still well within range for
our electronics. We were not able to test battery life or power
consumption with the new regulators due to the unexpectedly
shortened time of the project, but still created a working product
for CDR using the switching regulators in our printed circuit
boards.

C. Microcontroller

We are using an STM32 microcontroller in which the
firmware is written in C using ST Microelectronics’ own HAL
API [6]. For this block, we needed to learn the HAL API as
well as the locations and functions of different pins on our
microcontroller. This part was like Computer Systems Lab,
where we had to read datasheets on our microcontroller and
figure out the different quirks of our specific one. Our
microcontroller takes the data from the sensors utilizing
multiple protocols for serial communication, and then sends
the data via the Wi-Fi module to our website. Before the data
is sent, the microcontroller performs some processing and
formatting on the data. For the wind sensor, the output is a
voltage, so we take the voltage and utilize the microcontroller
to calculate wind speed using an equation given by Modern
Device to get the wind speed [7]. For temperature, pressure,
and humidity, we used Bosch’s calibration formulas to get our
temperature in Celsius, humidity in relative humidity
percentage, and atmospheric pressure in hPa [8]. The ams air
quality sensor has a built in ADC, so we just needed to read in
the values from the sensor, and it is already ready for
transmission [10]. The Sharp dust sensor is also an analog

SDP20 – TEAM 3

3

sensor, so we connected the output of the sensor to the ADC
and then calculated the dust density in percentage by using a
formula given by Sharp [9]. We tested our firmware using
STM’s own CubeIDE which is an Eclipse-based IDE and used
the debugger to check values coming in from the sensors.

D. Sensors

We have four different sensors connected to our
microcontroller. Much like the microcontroller, the techniques
used to create this block are very similar to what we did in
Computer Systems Lab, where we would read the various
datasheets of each sensor and figure out how to get our
microcontroller to interact with the different sensors. For wind
speed, we are using a Modern Device Thermal Anemometer
which uses two thermistors and compares how much power it
takes for the exposed thermistor to reach the same temperature
as the idle one and gives an output voltage based off that [7].
The output voltage is then input into a formula to get wind
speed. For MDR, this sensor’s output voltage is read via an
external ADC that utilizes the SPI protocol. For CDR, we
switched to using the microcontroller’s internal ADC. We did
this because the internal ADC is rated for 12 bits, compared to
the external ADC’s 10 bits. Also, to simplify the circuit and
save on power usage. For MDR, we are also using a Bosch
BME280, which is a 3-in-1 temperature, pressure, and humidity
sensor [8]. This sensor utilizes the I2C protocol. Our other two
sensors are the SHARP GP2Y1010AU0F dust sensor and the
ams CCS811B-JOPD500 air quality sensor. These have been
implemented for CDR. The ams air quality sensor has an
internal ADC that it uses to convert its voltages to the digital
values, so no math needs to be done on the microcontroller side.
The digital values were read through I2C [10]. It is important to
mention the manufacturer does not provide a C driver file for
this sensor. We had to create our own C driver file. Much like
the ams air quality sensor, the Sharp dust sensor also did not
include any drivers, so we had to read the analog output and
calculate the dust density in our code [9]. For testing, we set up
different environments to simulate changes in weather and
compare measurements from our system to other sensors in the
same conditions for MDR. However, due to COVID-19
delaying PCB manufacturing, we were not able to test for CDR.
We refer the interested reader to Section III. The Product D.
Product Performance for more on COVID-19 effects and to
Appendix Section C for more on testing.

E. Wi-Fi Module

For enabling Wi-Fi connectivity, we are using a
development board from SparkFun which utilizes, Espressif
Systems’ ESP8266 chip for Wi-Fi connectivity [11]. For this,
we had to learn how AT commands for modems worked and
send them to the Wi-Fi module via UART from the
microcontroller. In addition, we had to learn how to format an
HTTP POST request in order to send data to our website. To
implement this block, we had to utilize knowledge from our
Computer Networks course for the HTTP messages as well as
techniques from our various programming courses in learning
the commands to program the module. For testing this, we
sent some data to our website and checked the website’s logs

to see if the request would go through. In addition, we tested
reading data from our website into our microcontroller. Using
Direct Memory Access (DMA) we could access everything
read by the Wi-Fi module as well as everything sent to it by
starting and stopping the DMA at certain points in our code.
We did this to read a timestamp from our website since our
microcontroller does not have a separate clock and battery to
keep track of time on the Weather Box.

