
B. J. Cross from Westfield, MA (e-mail: bjcross@umass.edu)
V. Degtyarev from Westborough, MA (e-mail: vdegtyarev@umass.edu)
A. E. Eshak from Westborough, MA (e-mail: aeshak@umass.edu)
A. J. LaMarche from Southhampton, MA (e-mail: alamarche@umass.edu)

Abstract—School shootings have continued to plague our

society, leading to unnecessary loss of life and excruciating trauma
for the students. Every moment of such events is critical and could
be the differentiator between life and death for those within the
building. Coresidium is a project that aims to detect gunshots in
indoor locations in an effort to reduce response times during
school shootings. It uses an acoustic sensor, a thermal infrared
camera and an embedded processor to detect gunshots locally. It
then sends the sampled data to a sever for further processing. The
server determines whether the event is a potential threat, stores
the data and displays it to the user through a web-based interface.

I. INTRODUCTION
ERHAPS one of the most troubling epidemics of our

generation is the continuing rise of school shootings around
the United States. Between January 1st, 2009 to May 21st, 2018,
288 school shooting incidents have occurred in the United
States [3]. This figure is in fact fifty-seven times that of the total
number of school shootings that occurred in the six other G7
countries (United Kingdom, Japan, Italy, Germany, France and
Canada) [2]. It should also be noted that since 2000, 186,000
students have been affected by school shootings and more than
1,100 students have been killed or injured [3].

 In response to this problem, Congress has been unable to
find a proper solution to address the number of fatalities and to
stem the tide of violence occurring yearly in schools around the
nation. As a result, many schools have implemented novel
techniques and protocols to address this problem. For example,
some schools have begun to teach their students basic defense
mechanisms against intruders. Other schools have introduced
drills to allow students to exit the building as swiftly as possible
in order to reduce the number of fatalities. Some parents have
also given their children bulletproof backpacks in order to
reduce the chances of them being fatally shot or injured [10].
Finally, on the recommendations of current President Donald
Trump, some schools have offered firearm training to their
teachers and offered incentives to teachers who carry a firearm
during the school day [13]. While these techniques may offer a
temporary solution to the problem, they do not offer a complete
one since it leaves the students feeling vulnerable and unsafe
during their school day.

This problem is made worse by the fact that when the
authorities are alerted to an incident within their district, the
response time is often much too great, significantly increasing
the time it takes for the victims to receive the proper attention
and medical care they need [3]. This long period is due to the
fact that authorities are often unaware of the location of the
shooter within the building and as a result, have to methodically

search every room in the building in order to properly declare
the campus safe from any further threats. Table 1 demonstrates
the duration of the period from which the shooter enters an
academic building until the building is declared safe, during
three separate shooting incidents. It should be noted that
although the incidents happen in completely different decades,
and although the response time decreases as time passes, the
duration is still much too long for those within the building.

TABLE I
SCHOOL SHOOTINGS IN THE UNITED STATES [4][9]

Incident Date

(mm/dd/yyyy)
State Response

time
(minutes)

of
fatalities

Columbine 04/20/1999 Colorado 328 15

Virginia
Tech

04/16/2007 Virginia 217 33

Douglas
Stoneman

High
School

02/14/2019 Florida 198 14

 This delay in the response time can increase the number of
fatalities and injuries within the building. Furthermore, this
increased delay can leave anxious parents unaware of the status
of their children, increasing their unease.

Congress and schools are not the only parties that attempted
to tackle such a problem. Private companies have attempted to
come up with novel solutions to curb this recent tide. Some of
these attempts include bulletproof windows and doors as well
as surveillance systems to detect intruders. Such systems are the
reasoning behind our project, as they can be installed at large
costs to the school districts, making them unaffordable to most
schools [1].

It is difficult to come by exact figures for the cost of installing
such systems, since they often rely on multiple variables
including the area of the school, the number of students within
the school, as well as the reluctance of such companies to
release their prices publicly. However, while talking with
Officer Kellogg of the University of Massachusetts-Amherst
Police Department, we were informed that prices of such
systems are unaffordable for a public institution with the size of
the University of Massachusetts-Amherst [September 15,
2018]. Through online research, we located just one school that

Coresidium: A Gunshot Detection System
Brandon Cross, CSE, Valentin Degtyarev, CSE, Andrew Eshak, CSE, and Andrew LaMarche, CSE

P

Team 22 Final Design Review Report

2

installed such a system in North Carolina. Shooter Detection
Services, the company manufacturing such a system, is
Massachusetts-based and installed the system within the three
buildings of the 1,000-student school, to the estimated cost of
$400,000[1].

Similar systems have also been deployed by state
governments in order to locate gunshots on the streets of their
cities. In such systems, microphones are placed on the streets
and are used to triangulate the location of a gunshot when it is
fired, using the speed of sound. The difficulty with such
systems is that they are utilized in outdoor locations, ignoring
the different parameters of indoor use such as echoes and the
rate of sound travel through different materials. Most systems
also rely on human input to be able to discern whether the alarm
was based on a gunshot before notifying the authorities. This
criterion was added since most systems were unable to
differentiate between a gunshot and firecrackers. Finally, such
systems are also immensely expensive, making them
inapplicable for school use [1].

