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Abstract—As part of pre-flight preparations, drone 
operators must check the local weather conditions to ensure a 
safe and successful flight. While commercial weather stations can 
effectively collect data for a specified area at the macroscale, 
weather conditions in that area at the microscale can vary 
greatly. Since flight conditions can be greatly affected by these 
constraints, drone operators need a more accurate localized 
weather map reading for the area of flight. Weather Box will 
create this localized map in a network of battery powered sensor 
modules to provide drone users with the required information via 
a website and application. Our product will allow operators to 
quickly decide whether the conditions are suitable for safe drone 
flight. 

I. INTRODUCTION 

EATHER forecasts for certain areas are not the most 
accurate since weather stations could be placed miles 

apart from each other. Interpolation between stations can be 
used to calculate outdoor weather in areas between stations but 
depending on the distance this method can be incredibly 
unreliable.    

A. Significance 

Weather has a massive role in many modern infrastructures 
and systems, either directly or indirectly. That is why it is so 
important to monitor and record weather data. Weather can 
affect a huge range of systems such as transportation, the 
operation of power systems, and even the ability for public 
services to enforce the law or give assistance. Every year, 
weather delays cost airlines and customers several billion 
dollars [1] [2]. Power systems can be shut down due to issues 
like icing or heavy wind [3]. These shutdowns can cost as 
anywhere between 30 billion dollars and 130 billion dollars 
annually [4]. Wind farms often run their turbines based on 
wind and weather predictions to optimize their output to their 
costs of operation. In many cases where law enforcement and 
public services want to use drones in their operations they 
cannot because the weather is too inclement for the drone to 
operate safely. For most drone operation, weather can have 
drastic effects on flight stability and flight duration. Cold 
weather causes batteries to drain faster than usual leading to 
shorter flight times. To combat high winds, the blades need to 
spin faster to compensate. This causes the battery to drain 
faster as well shortening the flight duration even further [17]. 
High humidity can cause a build up of moisture and could 
possibly damage the drone’s electronics [18]. 

Overall, weather can have a huge impact on the performance 
and function of many modern infrastructures and systems. In 
many cases, a far more accurate and small-scale rendering of 
weather can have a massive impact on the design and 

operations of these systems. Airlines can have fewer delays as 
they can see exactly where an approaching storm is. Power 
grid developers can put more infrastructure in place to reduce 
the damage in locations they know will have harsher 
conditions. Officers, EMS, and firefighters can be better 
equipped to handle, or avoid, harsher weather conditions 
during operation and to see what their options are during an 
operation.  

B. Context and Existing Products 

There are a few products on the market that help increase the 
resolution of weather forecasts.  A common solution for this 
problem is the use of weather balloons. There are about 800 
locations around the globe that do bidaily releases of weather 
balloons to gather atmospheric data in addition to specially 
requested launches. Each year the NWS releases about 70,000 
weather balloons to gather data [13]. Although weather 
balloons are relatively easy to deploy, they only give a single 
vertical line of measurements, can only be used once, have a 
chance of the payload never being recovered, and have limits 
on where they could be deployed. Another solution would be to 
have people on the ground with various sensors to take 
measurements themselves. Although this could be incredibly 
accurate, it is highly inefficient since it requires people to be 
present on site and record values at various points when that 
might not even be entirely necessary. We refer the interested 
reader to Appendix Section A for more details. 

C. Societal Impacts 

One of our main areas of concern is the public safety aspect 
of drone flight. In some cases, it is much too dangerous to fly 
a drone outside due to weather conditions such as wind 

speeds. Since weather forecasts cannot give an accurate 
reading of the weather at a very small area, our system would 
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help drone operators better judge if an area is safe to fly 
through. In addition, our system can help weather stations 
provide a more accurate forecast to specific areas. 

D. Requirements Analysis and Specifications 

We required each Weather Box enclosure to be portable, able 
to accurately measure wind speed, temperature, humidity, 
atmospheric pressure, air quality, dust, and send data remotely.  

II. DESIGN 

A. Overview 

For our solution we have three independent, battery-powered 
enclosures that sends weather data via Wi-Fi to our website.  
Below is the block diagram of our proposed solution. 

 
Figure 1. Block Diagram 

Our block diagram includes four main blocks. The first of 
which is the sensor enclosure. The sensor enclosure houses the 
sensor PCB with a thermal anemometer, dust sensor, air quality 
sensor, and a 3-in-1 temperature, pressure, and humidity sensor. 
The next section is the main PCB. This PCB contains the 
microcontroller, the power circuit, and the Wi-Fi module. The 
main PCB provides power and communicates to the sensor PCB 
via ribbon cable. The main PCB is powered by an external 
battery pack. The Wi-Fi modules communicate with the Azure 
Weather Box web server using the HTTP protocol. The third 
block, the web server, handles receiving data from the Weather 
Box systems. The last section is the website. The website 
displays the map of the sensors and their readings. This data is 
retrieved periodically from the web server. 