F. Weather Box Data, Web Server, and Website

An integral part to our project is the Web Server, which
hosts the communications with the SQL database, Weather
Box systems, and delivering the website. For our hosting
provider, we are using Microsoft Azure [12]. Microsoft Azure
provides $100 credit for students, along with some free
resources. The web server is programmed in Python, utilizing
the Flask library to perform web server functionalities [21].
The website shows a map of the Weather Boxes on the map
using the Google Maps API in JavaScript [22]. The Maps API
has marker objects and information window objects. We place
the markers where the Weather Boxes are, and the information
windows attached to the markers. The way the website
retrieves information for each system is as follows.

The JavaScript running on the website will ping the server
every 10 seconds with a HTTP GET data request. The Python
Flask web server would receive this request and retrieve the
most recent Weather Data for each system. The server then
programs this data into a JSON format that can be easily
understood by the JavaScript. The JavaScript client receives
the JSON message, parses it for the weather data, formats the
plot, and displays it on the information window for each
system. For retrieving the information from each Weather
Box, it is as follows.

The Weather Boxes are currently programmed to measure
and send data every 10 seconds. The Weather Boxes pings the
server for a HTTP POST data request. The server
acknowledges the Weather Boxes data request, then measures
the data from each of its sensors. Afterwards, the
microcontroller formats the data into a JSON message. The
JSON message is then sent to the server. The web server
parses the message and stores it into the SQL database with a
timestamp.

The website enables verified users to make changes to the
systems locations on the table. To verify a user, we
implemented the Google Sign-In API [23]. Once a user signs
into their Google account, a JavaScript function is called and
sends a token of the user’s account to the web server in a
HTTP POST data request. The web server receives this
request, gets the Google email address from the token, and
then checks if it is a verified user. If the user is verified to
modify the systems table, it keeps a copy of this truth in the
user’s session information. The web server sends data back to
the user with the result of the verification. If they are verified,
the page reloads, and the user has access to the table. They are
able to modify, add, and delete entries to the systems table.

SDP20 – TEAM 3

4

The Google Maps API allows for the creation of markers on
the map with any data. These markers consist of a “latlng”
object, objects from the Google Maps API that store latitude
and longitude and a block of text that is formatted with
HTML. When a user accesses the website, a function
generates a set of “latlng” objects which are used to represent
each of the weather boxes retrieved from the server. These
points are combined with the data of each respective Weather
Box formatted using HTML. Each marker on the map will
specify the package’s system id, the latitude and longitude,
and the last stored data readings on the web server. Clicking
on a marker will reveal all the information about the system to
the user. The system data readings are updated by a JavaScript
function that runs every ten seconds. The map updates the
system information every minute.

Users may select between having all weather data for each
system displayed in a marker on the map or they may select
the individual data types. If a user selects the individual data
types the website will render the data as a heatmap in addition
to the discrete markers. The weather data heatmap is rendered
using the Google Maps API’s built in heatmap functionality.
When a user accesses the website, a function generates a set of
“latlng” objects which are used to represent each of the
weather boxes retrieved from the server. The heatmap is
initialized with all points having a null weight as the user has
not chosen what they want to have displayed. When the user
chooses the weather data they want shown, a function then
takes the set of weather data that was most recently retrieved
form the webserver, scales the data, and then sets the weights
for each “latlng” object. In addition to using the data points
gathered from the weather box systems, data points are

interpolated between the systems as well. This is achieved
using a function that takes the set of “latlng” objects and
weights from the heatmap and generating the averages
between all combinations of points. These new objects are
then added to the data set of the heatmap. Like the markers,
the heatmap will update and interpolate every time new
weather data is retrieved or if a system is added or removed.

III. THE PRODUCT

A. Product Overview

Our product, depicted in a product sketch in Figure 4,
consists of two circuit boards enclosed in a 3D printed
mechanical enclosure, with a website displaying weather data.
The Software Flowchart in Figure 2 describes what happens in
the system. Starting with the Weather Box microcontroller
enclosure. It handles powering on the device, retrieving the
data, and then sending that data to the web server. The sensor
enclosure handles taking measurements with the sensors
onboard. This data is sent to the microcontroller enclosure.
The sensor data processor and mapper handles storing the
received data into the database. The web server handles
sending that stored data to the client. On the client’s computer,
it handles placing the received data points on a map and
interpolating the data.

B. Electronic Hardware Component

The electronic hardware component for Weather Box
consists of two printed circuit boards, one to house all weather
sensors and one to house the microcontroller and other
computing units. During the initial hardware design, we first
found sensors according to the types of measurements we
wanted to obtain and then chose them based on cost, size, and
peak power consumption. Once the sensors were chosen, we
chose the microcontroller accordingly. From prior experience,

Figure 1: Software Flowchart of Weather Box

Figure 4: Weather Box Product Sketch

Figure 3: Weather Box Website

SDP20 – TEAM 3

5

an STM32 microcontroller was a clear choice as it is
straightforward to develop firmware for as well as relatively
simple to develop hardware designs with. After we had chosen
the Wi-Fi as well, all major electronic blocks were chosen,
and we could create a detailed hardware design.