In response to such difficulties, we aim to design an
inexpensive system that would notify authorities in the event of
a gunshot and provide a relative location of the shooter. We
define relative location as the floor of the building as well as the
direction within the building (east, west, north or south). This
notification and location system will be provided to the
authorities through a web-based dashboard. This system would
rely on acoustic sensors as well as visual sensors to detect the
gunshots and utilize embedded systems and a central server to
perform the computation.

TABLE 2
SPECIFICATIONS

Requirement Specification Value

Functionality Range 10 feet per
module

Functionality Response time <1 second

Functionality Accuracy >80%

Price Cost <$100 per
module

Functionality Sensitivity range >130 dB

Functionality Timestamp accuracy <1 second

Functionality Location accuracy Floor and
direction within
building

II. DESIGN

A. Overview
Our solution to this problem entails a two-tiered system

consisting of an embedded module to perform the sensing and
signal filtering, and a central computing module to coordinate
between the multiple nodes, analyze the data and output the
results to the user [see Figure 1]. The computing node is
implemented via an Amazon Web Services instance running

windows server, ensuring high performance and availability to
all the embedded modules. The embedded system
communicates to the computing node via HTTP requests. The
computing node is unidirectional, meaning it cannot
communicate back to the embedded modules.

Fig. 1. The Block diagram of the Coresidium system. On the left is the
embedded module while on the right is the computing node that utilizes an
Amazon Web Services Instance.

More specifically, the embedded module consists of an

acoustic sensor to detect the sound signature of a gunshot as
well as a thermal sensor to detect the muzzle flash or the heat
signature of the gun. Both sensors are connected to a 64-bit
Raspberry Pi 3B [16], running a 32 bit version of the Linux
operating system, that performs timestamping and basic signal
filtering before sending the data to the computing node over
Wi-Fi. The entire module is powered by a traditional power
brick supplying five volts and a maximum of 1.34 amps, giving
a maximum use of 6.7 Watts [16].

On the server end, the computing node consists of an
Amazon Web Services Instance running a Windows Server. It
is powered by an Intel Xeon processor with 16 GB of RAM.
Within the server, a three-tiered system is present to perform
the necessary computation. At the bottom of the system is a
SQL database that stores the raw data from the server. In the
middle tier, the backend controller utilizes C# to coordinate and
receive data from the embedded modules. It also performs
computation on the data received to check its validity, match it
to a location and store the data in the database. Finally, it
communicates to the dashboard on the top level in order to
allow the user to view the current status of the modules and the
incidents that have occurred. It is important to note that the
middle tier acts as the only gateway that receives data from the
embedded modules. This means that data coming from the
modules cannot be stored directly in the database or be
displayed directly to the user interface, providing an extra layer
of computation to scrutinize the data. Furthermore, the SQL
database cannot communicate to the user interface or vice versa
without the use of the middle tier which performs the necessary
calls and data translations for both tiers. The final tier consists
of the user interface, displayed over the internet. It utilizes
HTML and CSS as well as Angular [8] to dynamically display
the data in a user-friendly manner, without the need for a data
expert to perform analysis.

It is also important to note at this point that other proposals
have been explored in order to address this problem. In our
initial pitch, the thermal sensor replaced a traditional camera

Team 22 Final Design Review Report

3

and machine vision to recognize the images of a gun. This
required the use of neural nodes, high performance
computational machines with dedicated graphics cards and
thousands of training sets in order to get the needed accuracy
from the network. We experimented with a neural network
algorithm provided over the web, collected over 1,500 images
of a variety of guns as our data set and used one high
performance computing machine in order to perform the
necessary training. However, such endeavors were not fruitful
in the sense that our accuracy was below 30% using this
method. This can be attributed to the need for more training
sets. It was also pointed out that our data set utilized images of
guns at “convenient” angles where the gun was directly facing
the camera. This contrasts with real-life situations where guns
are often hidden or at awkward angles hindering the machine’s
ability to perform accurate detection. It was also pointed out
that a great amount of computational performance would need
to be available in order to perform the detection in real-time.
This need for performance would come at a high monetary cost,
making this seem unviable for most schools and offsetting its
benefits compared to the available commercial systems.

B. Acoustic Sensor
Focusing on the embedded module, our first step is to explore

the acoustic sensor. In our original design, we used a KY-038
big sound sensor module [6]. This sensor detects large sounds,
amplifies its signal, compares it to a predetermined value and
outputs it through pin one. However, for our final design, we
used a capacitor-based Electret microphone due to its ease of
use in our PCB design [4]. This helped us eliminate the need for
breakout boards and to customize the circuitry to our individual
needs. Along with the microphone, we used an analog to digital
converter [14] to convert the analog signal into a digital signal
and a comparator chip [18] to compare the newly digital signal
to a predetermined value. The predetermined value was
originally configured through a potentiometer and varies from
module to module. However, in our final design, we simply
used a standard resistor value across all our PCBs, reducing the
variation between each module and the need for individual
calibration of the microphone. To conclude, the changes that
were made for this module include the elimination of the
breakout board, as well as the potentiometer and replacing it
with a uniform resistor value used across all the modules to
reduce variation and the need for calibration in the system.