The given specifications in Table 1 presented an interesting 
challenge for us. We need a sensing package system that would 
be light-weight, power-efficient, measure accurate data 
consistently, for under $120. Because we are trying to do so 
much with so little money, we had some tradeoffs. The first of 
which is the accuracy of the sensors. For example, the 
temperature sensor has a range of accuracy of ± 1° Celsius. The 
dust sensor had the largest range of inaccuracy. The dust sensor 
has a voltage representing no dust between 0 – 1.5 volts. 
Outside of the sensors, we opted to go with an AA battery stack 
for each system’s power storage. It was much cheaper and 
easier to implement than a lithium ion battery. However, it was 
slightly heavier than a single lithium ion battery would have 

been. Tradeoffs such as these caused us to make compromises 
to achieve a well-functioning system that was also within 
budget and power constraints.  

B. Power Source  

One of the specifications of our network of weather sensor 
packages is a battery life of at least 24 hours. To meet this 
specification, we are using a +12V battery stack of AA 
batteries. This creates the voltage line necessary for the thermal 
anemometer, as it requires a supply voltage of 9 to 12V. By 
creating the battery stack, we allow ourselves a buffer for the 
batteries in case they drop below the ideal stack voltage. From 
the +12V stack, we previously used an LDO [19], or low 
dropout regulator, which is a linear regulator that steps the 
+12V down to create a +5V line. We then used a similar LDO 
to again step down the voltage and create a +3.3V line for our 
MDR prototype. One consideration that we had when 
developing a printed circuit board is the constant power 
consumption of a linear regulator. Though the linear regulators 
we previously used could handle up to 1.5A and allow us to 
meet the current power specification (as we are drawing 
approximately 110mA and have a battery life of about 28 
hours), a switching regulator allowed us to optimize our sensor 
packages [19]. This is because the switching regulator is not 
always in the “on” state, thus does not constantly regulate, 
theoretically using less power, unlike the linear regulator. So, 
for CDR, seen in Figure 4, we used switching regulators from 
+12V to +5V and from +12V to +3.3V. Though the switching 
regulators gave us less of a ceiling in that the maximum current 
they could handle is 500mA, it was still well within range for 
our electronics. We were not able to test battery life or power 
consumption with the new regulators due to the unexpectedly 
shortened time of the project, but still created a working product 
for CDR using the switching regulators in our printed circuit 
boards. 

C. Microcontroller 

We are using an STM32 microcontroller in which the 
firmware is written in C using ST Microelectronics’ own HAL 
API [6]. For this block, we needed to learn the HAL API as 
well as the locations and functions of different pins on our 
microcontroller. This part was like Computer Systems Lab, 
where we had to read datasheets on our microcontroller and 
figure out the different quirks of our specific one. Our 
microcontroller takes the data from the sensors utilizing 
multiple protocols for serial communication, and then sends 
the data via the Wi-Fi module to our website. Before the data 
is sent, the microcontroller performs some processing and 
formatting on the data. For the wind sensor, the output is a 
voltage, so we take the voltage and utilize the microcontroller 
to calculate wind speed using an equation given by Modern 
Device to get the wind speed [7]. For temperature, pressure, 
and humidity, we used Bosch’s calibration formulas to get our 
temperature in Celsius, humidity in relative humidity 
percentage, and atmospheric pressure in hPa [8]. The ams air 
quality sensor has a built in ADC, so we just needed to read in 
the values from the sensor, and it is already ready for 
transmission [10]. The Sharp dust sensor is also an analog 
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sensor, so we connected the output of the sensor to the ADC 
and then calculated the dust density in percentage by using a 
formula given by Sharp [9]. We tested our firmware using 
STM’s own CubeIDE which is an Eclipse-based IDE and used 
the debugger to check values coming in from the sensors. 

D. Sensors 

We have four different sensors connected to our 
microcontroller. Much like the microcontroller, the techniques 
used to create this block are very similar to what we did in 
Computer Systems Lab, where we would read the various 
datasheets of each sensor and figure out how to get our 
microcontroller to interact with the different sensors. For wind 
speed, we are using a Modern Device Thermal Anemometer 
which uses two thermistors and compares how much power it 
takes for the exposed thermistor to reach the same temperature 
as the idle one and gives an output voltage based off that [7]. 
The output voltage is then input into a formula to get wind 
speed. For MDR, this sensor’s output voltage is read via an 
external ADC that utilizes the SPI protocol. For CDR, we 
switched to using the microcontroller’s internal ADC. We did 
this because the internal ADC is rated for 12 bits, compared to 
the external ADC’s 10 bits. Also, to simplify the circuit and 
save on power usage. For MDR, we are also using a Bosch 
BME280, which is a 3-in-1 temperature, pressure, and humidity 
sensor [8]. This sensor utilizes the I2C protocol. Our other two 
sensors are the SHARP GP2Y1010AU0F dust sensor and the 
ams CCS811B-JOPD500 air quality sensor. These have been 
implemented for CDR. The ams air quality sensor has an 
internal ADC that it uses to convert its voltages to the digital 
values, so no math needs to be done on the microcontroller side. 
The digital values were read through I2C [10]. It is important to 
mention the manufacturer does not provide a C driver file for 
this sensor. We had to create our own C driver file. Much like 
the ams air quality sensor, the Sharp dust sensor also did not 
include any drivers, so we had to read the analog output and 
calculate the dust density in our code [9]. For testing, we set up 
different environments to simulate changes in weather and 
compare measurements from our system to other sensors in the 
same conditions for MDR. However, due to COVID-19 
delaying PCB manufacturing, we were not able to test for CDR. 
We refer the interested reader to Section III. The Product D. 
Product Performance for more on COVID-19 effects and to 
Appendix Section C for more on testing. 