The first major design components after the sensors and
external electronics were selected was the power circuitry.
From all datasheets of components in the system, we
concluded that the necessary rail voltages were +3.3V, +5V,
and +9 to +12V. As discussed in our Design section, we had
previously used linear LDO regulators in our prototype to
create those lines from a AA battery stack, despite the high
power consumption. However, we moved to using switching
voltage regulators, shown in Figure 5, to increase the power
efficiency of our product after MDR when we were moving
from a working prototype to a well-functioning product.

After creating a functioning breadboard prototype, the next
design component was to get rid of the microcontroller
development board. The STM Nucleo board we were using
contained all the peripheral hardware to flash and run the
firmware successfully on the microcontroller using a micro-
USB connector. When attempting to flash and run our
program using just the MCU chip, we chose an ST-Link V2
connector to flash the chip. Using the datasheets and other
documentation provided from ST Microelectronics, we
successfully implemented the necessary peripheral hardware
to use the microcontroller without the development board.
This consisted of a 20-pin connector to the ST-Link with filter
capacitors from the supply lines to GND. The signals of
SWDIO, SWCLK, and NRST provided the data line, clock
signal, and reset signal, respectively.

Though the entire Weather Box prototype was contained in
one physical system, we decided to split the product into two
separate printed circuit boards. The main board contains the
power regulation circuitry, microcontroller circuitry, and Wi-
Fi module while the sensor board contains all sensors and their
required peripheral circuitry.

We made the decision to make two boards to protect all
non-sensor electronics. Since each Weather Box system would
be set up outside, we wanted to protect the electronics that did
not need to be exposed to weather, while exposing sensors to
obtain the desired weather data.

We completed all schematic and layout design for both
Weather Box printed circuit boards using KiCAD software. As
we got various sensors working on our breadboard, the
corresponding section of the system would be added to the
master schematic. To connect the two boards, we used two
headers as shown in Figure 6, with one being a connector for
voltage supply signals and the other being for data signals. We
chose to keep the connectors separate as well as separating the
analog and digital data signals by a ground pin to minimize the
amount of noise in our data signals. Some other design
considerations we implemented in the boards were 0.1uF filter

capacitors on all voltage supply signals to control noise and
reset buttons for both the Wi-Fi module and microcontroller.

When completing layout for each PCB, we had to pay close
attention to the placement and orientation of the connectors for
both power and data signals so that the boards would fit in the
designed mechanical enclosure as intended. We also had to
carefully layout the power circuitry for each switching
regulator as noise can sometimes be a problem with these
types of integrated circuits. Both boards ended up being four
layers, with one of the middle layers being a ground plane to
simplify the routing of the boards. Shown in Figures 7 and 8
are the layouts of the main PCB and sensor PCB, respectively.

Figure 5: Switching Regulator Power Circuitry

Figure 6: PCB Power and Data Signal Connectors Schematic

Figure 8: Sensor PCB Layout

Figure 7: Main PCB Layout

SDP20 – TEAM 3

6

In addition, Figures 12 and 13 in Appendix F show the 3D
model of the PCB from the KiCAD layout software.

Our boards were manufactured from PCB Way and we
hand-soldered all components onto the boards to populate both
boards. Most of the components were surface mount due to the
size difference between the surface mount and through hole
versions of the components. During population, extra care was
taken when soldering the microcontroller chip as we had
previously learned that the chip can get damaged from being
exposed to the heat of an iron for too long. We used
microscopes from M5 to verify solder joints and performed
continuity tests with multimeters to ensure successful
connections in cases where we could not visibly observe the
joint.