For this module, we relied on our experience from Computer
Systems labs to receive the data from the sensor at scheduled
intervals using a digital to analog converter. One piece of
information that is lacking is from our knowledge is what the
outputs of this module represent. This means we must attempt
to find a relation between the output voltage and the physical
noise being received.

In this sensor, the maximum detectable sound amplitude is
130-dB whereas gunshots range from 150-dB to 190-dB. As a
result, in most cases we configure our sensor to detect the
largest possible amplitude, while keeping in mind that sounds
between 130-dB and 150-dB may cause a false positive in our
results. It is also important to note that loud conversations have

a maximum amplitude of 90-dB, a loud balloon popping has a
maximum amplitude of approximately 110-dB, and an
emergency siren has a maximum amplitude of approximately
125-dB. As a result, we believe that this sound sensor will be
sufficient for our purposes.

During our initial proposal, we considered using higher end
microphones that can operate at higher amplitudes. For
example, aerospace grade microphones, such as the HOLMCo
82-03-08274 can pick up sound in our desired range [9].
However, the biggest disadvantage with such microphones is
their price, which can range from a minimum of $150 to $500
per microphone. This would make the cost of our system highly
impractical and infeasible for most schools, which is an
undesired outcome that we attempted to avoid.

 In order to test this module, we reduced the sensor’s
sensitivity, popped twenty-five balloons within twelve feet of
four modules and recorded whether each individual module
picked up the loud noise. We recorded the number of
successfully reported incidents and divided it by the total
number of attempts to receive our success percentage. The
result of such a testing procedure during our midway design
review was 80% success with no false positives and 20% false
negatives. However, for our final review, we received more
favorable results of 96% success and 4% false negatives. Such
an increase in our success can be attributed to the use of
standard resistor values as well as the incremental
improvements to our code that have improved our detection
algorithm. Finally, the fact that our system does not detect any
false positives leads us to believe that our system was
conservative in detecting such incidents.

C. Thermal Camera
The thermal camera is responsible for detecting the heat

signatures of a gun that has been fired. For our purposes, we
chose the MLX90640 thermal sensor, that is capable of
detecting temperatures ranging from -40°C to 300°C [12]. It has
a 32x24 resolution. The temperature range is excellent for our
purposes since gun barrels have a minimum temperature of
150°C, making it easy to detect and distinguish it from the
traditional school environment.

In the design used for our midyear design review, we used a
camera with a 110° by 75° field of view [12]. This provided us
a wider image while reducing the distance that we can
accurately detect. Furthermore, we were struggling to process
32 frames per second using the VoCore [11], the original low
power process that we chose. Such attempts proved to be
unfruitful since the camera was unable to detect hot objects at
distances that were sufficient for our application and was
proving to be computationally strenuous on our low-power, one
core, 580 MHz VoCore [11]. It was clear at this point that this
sensor was not appropriate for our project, leading to a
discussion of whether we should abandon the thermal part of
the project and rely solely on the microphone.

However, on the recommendations of Professor Siqueira, we
replaced the original sensor which had a 110° by 75° [12] field
of view, with the same model that has a 55° by 35° [12] field of
view. It was pointed out that under ideal conditions, one can

Team 22 Final Design Review Report

4

achieve four times the distance of the original sensor, which
should make it applicable for our application. Secondly, we
decided to replace our original VoCore [11] processor with a
Raspberry Pi 3B [16] since it provides more computational
power, a topic will be discussed in greater detail in the
following section. This allowed us to process the 32 frames per
second that we viewed as adequate for our purpose, and brought
the thermal sensor part of the module back into contention,
allowing us to have two sources of data to detect gunshots in
indoor locations and providing our module with greater
accuracy and redundancy.

Other improvements to this module involved using the
highest pixel value above our threshold instead of using the first
pixel value above our threshold when detecting an event. This
allowed us to provide a datum with greater significance or
meaning to the backend for computation. Secondly, we
implemented the keepalive function, which allows us to know
which models are offline or broken. For the keepalive function,
we used an average of the pixels taken every 60 minutes and
sent it to the backend to be used to calculate the percent
confidence when an event is detected. Further discussion of the
percent confidence calculations is discussed in the backend
computation section. Finally, we eliminated the use of breakout
boards for this module

In order to test this module, we flickered a lighter from three
feet away one-hundred times and recorded the number of
successes over the total number of flickers. Our original sensor,
with a field of view of 110° by 75°[12] resulted in a 68%
success rate, a result that is both disappointing and one that we
believe we could not improve on with such a setup, However,
with the 55° by 35° [12] we were able to achieve a 100%
success rate from both 3 feet and 6 feet away from the sensor.
In fact, this result continued up to 9 feet away from the sensor.
With distances greater the 9 feet away, the sensor receives
success rates below 30%, making its maximum usable distance
between 8 and 9 feet away for our module. We consider this
distance acceptable since most school hallways are between 8
and 10 feet away.