E. Wi-Fi Module  

For enabling Wi-Fi connectivity, we are using a 
development board from SparkFun which utilizes, Espressif 
Systems’ ESP8266 chip for Wi-Fi connectivity [11]. For this, 
we had to learn how AT commands for modems worked and 
send them to the Wi-Fi module via UART from the 
microcontroller. In addition, we had to learn how to format an 
HTTP POST request in order to send data to our website. To 
implement this block, we had to utilize knowledge from our 
Computer Networks course for the HTTP messages as well as 
techniques from our various programming courses in learning 
the commands to program the module. For testing this, we 
sent some data to our website and checked the website’s logs 

to see if the request would go through. In addition, we tested 
reading data from our website into our microcontroller. Using 
Direct Memory Access (DMA) we could access everything 
read by the Wi-Fi module as well as everything sent to it by 
starting and stopping the DMA at certain points in our code. 
We did this to read a timestamp from our website since our 
microcontroller does not have a separate clock and battery to 
keep track of time on the Weather Box.  

F. Weather Box Data, Web Server, and Website 

An integral part to our project is the Web Server, which 
hosts the communications with the SQL database, Weather 
Box systems, and delivering the website. For our hosting 
provider, we are using Microsoft Azure [12]. Microsoft Azure 
provides $100 credit for students, along with some free 
resources. The web server is programmed in Python, utilizing 
the Flask library to perform web server functionalities [21]. 
The website shows a map of the Weather Boxes on the map 
using the Google Maps API in JavaScript [22]. The Maps API 
has marker objects and information window objects. We place 
the markers where the Weather Boxes are, and the information 
windows attached to the markers. The way the website 
retrieves information for each system is as follows.  

The JavaScript running on the website will ping the server 
every 10 seconds with a HTTP GET data request. The Python 
Flask web server would receive this request and retrieve the 
most recent Weather Data for each system. The server then 
programs this data into a JSON format that can be easily 
understood by the JavaScript. The JavaScript client receives 
the JSON message, parses it for the weather data, formats the 
plot, and displays it on the information window for each 
system. For retrieving the information from each Weather 
Box, it is as follows. 

The Weather Boxes are currently programmed to measure 
and send data every 10 seconds. The Weather Boxes pings the 
server for a HTTP POST data request. The server 
acknowledges the Weather Boxes data request, then measures 
the data from each of its sensors. Afterwards, the 
microcontroller formats the data into a JSON message. The 
JSON message is then sent to the server. The web server 
parses the message and stores it into the SQL database with a 
timestamp. 

The website enables verified users to make changes to the 
systems locations on the table. To verify a user, we 
implemented the Google Sign-In API [23]. Once a user signs 
into their Google account, a JavaScript function is called and 
sends a token of the user’s account to the web server in a 
HTTP POST data request. The web server receives this 
request, gets the Google email address from the token, and 
then checks if it is a verified user. If the user is verified to 
modify the systems table, it keeps a copy of this truth in the 
user’s session information. The web server sends data back to 
the user with the result of the verification. If they are verified, 
the page reloads, and the user has access to the table. They are 
able to modify, add, and delete entries to the systems table. 



SDP20 – TEAM 3 
 

4

The Google Maps API allows for the creation of markers on 
the map with any data. These markers consist of a “latlng” 
object, objects from the Google Maps API that store latitude 
and longitude and a block of text that is formatted with 
HTML. When a user accesses the website, a function 
generates a set of “latlng” objects which are used to represent 
each of the weather boxes retrieved from the server. These 
points are combined with the data of each respective Weather 
Box formatted using HTML. Each marker on the map will 
specify the package’s system id, the latitude and longitude, 
and the last stored data readings on the web server. Clicking 
on a marker will reveal all the information about the system to 
the user. The system data readings are updated by a JavaScript 
function that runs every ten seconds. The map updates the 
system information every minute. 

