Team 26: Zipcart

Midway Design Review
Team

Ryan Lagasse
Ricardo Henriquez
Jonathan Azevedo
Problem
Topology
Challenges

• Scan barcodes of items as they enter the cart
 • Shopper doesn’t have to orient items for camera

• Process images for barcodes in a timely manner
 • System has real-time requirements and a heavy workload

• Get product information quickly without maintaining a database
 • Request from external API and cache responses

• Use mechanical energy to keep system powered
 • Maintainer doesn’t have to charge carts at the end of the day
Project Requirements

1. Recognize barcode as item is placed in cart
2. Detect when item is removed from cart
3. Display item list and current balance
4. Detect an unscanned item to prevent theft
5. Sustain power for a full business day
Specifications

1. One item entered or removed per two-second interval
2. Barcode surface must be reasonably flat
3. Maximum system latency of four seconds
4. Eighteen hours of continuous operation
MDR Deliverables

1. Detect barcode around front-face of camera perspective
2. Update cloud database with product information
3. Successful integration of feedback system
4. Demonstrate power generation using stepper motor
Power

Ricardo
Power Circuit Diagram
Stepper Motor + Simulation

• Stepper motors are best at low speeds
• Motor: 2-Phase rated at 6V and 0.8A
• Arduino + LM298 motor driver simulates movement of shopping cart
 ➢ Max. speed 200RPM ~ 3mph
• Plot shows relationship between the current produced versus speed
 ➢ 175mA produced at maximum speed using one motor
Full Wave Rectifier

• Schottky Diode (1N5818) for smaller forward voltage drop (0.55V @ 1A)

• Each phase is rectified which is necessary to convert AC into DC

• Smoothing capacitor helps reduce voltage variations

• DC output voltage is proportional to RPM
Pololu Voltage Regulator (S7V7F5)

• Capability to step-up/step-down input voltage
• Ideal choice since voltage generated varies
• Efficiently produces 5V from input voltages between 2.7V and 11.8V
• Sources up to 1.6A
• Plot shows regulators efficiency of sourcing current at different input voltages
 ➢ Efficiency depends on voltage produce
Adafruit Powerboost 1000C

- Built-in load-sharing battery charger circuit allows Raspberry Pi to run while recharging the battery
- Built-in battery protection circuit
- Charger circuitry can recharge at a max rate of 1000mA
- 2A internal switch allows battery to output more than 1000mA if necessary
Pi Power Consumption & Improvements

• Standby → 2.5W, 5V, 500mA
• All Peripherals → 4W, 5V, 800mA

• Increase power delivered to the system
 ➢ Wire 4 motors in parallel, one per wheel, to increase current generated
 ➢ Test with different motors
Optics & Detection

Jonathan
Overview

Optics
 • Captures item with UPC code in camera frame

Software
 • Detects barcode and extracts UPC code to send to AWS database
Optics

Optic system scans objects as they enter the cart

1. Camera
 • Main component which captures video of items entering cart
 • Barcodes must be in cameras FOV and directed at it to be detected

2. Mirrors
 • Reflects barcode to direct view of camera independent of orientation
Camera

Camera requirements

• Adjustable focus
• Good resolution
• Compatible with software libraries

Kuman Camera Specs

• 5 MP OV5647 sensor
• 2592 x 1944 pixel static images
• 1080 p @ 30 fps, 720 p @ 60 fps
• Adjustable focus lens
Software

Important libraries

- OpenCV
- PyZBar

Procedure

1. Creates order in cloud
2. Detects barcode in video stream
3. Extracts UPC code from barcode
4. Sends UPC code to AWS Database for lookup, caching, and editing user order
Status

• Orders are created in database from the Pi
• Can detect barcodes within two-second window
• Sends UPCs to order database
• Detects barcodes at max distance of four inches
Difficulties

• Focus is a limiting factor in our Pi cameras
 • No autofocus feature

• Tested multiple products, few alternatives for serial interface
 • Most use same OV5647 Sensor
Remaining Work & Considerations

• USB Cameras
 • More alternatives
 • Better quality cameras
 • Autofocus features

• Intel Movidius – Machine Learning
 • VPU- increase vision and complex processing with low-power
 • Speed up detection of items and barcodes

• Taking still images
 • Easier to process then video stream
Cloud Infrastructure

Ryan
Overview

- Request passes through **API Gateway**
- **Lambda** function fulfills the request
 - Interacts with **DynamoDB** database
 - Conditionally requests info from **Barcode API**
Procedure: Add or Remove Items in an Order

1. Parse HTTP Request. Get Order ID, UPC, Action to Perform
2. If UPC in Cache:
3. Retrieve product information
4. Else:
5. Request product information
6. Store information in Cache
7. Add or Remove UPCs in Order with proper ID

Latency – Not Cached
2.446 seconds
<table>
<thead>
<tr>
<th>Item</th>
<th>UPC</th>
<th>Name</th>
<th>Price</th>
<th>Time Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>ID</th>
<th>Item List</th>
<th>Balance</th>
<th>Time Created</th>
<th>Time Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28
Barcode API

Request
GET /products?barcode=778554152253 HTTP/1.1

Response
HTTP/1.1 200 OK
Content-Type: application/json
{
 "barcode": "778554152253",
 "product_name": "Velveeta Shells & Cheese, 24Oz (Pack of 3)",
 "price": 14.52,
 ...
}
Remaining Work & Improvements

• Integrate AWS with user interface
 • Update the application on a subscription-basis from AWS

• Automatically update stale, cached item information

• Unit and integration tests with a mock database
User Interface

Jonathan
Feedback

• Current State
 • Using Adafruit DotStar Digital LED Strip, 60 LED/Meter
 • LEDs flash green on successful detection

• Plan
 • LEDs flash red on unsuccessful detection
 • Signal malicious attempts to steal items
Android

• The world’s most popular mobile OS
• Create applications in Java or C++ with Android Studio IDE
Interface Specifications

• Start a new order

• View balance and list of items in the order in near-real time

• Process payment

• Complete transaction
CDR Deliverables

1. Mount system on a shopping cart
2. Detect barcodes fully around products
3. Remove items as they exit the cart
4. Increase power delivered to system
5. Create PCB for the power circuit
6. Make a fully-featured interface
Budget

Remaining Budget, $221.68

- VRUZEND Battery Kit
- Mirrors
- PowerBoost 1000 Charger
- USB Cable
- USB Power Supply
- 100mm JST PH 2-Pin Female Connector
- TP4056 Lithium-Ion Battery Charger & Protection Module
- 3000mAh 15A Battery Cells
- Pixy2 Camera & Pan Tilt Kit
- LED Strip
End of Presentation

Questions
Demonstration

Jon & Ryan: End-to-End Barcode Scanning
Ricardo: Power Delivery