For this component, we utilized our previous knowledge of
Computer Systems Labs to build this embedded module, to
sample the data and to perform the necessary computation on it.

D. 64-bit processor
This component is the main processing unit in the embedded

module. It performs event checking, timestamping and basic
signal processing from the sensors before sending the data to
the server-end of the module. It is responsible for
communicating with the acoustic sensor via SPI to perform the
event detection via sound and the keepalive for the sound
sensor. It also communicates with the thermal sensor via I2C to
perform the event detection using the thermal data and the
keepalive for the thermal sensor. It is this module that consumes
power from the power supply and supplies it to both sensors
and performs the communication between the embedded
module and the cloud module.

 Originally, we were aiming to use a VoCore 32-bit
embedded chip [11] running Linux OpenWRT, a low power
version of Linux specifically designed for embedded chips.

This chip is prebuilt with WiFi and an operating system,
allowing us to focus on the goals of our project. However, while
interfacing with this chip, we encountered quite a few
challenges that forced us to change our direction. Our first
challenge is that such a chip required us to write our own drivers
to store data into memory, and to communicate via SPI and I2C.
Such drivers were difficult to write, time consuming and were
not fully optimized for our purposes. As a result, not only were
they a challenge to program but were also a performance
bottleneck for our system. For example, using our customized
drivers on the VoCore, we were able to perform 21,000 bit I/O
writes, making it inadequate for reading both the sound sensor
and the thermal sensor data. Secondly, the VoCore did not
provide the necessary performance for our computation needs
due to its inherent design. The VoCore is a single core, 580
MHz processor running a Linux operating system [11][5].
Adding our own drivers and our programs to this setup meant
that the VoCore was simply not able to process our information
at the required rates, leading in degradation of performance,
such as not being able to process 32 frames per second.

As a result, we decided to transition to a Raspberry Pi version
3B. This computational module is a 64-bit processor with a 32-
bit Linux operating system [16]. It has a built-in Wi-Fi chip and
does not require us to write our own drivers for I/O and memory
storage. This allows us to focus on the important and
challenging aspects of our project and to concentrate on
achieving the goals of the team [16]. Another benefit of the
Raspberry Pi is its computational performance. The Raspberry
Pi version 3B has a 1.2 GHz clock speed along with 4 cores
which is a significant increase over the performance
benchmarks of the VoCore that were mentioned above [16].
Such improvements allowed us to access sensor data from both
the thermal sensor and the acoustic sensor simultaneously as
well as run the keepalive with no bottlenecks. For example, we
were easily able to get the 32 frames per second needed for the
thermal sensor along with acoustic sensor detection and
keepalives for both the acoustic and thermal sensor.

Another change that was implemented for this module in our
final design was the use of four threads instead of two for our
computation. Originally, we were planning on using two
threads, one for the acoustic module and one for the thermal
module. However, after careful consideration, we decided to
use for threads, one to implement the detection of an event for
the thermal sensor, one to implement the detection of an event
for the sound sensor, one to implement a keepalive for the
thermal sensor and a final one to implement a keepalive for the
sound sensor. Such implementation was difficult to program
since it required the use of locks since only one thread can
access sensor data at a time. As a result, we used some of the
techniques that we learned in ECE 570: System Software
Design.

Testing this component has consisted of manually pushing
write requests upon boot to the server. If the server receives the
test data, then the embedded system is connected to the internet
and able to push requests to the server. Secondly, we tested the
threats from both the acoustic sensor and the thermal sensor by
lowering the sensitivities on both and triggering the sensors
using a clap or the heat of a hand. Finally, we tested both
keepalive threads by allowing them to send keepalive signals
every 30 seconds instead of every 60 minutes. One can check

Team 22 Final Design Review Report

5

if all the threads work properly by checking if the server
receives data in the incident reports and the keepalive reports.
If the server does not receive the data, one knows that the
problem is with the individual sensor since the code responsible
for sending data over the internet has already been verified.
 It is also important to note that other options have been
considered for this module. Our primary alternative was using
an embedded ATmega 32-bit processor to perform the
computation [15]. This would have been much cheaper
considering that the Raspberry Pi Version 3B costs
approximately $39.99 while an Atmega 32-bit processor would
cost below $2 [15] [16]. However, this was not pursued due to
the superior performance of the Raspberry Pi, running at 1.2
GHz compared to the Atmega’s 48 MHz [15] [16]. This was
also chosen since it is a complete module onboard memory, a
dedicated operating system, and a built-in Wi-Fi chip that does
not need special configuration or other hardware. One
disadvantage however of the Raspberry Pi is its power
consumption since it uses 1.34 A compare to the VoCore 0.234
A [11][16]. This power consumption requires to use a power
brick instead of a power battery, decreasing the portability of
the system.