Users may select between having all weather data for each 
system displayed in a marker on the map or they may select 
the individual data types. If a user selects the individual data 
types the website will render the data as a heatmap in addition 
to the discrete markers. The weather data heatmap is rendered 
using the Google Maps API’s built in heatmap functionality. 
When a user accesses the website, a function generates a set of 
“latlng” objects which are used to represent each of the 
weather boxes retrieved from the server. The heatmap is 
initialized with all points having a null weight as the user has 
not chosen what they want to have displayed. When the user 
chooses the weather data they want shown, a function then 
takes the set of weather data that was most recently retrieved 
form the webserver, scales the data, and then sets the weights 
for each “latlng” object. In addition to using the data points 
gathered from the weather box systems, data points are 

interpolated between the systems as well. This is achieved 
using a function that takes the set of “latlng” objects and 
weights from the heatmap and generating the averages 
between all combinations of points. These new objects are 
then added to the data set of the heatmap. Like the markers, 
the heatmap will update and interpolate every time new 
weather data is retrieved or if a system is added or removed. 

III. THE PRODUCT 

A. Product Overview 

Our product, depicted in a product sketch in Figure 4, 
consists of two circuit boards enclosed in a 3D printed 
mechanical enclosure, with a website displaying weather data. 
The Software Flowchart in Figure 2 describes what happens in 
the system. Starting with the Weather Box microcontroller 
enclosure. It handles powering on the device, retrieving the 
data, and then sending that data to the web server. The sensor 
enclosure handles taking measurements with the sensors 
onboard. This data is sent to the microcontroller enclosure. 
The sensor data processor and mapper handles storing the 
received data into the database. The web server handles 
sending that stored data to the client. On the client’s computer, 
it handles placing the received data points on a map and 
interpolating the data. 

B. Electronic Hardware Component 

The electronic hardware component for Weather Box 
consists of two printed circuit boards, one to house all weather 
sensors and one to house the microcontroller and other 
computing units. During the initial hardware design, we first 
found sensors according to the types of measurements we 
wanted to obtain and then chose them based on cost, size, and 
peak power consumption. Once the sensors were chosen, we 
chose the microcontroller accordingly. From prior experience, 

Figure 1: Software Flowchart of Weather Box 

Figure 4: Weather Box Product Sketch 

Figure 3: Weather Box Website 
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an STM32 microcontroller was a clear choice as it is 
straightforward to develop firmware for as well as relatively 
simple to develop hardware designs with. After we had chosen 
the Wi-Fi as well, all major electronic blocks were chosen, 
and we could create a detailed hardware design. 

The first major design components after the sensors and 
external electronics were selected was the power circuitry. 
From all datasheets of components in the system, we 
concluded that the necessary rail voltages were +3.3V, +5V, 
and +9 to +12V. As discussed in our Design section, we had 
previously used linear LDO regulators in our prototype to 
create those lines from a AA battery stack, despite the high 
power consumption. However, we moved to using switching 
voltage regulators, shown in Figure 5, to increase the power 
efficiency of our product after MDR when we were moving 
from a working prototype to a well-functioning product.  

After creating a functioning breadboard prototype, the next 
design component was to get rid of the microcontroller 
development board. The STM Nucleo board we were using 
contained all the peripheral hardware to flash and run the 
firmware successfully on the microcontroller using a micro-
USB connector. When attempting to flash and run our 
program using just the MCU chip, we chose an ST-Link V2 
connector to flash the chip. Using the datasheets and other 
documentation provided from ST Microelectronics, we 
successfully implemented the necessary peripheral hardware 
to use the microcontroller without the development board. 
This consisted of a 20-pin connector to the ST-Link with filter 
capacitors from the supply lines to GND. The signals of 
SWDIO, SWCLK, and NRST provided the data line, clock 
signal, and reset signal, respectively. 

Though the entire Weather Box prototype was contained in 
one physical system, we decided to split the product into two 
separate printed circuit boards. The main board contains the 
power regulation circuitry, microcontroller circuitry, and Wi-
Fi module while the sensor board contains all sensors and their 
required peripheral circuitry.   

We made the decision to make two boards to protect all 
non-sensor electronics. Since each Weather Box system would 
be set up outside, we wanted to protect the electronics that did 
not need to be exposed to weather, while exposing sensors to 
obtain the desired weather data.  

We completed all schematic and layout design for both 
Weather Box printed circuit boards using KiCAD software. As 
we got various sensors working on our breadboard, the 
corresponding section of the system would be added to the 
master schematic. To connect the two boards, we used two 
headers as shown in Figure 6, with one being a connector for 
voltage supply signals and the other being for data signals. We 
chose to keep the connectors separate as well as separating the 
analog and digital data signals by a ground pin to minimize the 
amount of noise in our data signals. Some other design 
considerations we implemented in the boards were 0.1uF filter 

capacitors on all voltage supply signals to control noise and 
reset buttons for both the Wi-Fi module and microcontroller. 

When completing layout for each PCB, we had to pay close 
attention to the placement and orientation of the connectors for 
both power and data signals so that the boards would fit in the 
designed mechanical enclosure as intended. We also had to 
carefully layout the power circuitry for each switching 
regulator as noise can sometimes be a problem with these 
types of integrated circuits. Both boards ended up being four 
layers, with one of the middle layers being a ground plane to 
simplify the routing of the boards. Shown in Figures 7 and 8 
are the layouts of the main PCB and sensor PCB, respectively. 