One of the priorities when designing these boards was the
ability to test and debug them, as we wanted to be able to
address any problem that could occur with the boards. For that
reason, a test point was placed on every signal (both supply
voltage and data signal) so that we may measure and monitor
the signal to check functionality and debug problems with any
part of the board. In addition, I put multiple ground test points
on each board to make it easy to probe ground when needed. I
also placed indicator LEDs on each power line so that we
could easily determine if a power line were present without
having to probe the test point, thus making the testing process
more efficient. Before powering either of the printed circuit
boards, we performed a few preliminary tests to rule out any
power issues that may break either board upon power up.
First, we performed multimeter continuity tests to first ensure
that no supply lines were shorted to each other or to ground.
We then visually checked all pins on the microcontroller with
a microscope to make sure no pins were shorted there. Upon
powering the boards, all indicator LEDs were on, showing us
that our power lines were working as expected. At first, we
kept the main and sensor PCB disconnected so that we could
test one part of the system at a time. We successfully
connected the main PCB to Wi-Fi and could successfully flash
the board with our firmware. After testing the main board, we
connected the sensor board and checked the website data to
see that we got the correct sensor data. To check this, we
simply compared it to the confirmed correct data we got with
our prototype. Shown in Figures 9 and 10 are the pictures of
our working boards turned on and sitting in their 3D printed
mechanical enclosures.
C. Product Functionality

By CDR almost every part of our block diagram in Figure 1
functioned as intended. Both custom PCBs worked as
expected, with us being able to confirm the power circuit
accurately regulating the battery stack voltage. We could
confirm that our anemometer, temperature, pressure, and
humidity measurements were accurate since we had other
tools that took the same measurements and compared our
sensor measurements to that of the other tools. We could not
get an additional dust and air quality sensor to prove that our
measurements were accurate. However, we got numbers from
the sensors that we would expect from certain conditions. For
example, when covering the dust sensor to emulate an obscene
amount of dust, our reading jumped from zero to max. Also,
we could not exactly test the accuracy of the sensor for any

other measurements. The ams air quality was not perfect
either. The lowest the eCO2 the air quality sensor could detect
was 400 ppm. Our microcontroller and Wi-Fi module both
functioned since we saw that our system connected to our
hotspot, and on our website, we could read the sensor data in
the JSON format, which is how we programmed our
microcontroller to format the data.

When the sensor packages send their data to the webserver,
the webserver checks the data type before storing it in the
database, preventing any malicious or bad data from being
entered. We did have one issue with our website not
functioning during our presentation, however, this problem
was only due to our Microsoft Azure plan not providing
enough computation time for our product.

The website allows users to select what weather data is
displayed on the map at any given time and it updates as soon
as the user clicks the button. The website is integrated with the
Google Maps API so users can see the data points for all
sensor packages as a set of markers. In addition to these
markers when users select an individual weather
measurement, it displays a heat map of the data. Also
integrated with the website is the Google Sign-In API,
allowing the website to verify authenticated users to modify

Figure 9: Main and Sensor Custom PCBs

Figure 10: Main and Sensor PCB with enclosures

SDP20 – TEAM 3

7

the addition, removal, or placement of the sensor packages on
the map.

D. Product Performance

For MDR, we were able to meet the 95% confidence
intervals for temperature, pressure, humidity, and wind
measurements. We performed an endurance test as well and it
lasted over 35 hours. This is discussed further in Appendix C.
We were not able to properly test and take measurements for
CDR or FPR. For CDR, there were multiple factors involved.
Tina was working at her co-op at Bose, and the COVID-19
epidemic was affecting the manufacturers in China. While
Tina was able to work on some electronic and mechanical
design on the weeknights after work, she could not work on
in-lab prototyping with the rest of the group until the
weekends. Once the PCBs had arrived, there was very little
time to populate the boards, and to perform tests. The PCBs
worked and were able to successfully transmit data to the web
server. The data received on the web server end looked valid,
so we assumed the sensors worked perfectly fine due to our
time constraints. We expect that if we had been able to
populate two more sets of Weather Box systems, we could
have created an entire map of collected weather data since the
system we populated functioned as expected.

For FPR, any in-lab portions were terminated early because
of the COVID-19 pandemic. The entire system, with the
battery stack, weighed approximately 1.49 lbs, failing to meet
the desired weight specification. This was mainly due to the
battery stack weight as the system without the battery stack
weighed about 0.94 lbs. We would have used the rest of the
lab time to weatherproof the enclosure and investigated
alternative battery and enclosure options to decrease the
system weight. Additionally, this in-lab portion includes
testing the dust and ams sensors for accuracy as well as
leaving the Weather Box on overnight to see how consistent
our readings were for those sensors. So, we were unable to test
power consumption and battery life for our system. We also
had one issue where we could not flash our code and keep it
running after disconnecting the Weather Box from our
computers, so we did not have the opportunity to debug that.