E. SQL database
The SQL database stores data regarding our system, to be

used later on by the other components of the module. It only
communicates to the C# based middle tier. In our current
implementation, we use three tables. The first table is a user
accounts table that stores authorized users’ names, emails and
passwords in a hashed format. The incident table is the second
table and it stores data from the embedded module about
whether a significant event occurred or not. More specifically,
it stores the communicating device’s MAC address, whether a
microphone or a camera caused the alarm, whether this message
is a keep alive signal or an alarm for an incident that occurred,
as well as the sensor data sent by the module. The third table
stores the device-to-location mappings. This means that the
table stores the MAC address of each device used in our module
as well as the location of each module, which we stored as a
string. This enabled the middle tier to display the incident report
by checking the incident table then matching each incident to a
location in the location mappings table using a “left join” query
statement. We relied on our previous knowledge of data
structures and relations to form this relational database.

It is important to note at this point that other options have
been considered, such as storing the data in a JSON file , a CSV
file or in a text file. This approach however, seemed the most
logical and the easiest to work with due to the compact and
concise data storage available with SQL.

In order to test this module, we simply ran a number of
insertion, join and deletion queries to make sure that the
database accepts reasonable data and a reasonable number of
requests. When the middle tier was developed, we manually
triggered several incidents to view if they will be stored
properly in the database. The results of such experiments were
surprisingly pleasing, with no major issues due to the simplicity
of this component. This leads us to believe that this component
is ready for use in our system.

F. Backend computation
 The middle tier of the server side of the project is based on
the C# language. Its main purposes include receiving data from
the embedded module, storing it in the SQL database,
processing the requests made by the dashboard, and packaging
data from the SQL database for the frontend. It utilizes
techniques from Software Engineering and relies on the model-
view-controller concept.
 More specifically, this tier relies on two controllers. The first
controller is the read controller that reads data from the SQL
database, performs some basic data processing such as
discarding of erroneous records, and relays such information to
the frontend. The second controller is the write controller, used
by both the frontend and the embedded modules to store data
into the SQL database. Its basic processing requests include
authenticating users attempting to log in to the dashboard,
distinguishing between events and keepalive records in the
database and sending them to the appropriate page, and
checking whether the keepalive messages are received from all
the nodes to ensure that they are all functioning properly.
 Changes that were made to this module included
implementing the keepalive by distinguishing them from actual
events and pushing such differences to the frontend in an
appropriate data structure as well as calculating the percent
confidence as a measure to how confident the system is that an
event has been detected. The percent confidence relies on the
keepalive data of each individual sensor, taking the average of
such a data and standard deviation. Followingly, when an event
occurs, one can calculate how many standard deviations away
from the average the event data is. For example, one can store
the keepalive data sent from the acoustic sensors and calculate
the averages and standard deviation of such data. Then, when
an event is detected, one can use a gaussian estimation to
calculate how many standard deviations away from the average
the incident data is. This would ideally give us a percent
confidence about whether an event that is detected is truly an
alarm that needs to be considered by the user or whether it is an
erroneous piece of data. One problem that we encountered with
such an implementation is that our keepalive data did not
resemble a gaussian function but was more of a uniform
function. This made our standard deviation relatively small and
our percent confidence extremely large, making it inapplicable
for further application. It was however kept in the current
version of our project as a proof of concept.
 In order to check this tier, we manually pushed some write
requests from the embedded modules, checking whether all the
types of requests to be made are accepted without causing errors
and that the data is stored properly in the database. We also
pushed some manual HTTP requests simulating the frontend to
observe if the requested data is returned to the developer
console in Google Chrome. This enabled us to check whether
frontend information is stored properly in the database and
whether users are authenticated properly. In our experiments,
as soon as one request was processed properly, all the requests
were processed due to the simple nature of this module.
 Testing this module has consisted of manually forcing some
HTTP requests upon boot to ensure that the system can receive
data, store it in the database or load it to the web-based
graphical user interface. If the outputs of other modules

Team 22 Final Design Review Report

6

function correctly, then one can assume that this module also
operates correctly since all other modules are dependent on this
one.

G. User interface
The final component of this module is the user interface. This

interface is web-based and is based on HTML/CSS and Angular
[8]. It currently sends requests via HTTP to the C# based middle
tier, that queries the database and sends the data back to be
displayed to the user. This dashboard is available at
dashboard.coresidium.com and has three main pages to
communicate data to the user. The first page is the device report
page which relies on the keepalive data from the middle tier.
This page demonstrates the current status of the devices in our
arsenal. If a device has not sent a keepalive signal within the
last 60 minutes, it is highlighted in the page as a broken device,
otherwise the devices are labeled as working. A screenshot of
the Device Report page is shown in figure 2 in the appendix of
our report. The second page was the events table page in which
all the events that have been detected by the system are
displayed to the user in a table format. This allows the user to
look for a specific event and to sort events in a timely order or
in accordance with a specific sensor or module. A screenshot of
the events table page is shown in figure 3 in the appendix of our
report. The final page was a mapper page that provided a
physical mapping of the location of the sensors and highlighted
which sensors were triggered by an event as well as the time the
event was detected. This allows the user to view a temporal
sequence of events and the actual location of the attacker within
the building. A screenshot of the mapper page is shown in figure
4 in the appendix of our report.