Figure 5: Switching Regulator Power Circuitry 

Figure 6: PCB Power and Data Signal Connectors Schematic 

Figure 8: Sensor PCB Layout 

Figure 7: Main PCB Layout 
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In addition, Figures 12 and 13 in Appendix F show the 3D 
model of the PCB from the KiCAD layout software. 

Our boards were manufactured from PCB Way and we 
hand-soldered all components onto the boards to populate both 
boards. Most of the components were surface mount due to the 
size difference between the surface mount and through hole 
versions of the components. During population, extra care was 
taken when soldering the microcontroller chip as we had 
previously learned that the chip can get damaged from being 
exposed to the heat of an iron for too long. We used 
microscopes from M5 to verify solder joints and performed 
continuity tests with multimeters to ensure successful 
connections in cases where we could not visibly observe the 
joint. 

One of the priorities when designing these boards was the 
ability to test and debug them, as we wanted to be able to 
address any problem that could occur with the boards. For that 
reason, a test point was placed on every signal (both supply 
voltage and data signal) so that we may measure and monitor 
the signal to check functionality and debug problems with any 
part of the board. In addition, I put multiple ground test points 
on each board to make it easy to probe ground when needed. I 
also placed indicator LEDs on each power line so that we 
could easily determine if a power line were present without 
having to probe the test point, thus making the testing process 
more efficient. Before powering either of the printed circuit 
boards, we performed a few preliminary tests to rule out any 
power issues that may break either board upon power up. 
First, we performed multimeter continuity tests to first ensure 
that no supply lines were shorted to each other or to ground. 
We then visually checked all pins on the microcontroller with 
a microscope to make sure no pins were shorted there. Upon 
powering the boards, all indicator LEDs were on, showing us 
that our power lines were working as expected. At first, we 
kept the main and sensor PCB disconnected so that we could 
test one part of the system at a time. We successfully 
connected the main PCB to Wi-Fi and could successfully flash 
the board with our firmware. After testing the main board, we 
connected the sensor board and checked the website data to 
see that we got the correct sensor data. To check this, we 
simply compared it to the confirmed correct data we got with 
our prototype. Shown in Figures 9 and 10 are the pictures of 
our working boards turned on and sitting in their 3D printed 
mechanical enclosures. 
C.   Product Functionality 

By CDR almost every part of our block diagram in Figure 1 
functioned as intended. Both custom PCBs worked as 
expected, with us being able to confirm the power circuit 
accurately regulating the battery stack voltage. We could 
confirm that our anemometer, temperature, pressure, and 
humidity measurements were accurate since we had other 
tools that took the same measurements and compared our 
sensor measurements to that of the other tools. We could not 
get an additional dust and air quality sensor to prove that our 
measurements were accurate. However, we got numbers from 
the sensors that we would expect from certain conditions. For 
example, when covering the dust sensor to emulate an obscene 
amount of dust, our reading jumped from zero to max. Also, 
we could not exactly test the accuracy of the sensor for any 

other measurements. The ams air quality was not perfect 
either. The lowest the eCO2 the air quality sensor could detect 
was 400 ppm. Our microcontroller and Wi-Fi module both 
functioned since we saw that our system connected to our 
hotspot, and on our website, we could read the sensor data in 
the JSON format, which is how we programmed our 
microcontroller to format the data. 

When the sensor packages send their data to the webserver, 
the webserver checks the data type before storing it in the 
database, preventing any malicious or bad data from being 
entered. We did have one issue with our website not 
functioning during our presentation, however, this problem 
was only due to our Microsoft Azure plan not providing 
enough computation time for our product.  

The website allows users to select what weather data is 
displayed on the map at any given time and it updates as soon 
as the user clicks the button. The website is integrated with the 
Google Maps API so users can see the data points for all 
sensor packages as a set of markers. In addition to these 
markers when users select an individual weather 
measurement, it displays a heat map of the data. Also 
integrated with the website is the Google Sign-In API, 
allowing the website to verify authenticated users to modify 

Figure 9: Main and Sensor Custom PCBs 

Figure 10: Main and Sensor PCB with enclosures 
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the addition, removal, or placement of the sensor packages on 
the map. 

 
D.  Product Performance 

For MDR, we were able to meet the 95% confidence 
intervals for temperature, pressure, humidity, and wind 
measurements. We performed an endurance test as well and it 
lasted over 35 hours. This is discussed further in Appendix C.  
We were not able to properly test and take measurements for 
CDR or FPR. For CDR, there were multiple factors involved. 
Tina was working at her co-op at Bose, and the COVID-19 
epidemic was affecting the manufacturers in China. While 
Tina was able to work on some electronic and mechanical 
design on the weeknights after work, she could not work on 
in-lab prototyping with the rest of the group until the 
weekends. Once the PCBs had arrived, there was very little 
time to populate the boards, and to perform tests. The PCBs 
worked and were able to successfully transmit data to the web 
server. The data received on the web server end looked valid, 
so we assumed the sensors worked perfectly fine due to our 
time constraints. We expect that if we had been able to 
populate two more sets of Weather Box systems, we could 
have created an entire map of collected weather data since the 
system we populated functioned as expected.  