IV. CONCLUSION

We met our goals for both MDR, and CDR. We had to work
many more hours programming the STM32 microcontroller in
MDR than in CDR. Yet, this made prototyping of our custom
PCBs more streamlined. We were sure of which pins to use on
the microcontroller for layout and design. This gave us more
time to develop other aspects of the project for CDR. We were
able to design and populate working printed circuit boards for
CDR, which could sense weather data and send that data to the
server. On the web server side, we have the first iteration of a
weather interpolation algorithm up and running. There were
many options for an interpolation algorithm. For CDR, we went
with inverse distance weighting. Both methods provided a
decent result for the distance between the system packages [20].
We also implemented a registration and relocation protocol for
sensor packages on the website. So, each time we add a new
Weather Box system or need to change its location, we do not

have to write SQL queries manually and can do it all from the
website. For MDR, we were able to test the systems and show
that it was sending reliable data to the web server, and the
sensor package lasted over 35 hours. For CDR, we were not
able to perform adequate testing due to COVID-19. However,
we were able to verify the populated custom PCB worked
perfectly.

ACKNOWLEDGMENT

We would like to acknowledge and thank our advisor,
Professor Zink, for his continued support and assistance
throughout SDP. We would also like to acknowledge and thank
our evaluators, Professor Tessier and Professor Pishro-Nik for
their constructive criticism and feedback as well as Professor
Holcomb for stepping in as an evaluator for CDR. We would
also like to extend our thanks to the M5 staff allowing us to use
their tools and components. We would like to acknowledge and
thank the Provost office for aiding in the collection of additional
funds as well as Apoorva Bajaj for assisting us in the initial
research. Finally, we would like to acknowledge and thank our
families and friends.

REFERENCES
[1] J. Erdman, “The Most Weather-Delayed Major Airports in the

U.S.,” The Weather Channel, 21-Nov-2018. [Online]. Available:
https://weather.com/travel/news/2018-11-19-most-weather-delayed-
major-us-airports. [Accessed: 18-Dec-2019].

[2] T. A. Press, “Flight delays are costing airlines serious
money,” Mashable, 10-Dec-2014. [Online]. Available:
https://mashable.com/2014/12/10/cost-of-delayed-flights/. [Accessed:
18-Dec-2019].

[3] Y. Liu, “Power Grid Operation Weather Security: NCAR Research
Applications Laboratory,” RAL, 2019. [Online]. Available:
https://ral.ucar.edu/projects/power-grid-operation-weather-
security#nogo. [Accessed: 18-Dec-2019].

[4] K. H. Lacommare and J. H. Eto, “Understanding the cost of power
interruptions to U.S. electricity consumers,” ERNEST ORLANDO
LAWRENCE BERKELEY NATIONAL LABORATORY, Jan. 2004.

[5] M. P. J. Ashby and L. Tompson, “Does a good cop really never get wet?
The impact of weather on stop and frisk,” Jun. 2018.

[6] STMicroelectronics. (n.d.). STM32L073RZ - STMicroelectronics.
[online] Available at: https://www.st.com/en/microcontrollers-
microprocessors/stm32l073rz.html [Accessed 21 Jan. 2020].

[7] Modern Device. (n.d.). Wind Sensor Rev. P - Low Cost Anemometer |
Modern Device. [online] Available at:
https://moderndevice.com/product/wind-sensor-rev-p/ [Accessed 21 Jan.
2020].

[8] Bosch Sensortec. (n.d.). BME280. [online] Available at:
https://www.bosch-sensortec.com/products/environmental-
sensors/humidity-sensors-bme280/ [Accessed 21 Jan. 2020].

[9] Sparkfun.com. (n.d.). GP2Y1010AU0F Compact Optical Dust Sensor.
[online] Available at:
http://www.sparkfun.com/datasheets/Sensors/gp2y1010au_e.pdf
[Accessed 21 Jan. 2020].

[10] Ams.com. (n.d.). CCS811 | ams. [online] Available at:
https://ams.com/ccs811 [Accessed 21 Jan. 2020].

[11] Cdn.sparkfun.com. (n.d.). ESP8266 Module (WRL-13678). [online]
Available at:
https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.
pdf [Accessed 21 Jan. 2020].

[12] Azure.microsoft.com. (n.d.). Cloud Computing Services | Microsoft
Azure. [online] Available at: https://azure.microsoft.com/en-us/
[Accessed 21 Jan. 2020].

[13] US Department of Commerce and Noaa, “Radiosonde
Observation,” National Weather Service, 14-Aug-2017. [Online].
Available: https://www.weather.gov/upperair/factsheet. [Accessed: 23-
Jan-2020].

SDP20 – TEAM 3

8

[14] Telaire, SMART Dust Sensor SM-PWM-01C Appl. Note, pp.4.
[15] Sharp, “Compact Optical Dust Sensor,” GP2Y1010AU0F datasheet,

Dec. 2006 [Accessed Jan. 2020].
[16] “ZX 300 Onshore Wind Lidar for remote wind speeds and TI,” ZX

Lidars. [Online]. Available: https://www.zxlidars.com/wind-lidars/zx-
300/. [Accessed: 25-Jan-2020].