The final change that was made to this module included using
bootstrap and removing a few bugs that were present during our
midyear design review. We also added a refresh button
allowing the user to refresh the mapper to see if any new events
have occurred since the page has been loaded. Finally, his
module relies on information we learned in the software
engineering course.

III. PROJECT MANAGEMENT
Table 3 provides the specifications that were promised by the

end of the year as well as which ones were achieved at this
point. Such goals include providing greater than 80% accuracy
for our acoustic sensor, as well as the ability of the thermal
sensor to recognize hot objects. Furthermore, we promised to
finish our SQL database design, the frontend dashboard, and the
middle tier to communicate information to both modules. All
the previous requirements have been satisfied.

Our first specification was to deliver a product that could
provide 10 feet of range since we estimate that this is an average
width of a hallway, making it our product applicable for most
schools. During our testing, the acoustic sensor was easily able
to achieve a range of 12 feet while maintaining accuracies of
above 90% while the thermal sensor was able to pick up flames
at distances of 9 feet, making it adequate for most conditions,
especially considering that it often works in contagion with the
sound sensor.

Secondly, we wanted our sensors to sample at approximately
one sample per second since we do not believe that a shooter is
capable of firing over 60 rounds per minute in one individual
location. However, we were able to achieve samples of just
under 1 millisecond since the Raspberry Pi often has to scan all
the pixels of each individual frame of the 32 frames per second
and find the average or the highest pixel depending on the
functionality. As a result, we believe that we have easily
overachieved for this goal and have confidence that a gunshot
will not be missed due to the low sampling rate of our system.

We also wanted our system to be able to detect 80% of
simulated gunshots under any condition. This meant that under
both noisy and quiet conditions, if a gunshot was simulated
using a handclap or a balloon pop, our system should be able to
detect 80% of such cases. However, during our tests, the system
was able to pick up 96% of such simulated gunshots making
such a goal one that was achieved.

In terms of the acoustic sensor, we wanted to focus on sounds
that were above the 130-dB noise level. To put this into
perspective, a typical conversation will have a maximum of 90-
dB while a balloon pop will typically be around 110-dB.
Finally, a gunshot ranges between 150-dB and 190-dB. As a
result, we believe that focusing on sounds that are above the
130-dB range allows us to ignore the typical noises that may
occur in a school or an indoor environment in general while
focusing on all the noises that could be associated with a
gunshot. In our project, we were able to focus on noises that
were above the 130-dB mark and this was simulated using an
airhorn and measured using a decibel meter that was often
saturated in our tests. Our module was easily able to detect
sounds in the range while ignoring sounds that were below such
a level, even in noisy conditions that were simulated using
traditional conversations and speakers. As a result, our system
is able to meet that requirement.

Most importantly, it is crucial to note that the original goal of
our system was to notify the proper authorities and the users of
our system with the relative location of the shooter within the
building. The relative location was defined as the side of the
building (east, west, north and south) and the floor within the
building. This was achieved using the mapper page that
translated the MAC ID of the triggered device into a location of
the device within the building and highlights it. Therefore,
using that page we were able to achieve the most important goal
of providing the relative location of the shooter.

Finally, we wanted our system to cost under $100 per
module. This requirement was placed as an attempt to make this
system affordable for schools since our system was primarily
designed with school campuses on mind. Our development
costs, which is the cost of building one module came in at
$91.50 while our production cost, which is the cost of building
1000 modules came in at around $72.88. The breakdowns of the
development and production costs are shown in table 4 and
table 5 respectively.

Team 22 Final Design Review Report

7

TABLE 3
SPECIFICATIONS AND ACCOMPLISHMENTS

Requirement Desired Achieved

Range 10 feet per module 10 feet per
module

Response Time < 1 second time <1 second

Accuracy >80% >90%

Sound
Sensitivity

>130 dB >130 dB

Location
Accuracy

Location and floor Location and
floor

Timestamp
Accuracy

<1 second ≈ 1	𝑚𝑠

Cost <$100 $72.88

TABLE 4
DEVELOPMENT COSTS OF CORESIDIUM

Item Development Cost

Raspberry Pi 3B+ $35

MLX90640 Thermal
Sensor

$44.99

Electret Microphone $0.95
MCP3008 ADC $2.75

Resistors $5.40

Capacitors $0.50

Diodes $0.50

LM393N $1.0

Header $0.01

Custom PCB $0.4

Total $91.50

TABLE 5
PRODUCTION COSTS OF CORESIDIUM

Item Development Cost

Raspberry Pi 3B+ $34.50

MLX90640 Thermal
Sensor

$34.04

Electret Microphone $0.86
MCP3008 ADC $1.71

Resistors $0.20

Capacitors $0.08

Diodes $0.09

LM393N $1.0

Header $0.01

Custom PCB $0.4

Total $72.88

It is important at this point to discuss the achievements and

modifications that were made for each individual component of
our module. For the acoustic sensor, our first accomplishment
was to eliminate the breakout board and to integrate the sensor
directly into our PCB. This involved using a standard resistor
value across all the sensor modules which enabled us to avoid
calibration and modification of each individual sensor as well
as the use of an amplifier and an Analog to Digital Converter
[14] [18]. We also replaced the KY-038 acoustic sensor with an
Electret Microphone due to its ease of integration into the PCB
board and its availability [4][6].