For FPR, any in-lab portions were terminated early because 
of the COVID-19 pandemic. The entire system, with the 
battery stack, weighed approximately 1.49 lbs, failing to meet 
the desired weight specification. This was mainly due to the 
battery stack weight as the system without the battery stack 
weighed about 0.94 lbs. We would have used the rest of the 
lab time to weatherproof the enclosure and investigated 
alternative battery and enclosure options to decrease the 
system weight. Additionally, this in-lab portion includes 
testing the dust and ams sensors for accuracy as well as 
leaving the Weather Box on overnight to see how consistent 
our readings were for those sensors. So, we were unable to test 
power consumption and battery life for our system. We also 
had one issue where we could not flash our code and keep it 
running after disconnecting the Weather Box from our 
computers, so we did not have the opportunity to debug that.  

IV. CONCLUSION  

We met our goals for both MDR, and CDR. We had to work 
many more hours programming the STM32 microcontroller in 
MDR than in CDR. Yet, this made prototyping of our custom 
PCBs more streamlined. We were sure of which pins to use on 
the microcontroller for layout and design. This gave us more 
time to develop other aspects of the project for CDR. We were 
able to design and populate working printed circuit boards for 
CDR, which could sense weather data and send that data to the 
server. On the web server side, we have the first iteration of a 
weather interpolation algorithm up and running. There were 
many options for an interpolation algorithm. For CDR, we went 
with inverse distance weighting. Both methods provided a 
decent result for the distance between the system packages [20]. 
We also implemented a registration and relocation protocol for 
sensor packages on the website.  So, each time we add a new 
Weather Box system or need to change its location, we do not 

have to write SQL queries manually and can do it all from the 
website. For MDR, we were able to test the systems and show 
that it was sending reliable data to the web server, and the 
sensor package lasted over 35 hours. For CDR, we were not 
able to perform adequate testing due to COVID-19. However, 
we were able to verify the populated custom PCB worked 
perfectly.  
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APPENDIX 

A. Design Alternatives 

When looking into the subject of monitoring weather at a 
micro-scale, there is a range of products that satisfy some of the 
individual aspects that one would be looking for, like 
portability, scale, resolution, or data storage and analysis. 
However, many of these products do not cover all the aspects 
that someone would want out of them. Our design process 
focused on trying to deliver a product that had as many of these 
aspects as possible within our price range. 

One of the early designs that we had conceived used LIDAR 
(Light Detection and Ranging) to measure the rate that particles 
in the air moved in order to create a map of wind speed, rainfall 
and dust density. This would have been used in conjunction 
with other sensors in order to generate a full map of weather 
conditions. However, this design came with many draw backs. 
LIDAR systems are not cheap and to get a basic unit that had 
the resolution needed for such calculations was out of our 
budget. In addition to this, systems that already implement 
LIDAR for similar applications, like those used in windfarms 
for measuring wind speed, often come in larger packages, like 
the ZX 300 Lidar Weather Station for example is a cubic meter 
in size and weighs 55kg [16]. These two major restraints were 
the reason this design was ultimately scrapped. Unfortunately, 
because of this, it was clear that having multiple three-
dimensional maps of wind was far out of our price range. 

We had looked at many existing sensor packages at different 
price ranges and noticed that although they had many of the 
sensors that we were looking for, they lacked the ability to 
access the data from alternative locations. This was the main 

criteria we wanted to have implemented in our project. Because 
of this many of our design choices came down to budgeting our 
sensor packages with our power systems and communication 
systems. This is what ultimately aided us in making the major 
design choices in our project. Some sensors were dropped in 
favor of having higher quality sensors and communication 
systems. We specifically chose Wi-Fi to communicate since the 
Weather Boxes would be tested around campus, therefore we 
were essentially guaranteed a connection all over campus, 
which also means less power consumed than if we were to use 
cellular data because cellular signal is not as strong on certain 
parts of campus. For our microcontroller, we chose the STM32 
because Tina had experience using it in her internship and that 
it has good documentation for development [6]. It was this 
process of optimization that lead to our final design.  

For the most part, our design process was swapping out 
almost equivalent sensors in order to optimize the cost of 
production and operation of the sensor packages with the 
necessary power systems to run them. For example, one of the 
sensors that we had swapped because the power requirement 
was the Amphenol Advanced Sensors SM-PWM-01C dust 
sensor. This sensor required more than four times the power of 
the SHARP GP2Y1010AU0F dust sensor for comparable 
performance [14][15]. In other cases, sensors or parts were 
changed due to the cost of them being too much and putting us 
slightly out of the given range we wanted for each sensor. This 
happened a few times while we were deciding the best WIFI 
module to use for our project. 