[17] M. LaFay, “Tips for Flying Your Drone in Sub-Optimal Weather
Conditions,” dummies. [Online]. Available:
https://www.dummies.com/consumer-electronics/drones/tips-for-flying-
your-drone-in-sub-optimal-weather-conditions/. [Accessed: 25-Jan-
2020].

[18] I. Lee, “Tips for Flying a Drone in Hot Weather Conditions this
Summer,” UAV Coach, 20-Apr-2019. [Online]. Available:
https://uavcoach.com/fly-drone-high-temperatures/. [Accessed: 25-Jan-
2020].

[19] B. Schweber, “When should I use an LDO versus a switching
regulator?,” Power Electronic Tips, 23-December-2016. [Online].
Available:
https://www.powerelectronictips.com/use-ldo-versus-switching-
regulator-faq/

[20] “Interpolation methods for climate data ,”
“https://www.snap.uaf.edu/attachments/Interpolation_methods_for_clim
ate_data.pdf” De Bilt, Wilhelminalaan 10 , 2009.

[21] “Welcome to Flask,” Flask Documentation (1.1.x). [Online]. Available:
https://flask.palletsprojects.com/en/1.1.x/. [Accessed: 27-Apr-2020].

[22] “Google Maps Platform Documentation,” Google Maps Platform.
[Online]. Available: https://developers.google.com/maps/documentation.
[Accessed: 27-Apr-2020].

[23] “Integrating Google Sign-In into your web app,” Google Sign-In for
Websites. [Online]. Available:
https://developers.google.com/identity/sign-in/web/sign-in. [Accessed:
27-Apr-2020].

APPENDIX

A. Design Alternatives

When looking into the subject of monitoring weather at a
micro-scale, there is a range of products that satisfy some of the
individual aspects that one would be looking for, like
portability, scale, resolution, or data storage and analysis.
However, many of these products do not cover all the aspects
that someone would want out of them. Our design process
focused on trying to deliver a product that had as many of these
aspects as possible within our price range.

One of the early designs that we had conceived used LIDAR
(Light Detection and Ranging) to measure the rate that particles
in the air moved in order to create a map of wind speed, rainfall
and dust density. This would have been used in conjunction
with other sensors in order to generate a full map of weather
conditions. However, this design came with many draw backs.
LIDAR systems are not cheap and to get a basic unit that had
the resolution needed for such calculations was out of our
budget. In addition to this, systems that already implement
LIDAR for similar applications, like those used in windfarms
for measuring wind speed, often come in larger packages, like
the ZX 300 Lidar Weather Station for example is a cubic meter
in size and weighs 55kg [16]. These two major restraints were
the reason this design was ultimately scrapped. Unfortunately,
because of this, it was clear that having multiple three-
dimensional maps of wind was far out of our price range.

We had looked at many existing sensor packages at different
price ranges and noticed that although they had many of the
sensors that we were looking for, they lacked the ability to
access the data from alternative locations. This was the main

criteria we wanted to have implemented in our project. Because
of this many of our design choices came down to budgeting our
sensor packages with our power systems and communication
systems. This is what ultimately aided us in making the major
design choices in our project. Some sensors were dropped in
favor of having higher quality sensors and communication
systems. We specifically chose Wi-Fi to communicate since the
Weather Boxes would be tested around campus, therefore we
were essentially guaranteed a connection all over campus,
which also means less power consumed than if we were to use
cellular data because cellular signal is not as strong on certain
parts of campus. For our microcontroller, we chose the STM32
because Tina had experience using it in her internship and that
it has good documentation for development [6]. It was this
process of optimization that lead to our final design.

For the most part, our design process was swapping out
almost equivalent sensors in order to optimize the cost of
production and operation of the sensor packages with the
necessary power systems to run them. For example, one of the
sensors that we had swapped because the power requirement
was the Amphenol Advanced Sensors SM-PWM-01C dust
sensor. This sensor required more than four times the power of
the SHARP GP2Y1010AU0F dust sensor for comparable
performance [14][15]. In other cases, sensors or parts were
changed due to the cost of them being too much and putting us
slightly out of the given range we wanted for each sensor. This
happened a few times while we were deciding the best WIFI
module to use for our project.