For the thermal sensor module, we also eliminated the
breakout board integrating the thermal sensor directly into our
PCB. Secondly, we used a sensor with a small filer of view, 55°
by 35° , instead of a 110° by 75°, giving us a greater range of
detection [12]. We also modified the code that was used for the
detection of events, so that when an event is detected, we send
the highest pixel value above the threshold instead of the first
value above the threshold. Finally, for the keepalive, we
decided to send the average value of the pixels in the keepalive
image.

For the embedded computing module, we abandoned our
pursuit of using the VoCore Version 2 and continued to use the
Raspberry Pi Version 3B due to its improved performance [11]
[16]. We used four threads in this module, instead of two. Two
threads were used for the keepalive of the acoustic module and
the thermal sensor respectively, and the other two threads were
used for detection of events on thermal sensor and acoustic
sensor as well.

No changes were made to the SQL server. This is due to the
fact the three tables that were initially constructed were flexible
enough for all our future uses providing user access control,

Team 22 Final Design Review Report

8

location mappings and keeping track of both keepalive and
detected events.

For the middle tier, we continued to use C# but we
implemented functions to check for keepalive signals and
provide it to the frontend to display to the user. We also
implemented the percent confidence function so that one can
determine how far an event is from the average and how
confident the system is that an event detected by the embedded
module is an actual event worthy of alerting the user over. We
also implemented a few bug fixes to ensure the robustness of
the system and to prevent the system from breaking down under
certain edge conditions.

Finally, for the frontend, we implemented two new pages so
that users can tell which devices are broken as well as to provide
a visual mapping of the devices and the current location of the
shooter within the building, We also added refresh buttons for
our pages so that users can update their maps or tables to keep
their pages up to date without the need to restart the entire
application.

In terms of division of responsibilities, our team divided the
work equally according to each individual’s strength. Brandon
Cross was responsible for managing the thermal camera, along
with its code and its tests. Valentin Degtyarev was responsible
for setting up the acoustic sensor module along with its code
and its tests. Additionally, Valentin focused on the hardware
and PCB design of the module. Andrew LaMarche was
responsible for the general setup of the VoCore, taking data
from both the thermal camera thread and the acoustic sensor
thread, and sending it over to the server side of the computation.
Finally, Andrew Eshak was responsible for server-side
computation, setting up the SQL database, the C# API and the
HTML/Angular [8] based frontend.

We also utilized a “buddy system” in which two people
studied the same piece of code in order to offer multiple
perspectives on a solution and to ensure a “backup” person in
case of emergencies. Using such a system, Brandon Cross
worked with Andrew LaMarche towards VoCore
communications, and Andrew LaMarche worked with Valentin
Degtyarev towards the acoustic sensor. Andrew Eshak worked
with Brandon Cross to verify the thermal sensor and Valentin
Degtyarev worked with Andrew Eshak towards ensuring proper
use of the server code.

To manage communications, our team utilizes Discord and
iMessage group chats in order to discuss future endeavors, the
status of current attempts and meeting times. In addition,
biweekly meetings were set up in accordance with every
person’s schedule in order to ensure that all the individual
pieces of the project worked properly with each other. Finally,
a weekly meeting occurred with Professor Siqueira, often on
Mondays at 1:30 P.M., in order to provide a status report and to
receive advise on our next steps. All such forms of
communications helped ensure that the project remained on
track and that all our individual modules culminated into one
complete system.

IV. CONCLUSION
In conclusion, Coresidium is a system that aims to detect

gunshots during school shootings, in an effort to reduce
response times and the number of fatalities. During the first
semester of the 2018-2019 year, our team has built the
embedded module utilizing both an acoustic microphone and a
thermal camera as well as a Raspberry Pi Version 3B [16]. The
microphone detects acoustic anomalies and the thermal sensor
detects high temperatures that last for a short duration such as a
muzzle flash. The Raspberry Pi was responsible for taking
sensor data and detecting an event, performing the timestamp
and communicating the data to the server module.

We also built the sever side of the module, utilizing a SQL
database with three tables, a C# computing tier, and an
HTML/CSS/Angular [8] frontend to display the data. The SQL
database consisted of a table for user accounts to remember
authorized users, a table for incidents, and a table for device to
location mappings. The C# middle tier receives data from the
embedded module and performs the necessary computation to
store it in the database or display it to the front end. The
frontend displays the data for the user in a user-friendly manner,
through a web-based website. Such data is displayed in a table
manner so that the user is able to check all the detected events,
as well as in a table manner so that the user can view a pictorial
time sequence of the events occurring within the building.