B. Technical Standards 

Some examples of standardized hardware and software that 
we used include: Wi-Fi, HTTP, ANSI C, Python, 
JavaScript/Jquery, STM32 MCU, and electronic schematic 
symbols. 
 The IEEE standard we used in hardware design was IEEE 
315-1975: IEEE Standard for Graphic Symbols for Electrical 
and Electronics Diagrams. This standardizes are symbols and 
their reference designators used in our schematics for the 
printed circuit boards. While it governs the more well-known 
components like R for resistor, C for capacitor, and L for 
inductor with their respective symbol drawings, the standard 
details all standard component symbols for schematics. For 
example, a connector would have the J reference designator 
and an integrated circuit would have the U reference 
designator. Through the PCB CAD tool we used, KiCAD, we 
were able to easily adhere to this standard. This allows anyone 
familiar with the standard guidelines to be able to interpret our 
hardware schematics. 

For Wi-Fi the IEEE standard that it adheres to is IEEE 
802.11 which is a part of the IEEE 802 standard for local area 
network (LAN) protocols, and it specifies the different 
protocols for implementing wireless computer communication 
in various frequencies, most notably 2.4GHz and 5GHz for 
most Wi-Fi enabled devices. This also falls under the FCC 
rules 47 CFR Part 18 for the legal operating ranges for radio 
frequency (RF) devices. 

For ANSI C, Javascript/JQuery, and Python, we utilized the 
IEEE 754 standard which specifies how a language handles 
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floating point arithmetic since we needed to use floating point 
arithmetic in our code. Since many machines are created with 
IEEE 754, the floats in our code were mapped to this standard. 
Our STM32 microcontroller also follows this standard since 
ARM microcontrollers follow this standard when calculating 
floating point values. 

HTTP does not follow any IEEE standard, but instead 
follows RFC 7231 which describes the semantics of how 
HTTP messages are expressed. We utilized this protocol and 
standard when we formatted an HTTP message to send to our 
website via Wi-Fi. 

C. Testing Methods  

Our testing methods for MDR consisted of starting a Wi-Fi 
hotspot on a laptop or phone. The Weather Boxes would 
connect to this Wi-Fi hotspot, and to send their data every 10 
seconds. One this setup is done, if we want to test the wind 
speed, we grabbed a fan and let it run over the wind sensor for 
about 20 minutes. After, we turn off the fan and perform 
another 20-minute session with no wind. To test the 
temperature sensor and overall operating temperature, we 
went outside for about an hour where it was about 5 degrees 
Celsius. The Weather Box performed well and did not suffer 
from any issues.  

In order to analyze our results from the various testing 
sessions, we calculated confidence intervals of 95% for each 
of the testing sessions. This displayed the accuracy of our 
sensor packages for each session. We completed both a few 
shorter tests (around 20 minutes) and a longer test to show that 
we met the specification for our battery life. This shows that 
our project can both accurately measure weather data as well 
as be able to meet our power/battery specification. Below is 
the test data we collected for each test session, shown in Table 
4. For session 1, we had 121 data points for system 1 and 115 
for system 2. For session 2, we had 120 points for system 1 
and 116 for system 2. Furthermore, in Figure 11, we show the 
battery life testing of one of the weather boxes. During this 
task, one of the sensor packages was able to take 
measurements every 10 seconds for approximately 35.5 hours. 

Testing for CDR was not executed as originally planned. 
When the orders were made for the custom PCBs, Chinese 
manufacturers were being hit hard by the COVID-19 
pandemic and ordering from manufacturers in the United 
States was not within our project budget. The PCBs were 
delayed by two weeks, and by the time they arrived, we had 
limited time before our CDR presentation. After populating 
the boards, we were able to test that the power circuit, and the 
sensors worked. For more detail on the hardware test 
procedure, please see the Electronic Hardware Component in 
the Product section. With the boards functioning as expected, 
we were able to do some sensor data transmissions to the web 
server, and have a working prototype for CDR. We had 
planned to perform tests after CDR and use this data as a 
starting point to refine our product. However, in-lab portions 
were cancelled in March, so this portion of the project, was 
finished.  

 

 
 

Table 2: 95% Confidence Intervals 

 
Figure 11: Endurance Testing for System 2 

 

D. Team Organization 

Anthony was the Software Lead since he has the most work 
experience in Software Engineering. Tina was the Hardware 
Lead since she is the only Electrical Engineer in the group, but 
also because she has research and industry hardware design 
work experience under her belt. Stephan oversaw most the 
firmware but received assistance from Anthony in 
programming some modules. Christian oversaw the web server 
and website but received assistance from Anthony in 
programming as well. 

Overall, the team worked well together. We met our MDR 
and CDR deadlines, have a working and populated PCB sensor 
package, and many other prototyped sensor packages. 