B. Technical Standards

Some examples of standardized hardware and software that
we used include: Wi-Fi, HTTP, ANSI C, Python,
JavaScript/Jquery, STM32 MCU, and electronic schematic
symbols.
 The IEEE standard we used in hardware design was IEEE
315-1975: IEEE Standard for Graphic Symbols for Electrical
and Electronics Diagrams. This standardizes are symbols and
their reference designators used in our schematics for the
printed circuit boards. While it governs the more well-known
components like R for resistor, C for capacitor, and L for
inductor with their respective symbol drawings, the standard
details all standard component symbols for schematics. For
example, a connector would have the J reference designator
and an integrated circuit would have the U reference
designator. Through the PCB CAD tool we used, KiCAD, we
were able to easily adhere to this standard. This allows anyone
familiar with the standard guidelines to be able to interpret our
hardware schematics.

For Wi-Fi the IEEE standard that it adheres to is IEEE
802.11 which is a part of the IEEE 802 standard for local area
network (LAN) protocols, and it specifies the different
protocols for implementing wireless computer communication
in various frequencies, most notably 2.4GHz and 5GHz for
most Wi-Fi enabled devices. This also falls under the FCC
rules 47 CFR Part 18 for the legal operating ranges for radio
frequency (RF) devices.

For ANSI C, Javascript/JQuery, and Python, we utilized the
IEEE 754 standard which specifies how a language handles

SDP20 – TEAM 3

9

floating point arithmetic since we needed to use floating point
arithmetic in our code. Since many machines are created with
IEEE 754, the floats in our code were mapped to this standard.
Our STM32 microcontroller also follows this standard since
ARM microcontrollers follow this standard when calculating
floating point values.

HTTP does not follow any IEEE standard, but instead
follows RFC 7231 which describes the semantics of how
HTTP messages are expressed. We utilized this protocol and
standard when we formatted an HTTP message to send to our
website via Wi-Fi.

C. Testing Methods

Our testing methods for MDR consisted of starting a Wi-Fi
hotspot on a laptop or phone. The Weather Boxes would
connect to this Wi-Fi hotspot, and to send their data every 10
seconds. One this setup is done, if we want to test the wind
speed, we grabbed a fan and let it run over the wind sensor for
about 20 minutes. After, we turn off the fan and perform
another 20-minute session with no wind. To test the
temperature sensor and overall operating temperature, we
went outside for about an hour where it was about 5 degrees
Celsius. The Weather Box performed well and did not suffer
from any issues.

In order to analyze our results from the various testing
sessions, we calculated confidence intervals of 95% for each
of the testing sessions. This displayed the accuracy of our
sensor packages for each session. We completed both a few
shorter tests (around 20 minutes) and a longer test to show that
we met the specification for our battery life. This shows that
our project can both accurately measure weather data as well
as be able to meet our power/battery specification. Below is
the test data we collected for each test session, shown in Table
4. For session 1, we had 121 data points for system 1 and 115
for system 2. For session 2, we had 120 points for system 1
and 116 for system 2. Furthermore, in Figure 11, we show the
battery life testing of one of the weather boxes. During this
task, one of the sensor packages was able to take
measurements every 10 seconds for approximately 35.5 hours.

Testing for CDR was not executed as originally planned.
When the orders were made for the custom PCBs, Chinese
manufacturers were being hit hard by the COVID-19
pandemic and ordering from manufacturers in the United
States was not within our project budget. The PCBs were
delayed by two weeks, and by the time they arrived, we had
limited time before our CDR presentation. After populating
the boards, we were able to test that the power circuit, and the
sensors worked. For more detail on the hardware test
procedure, please see the Electronic Hardware Component in
the Product section. With the boards functioning as expected,
we were able to do some sensor data transmissions to the web
server, and have a working prototype for CDR. We had
planned to perform tests after CDR and use this data as a
starting point to refine our product. However, in-lab portions
were cancelled in March, so this portion of the project, was
finished.

Table 2: 95% Confidence Intervals

Figure 11: Endurance Testing for System 2

D. Team Organization

Anthony was the Software Lead since he has the most work
experience in Software Engineering. Tina was the Hardware
Lead since she is the only Electrical Engineer in the group, but
also because she has research and industry hardware design
work experience under her belt. Stephan oversaw most the
firmware but received assistance from Anthony in
programming some modules. Christian oversaw the web server
and website but received assistance from Anthony in
programming as well.

Overall, the team worked well together. We met our MDR
and CDR deadlines, have a working and populated PCB sensor
package, and many other prototyped sensor packages.

Relative to this project, each team member has their own
expertise. Anthony has a good understanding of the overall
system and how they should communicate with each other.
Tina’s expertise is in anything hardware related: power
systems, components, PCB design, and enclosure design.
Stephan has overseen most of the firmware and programmed
the Wi-Fi module and the wind sensor with the ADC. Christian
has programmed parts of the webserver and website.