Some of the difficulties that we encountered during this
project included the need to implement locks within our threads
for our embedded computing module, a topic that we were in
the process of learning about it and were not entirely familiar
with. We also encountered difficulty choosing a resistor value
for our microphone sensor due to the variation in the internal
resistance of the microphone itself. No other difficulties were
encountered with our system.

APPENDIX
FIGURE 2

DEVICE REPORT PAGE

Team 22 Final Design Review Report

9

FIGURE 3
INCIDENT LOG PAGE

FIGURE 4
MAP PAGE

ACKNOWLEDGMENT
We thank Professor Siqueira for his assistance with our

project and his advice to perform Fourier transforms and
sound signature matching. We also would like to thank
Professor Krishna and Professor Soules for their fair
criticism and their advice to implement the keep alive
function and to use averages to accurately detect an event.

REFERENCES
[1] “Active Shooter Detection System Launched at Triad School; A First In

NC.” WFMY, WFMY, 14 Aug. 2018,
www.wfmynews2.com/article/news/local/active-shooter-detection-
system-launched-at-triad-school-a-first-in-nc/83-583962141.

[2] Ahmed, Saeed, and Christina Walker. “There Has Been, on Average, 1
School Shooting Every Week This Year.” CNN, Cable News Network,
25 May 2018, www.cnn.com/2018/03/02/us/school-shootings-2018-list-
trnd/index.html.

[3] “Analysis | More than 210,000 Students Have Experienced Gun
Violence at School since Columbine.” The Washington Post, WP
Company, www.washingtonpost.com/graphics/2018/local/school-
shootings-database/?noredirect=on&utm_term=.d9f2772bfe62

[4] Challenge Electronics “Electret Microphone Datasheet” CEM-
C9745JAD462P2.54R, 2010

[5] “Columbine High School Shootings Fast Facts.” CNN, Cable News
Network, 25 Mar. 2018, www.cnn.com/2013/09/18/us/columbine-high-
school-shootings-fast-facts/index.html.

[6] Datasheets.com “Arduino KY-038 Microphone Sound Sensor Module”

[7] “DeVos Gives Quiet Nod to Arming Teachers, despite Hearing from
Many Who Disagree.” NBCNews.com, NBCUniversal News Group,
www.nbcnews.com/politics/white-house/devos-gives-quiet-nod-arming-
teachers-despite-hearing-many-who-n950151.

[8] https://angular.io/
[9] HOLMCO “Dynamic Microphone with Gooseneck” Series MG-50-D,

Aug. 2013
[10] Lloyd, Whitney. “Schools Preparing for Active Shooters the Wrong

Way, Experts Say.” ABC News, ABC News Network, 28 Feb. 2018,
abcnews.go.com/US/schools-preparing-active-shooters-wrong-
experts/story?id=53360957.

[11] MEDIATEK “VoCore 2 Datasheet”, MT7628 Complete Datasheet, July.
2012 [Revised Sep.. 2012].

[12] Melexis “MLX90640 Datasheet”, MLX90640 32x24 IR array Datasheet,
July. 2016 [Revised Aug.. 2018].

[13] Merica, Dan, and Betsy Klein. “Trump Suggests Arming Teachers as a
Solution to Increase School Safety.” CNN, Cable News Network, 22
Feb. 2018, www.cnn.com/2018/02/21/politics/trump-listening-sessions-
parkland-students/index.html.

[14] Microchip “2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI
Serial Interface”, MCP3004/3008 Datasheet [Revised. 2008].

[15] Mouser Electronics, “32-bit ATMEL AVR Microcontroller”, AT32UC3B
Complete Datasheet, May. 2007 [Revised Jan.. 2012].

[16] Raspberry Pi “Raspberry Pi 3 Model B+”, Raspberry Pi Model 3 B
Complete Datasheet [Revised Aug.. 2018].

[17] Smith, Ryan. “Tampa Police to Use ShotSpotter Devices in High-Crime
Areas.” WFTS, 19 Dec. 2018, www.abcactionnews.com/news/region-
hillsborough/tampa-police-to-use-shotspotter-technology-in-high-crime-
area.

[18] Texas Instruments, “LMx93-N, LM2903-N Low-Power, Low-Offset
Voltage, Dual Comparators Datasheet” [Revised Oct. 2018]

[19] “The Extraordinary Number of Kids Who Have Endured School
Shootings since Columbine.” The Washington Post, WP Company,
www.washingtonpost.com/graphics/2018/local/us-school-shootings-
history/?utm_term=.ffd603c7b40f.

[20] “Timeline: How the Virginia Tech Shootings Unfolded.” NPR, NPR, 17
Apr. 2007, www.npr.org/templates/story/story.php?storyId=9636137.