Relative to this project, each team member has their own 
expertise. Anthony has a good understanding of the overall 
system and how they should communicate with each other. 
Tina’s expertise is in anything hardware related: power 
systems, components, PCB design, and enclosure design. 
Stephan has overseen most of the firmware and programmed 
the Wi-Fi module and the wind sensor with the ADC. Christian 
has programmed parts of the webserver and website.  

While everyone has their own respective domains, we always 
assist one another when one is falling behind on their work. This 
semester, Christian had a surgery and was unavailable for about 
a month in the fall semester. So, we had to fill in for him and 
complete some of his website and webserver responsibilities. 

We had a good communication system set up.   

E. Beyond the Classroom  

A. Anthony 
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Part of my responsibility was setting up a few crucial parts 
of this project. The first was setting up a Microsoft Azure 
project to host our website. I used Azure before at an internship 
but never dealt with creation of projects or resources, which is 
something I had to learn. Not only that, but I also had to learn 
how to setup the Python Flask website, the Google Cloud 
account to access the Google Maps JavaScript API and set up 
the STM32 project in CubeIDE. I also set up the Google Sign-
In API and built the systems management table from scratch. I 
did most of the programming on the Bosch BME280 and ams 
CCS811 sensor. 

In connection with my current experience as a professional, 
there are a few domains. In setting up the Microsoft Azure 
project, I used Azure in my time with Citrix as a Software 
Engineering Intern, so my experience there helped me with this 
project. I have experience programming Microcontrollers from 
class and my time with Zebra Technologies. Outside of that, 
I’m much more aware of the work that goes into make any 
electronic product and will be taking that knowledge with me 
when I start my job at Google. 

B. Stephan 
My main responsibility for this project is the firmware. So 

far, I have written the firmware for our ADC, anemometer, dust, 
and Wi-Fi module. This project has allowed me to further 
develop my skills with embedded systems and C, which I first 
developed in our Computer Systems Engineering class. I also 
had to learn the AT Command set for modems in order to 
program our Wi-Fi module. The main skill that I have learned 
is to create code that does not exist elsewhere since I could not 
find any other project that utilizes the exact same hardware 
configuration. For this project, I essentially had to write my 
own driver to program our Wi-Fi module via our 
microcontroller by serially sending commands specific to our 
project. Some helpful resources have been the different 
datasheets as well as looking at some examples utilizing similar 
hardware as us. 

I see connections with this project and my potential future 
career since this project has exercised my skills in both writing 
firmware and debugging it. By writing code that doesn’t exist, 
I have exercised my skills not only as a programmer, but also 
as an engineer by creating something that does not exist. 

C. Tina 
As the hardware lead of this project, it has been my 

responsibility to both make all major hardware decisions for the 
group and design our custom PCB. Thus far, this project has 
given me the opportunity to further develop my board-level 
design skills as well as learn how to take into consideration both 
software and mechanical constraints when making hardware 
decisions. I designed, breadboard prototyped, populated, and 
tested our two printed circuit boards as well as designed the 
mechanical enclosure for them. Through working with my 
teammates to determine the hardware necessary to successfully 
transmit the sensor data and then designing the printed circuit 
boards, I have been able to strengthen my skills as a teammate 
and an electrical engineer. 

I have already been able to see connections between this 
project and my professional life. At my internship this past 

summer at Globus Medical I was able to use these types of 
board level design skills to work on a navigation board, 
ensuring that my board handled issues such as power line 
placement, sensitivity and ratings of components used, and 
mechanical considerations of size and cabling. In addition, 
being able to quickly prototype and test my ideas has been 
especially helpful this semester in my co-op at Bose 
Corporation, where I was able to take my lab prototype and 
debug skills to work in a unique makerspace where my job was 
to ideate and prototype new concepts for the company. I am 
grateful for the opportunities and experience that SDP20 has 
afforded me and I believe that the skills I have learned already 
have and will greatly advance me in my career in graduate 
school and industry! 

D. Christian 
My main responsibility for our project is developing the 

website. This involved writing the HTML and CSS that create 
what users see and interact with as well as the functionality 
involved in rendering and updating the map, data markers, and 
heatmap. I have had a little experience with basic HTML and 
CSS programming before, but this project has really helped me 
flush out my understanding. I had never used the Google Maps 
API before this project and it has been great experience using it 
to flush out our application. I have also learned a lot of 
JavaScript and python for this project. Assisting Anthony in 
developing some of the back has really taught me a lot about 
the Microsoft Azure web services.  

I have also learned a lot about implementing sensors and 
custom hardware with the microcontroller. Spending time in the 
lab while helping trouble shooting the micro-controller, analog 
digital converter, and sensors has really flushed out my ability 
to use the equipment available in lab. 

As a professional, as much as I do enjoy the firmware and 
hardware side of the project, I mainly see myself working in a 
software development. I think many of the skills I have learned 
will apply to that field well.  
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F. Additional Hardware Documentation  

Figure 12: Weather Box Sensor PCB 

Figure 13: Weather Box Main PCB 

Figure 14: Weather Box Sensor PCB Schematic 

Figure 15: Weather Box Main PCB Schematic 