While everyone has their own respective domains, we always
assist one another when one is falling behind on their work. This
semester, Christian had a surgery and was unavailable for about
a month in the fall semester. So, we had to fill in for him and
complete some of his website and webserver responsibilities.

We had a good communication system set up.

E. Beyond the Classroom

A. Anthony

SDP20 – TEAM 3

10

Part of my responsibility was setting up a few crucial parts
of this project. The first was setting up a Microsoft Azure
project to host our website. I used Azure before at an internship
but never dealt with creation of projects or resources, which is
something I had to learn. Not only that, but I also had to learn
how to setup the Python Flask website, the Google Cloud
account to access the Google Maps JavaScript API and set up
the STM32 project in CubeIDE. I also set up the Google Sign-
In API and built the systems management table from scratch. I
did most of the programming on the Bosch BME280 and ams
CCS811 sensor.

In connection with my current experience as a professional,
there are a few domains. In setting up the Microsoft Azure
project, I used Azure in my time with Citrix as a Software
Engineering Intern, so my experience there helped me with this
project. I have experience programming Microcontrollers from
class and my time with Zebra Technologies. Outside of that,
I’m much more aware of the work that goes into make any
electronic product and will be taking that knowledge with me
when I start my job at Google.

B. Stephan
My main responsibility for this project is the firmware. So

far, I have written the firmware for our ADC, anemometer, dust,
and Wi-Fi module. This project has allowed me to further
develop my skills with embedded systems and C, which I first
developed in our Computer Systems Engineering class. I also
had to learn the AT Command set for modems in order to
program our Wi-Fi module. The main skill that I have learned
is to create code that does not exist elsewhere since I could not
find any other project that utilizes the exact same hardware
configuration. For this project, I essentially had to write my
own driver to program our Wi-Fi module via our
microcontroller by serially sending commands specific to our
project. Some helpful resources have been the different
datasheets as well as looking at some examples utilizing similar
hardware as us.

I see connections with this project and my potential future
career since this project has exercised my skills in both writing
firmware and debugging it. By writing code that doesn’t exist,
I have exercised my skills not only as a programmer, but also
as an engineer by creating something that does not exist.

C. Tina
As the hardware lead of this project, it has been my

responsibility to both make all major hardware decisions for the
group and design our custom PCB. Thus far, this project has
given me the opportunity to further develop my board-level
design skills as well as learn how to take into consideration both
software and mechanical constraints when making hardware
decisions. I designed, breadboard prototyped, populated, and
tested our two printed circuit boards as well as designed the
mechanical enclosure for them. Through working with my
teammates to determine the hardware necessary to successfully
transmit the sensor data and then designing the printed circuit
boards, I have been able to strengthen my skills as a teammate
and an electrical engineer.

I have already been able to see connections between this
project and my professional life. At my internship this past

summer at Globus Medical I was able to use these types of
board level design skills to work on a navigation board,
ensuring that my board handled issues such as power line
placement, sensitivity and ratings of components used, and
mechanical considerations of size and cabling. In addition,
being able to quickly prototype and test my ideas has been
especially helpful this semester in my co-op at Bose
Corporation, where I was able to take my lab prototype and
debug skills to work in a unique makerspace where my job was
to ideate and prototype new concepts for the company. I am
grateful for the opportunities and experience that SDP20 has
afforded me and I believe that the skills I have learned already
have and will greatly advance me in my career in graduate
school and industry!

D. Christian
My main responsibility for our project is developing the

website. This involved writing the HTML and CSS that create
what users see and interact with as well as the functionality
involved in rendering and updating the map, data markers, and
heatmap. I have had a little experience with basic HTML and
CSS programming before, but this project has really helped me
flush out my understanding. I had never used the Google Maps
API before this project and it has been great experience using it
to flush out our application. I have also learned a lot of
JavaScript and python for this project. Assisting Anthony in
developing some of the back has really taught me a lot about
the Microsoft Azure web services.

I have also learned a lot about implementing sensors and
custom hardware with the microcontroller. Spending time in the
lab while helping trouble shooting the micro-controller, analog
digital converter, and sensors has really flushed out my ability
to use the equipment available in lab.

As a professional, as much as I do enjoy the firmware and
hardware side of the project, I mainly see myself working in a
software development. I think many of the skills I have learned
will apply to that field well.

SDP20 – TEAM 3

11

F. Additional Hardware Documentation

Figure 12: Weather Box Sensor PCB

Figure 13: Weather Box Main PCB

Figure 14: Weather Box Sensor PCB Schematic

Figure 15: Weather Box Main PCB Schematic

