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Abstract—School shootings have continued to plague our 

society, leading to unnecessary loss of life and excruciating trauma 
for the students. Every moment of such events is critical and could 
be the differentiator between life and death for those within the 
building. Coresidium is a project that aims to detect gunshots in 
indoor locations in an effort to reduce response times during 
school shootings.  It uses an acoustic sensor, a thermal infrared 
camera and an embedded processor to detect gunshots locally. It 
then sends the sampled data to a sever for further processing. The 
server determines whether the event is a potential threat, stores 
the data and displays it to the user through a web-based interface.   

I. INTRODUCTION 
ERHAPS one of the most troubling epidemics of our 

generation is the continuing rise of school shootings around 
the United States. Between January 1st, 2009 to May 21st, 2018, 
288 school shooting incidents have occurred in the United 
States [3]. This figure is in fact fifty-seven times that of the total 
number of school shootings that occurred in the six other G7 
countries (United Kingdom, Japan, Italy, Germany, France and 
Canada) [2]. It should also be noted that since 2000, 186,000 
students have been affected by school shootings and more than 
1,100 students have been killed or injured [3].  

 In response to this problem, Congress has been unable to 
find a proper solution to address the number of fatalities and to 
stem the tide of violence occurring yearly in schools around the 
nation. As a result, many schools have implemented novel 
techniques and protocols to address this problem. For example, 
some schools have begun to teach their students basic defense 
mechanisms against intruders. Other schools have introduced 
drills to allow students to exit the building as swiftly as possible 
in order to reduce the number of fatalities. Some parents have 
also given their children bulletproof backpacks in order to 
reduce the chances of them being fatally shot or injured [10]. 
Finally, on the recommendations of current President Donald 
Trump, some schools have offered firearm training to their 
teachers and offered incentives to teachers who carry a firearm 
during the school day [13]. While these techniques may offer a 
temporary solution to the problem, they do not offer a complete 
one since it leaves the students feeling vulnerable and unsafe 
during their school day.  

This problem is made worse by the fact that when the 
authorities are alerted to an incident within their district, the 
response time is often much too great, significantly increasing 
the time it takes for the victims to receive the proper attention 
and medical care they need [3]. This long period is due to the 
fact that authorities are often unaware of the location of the 
shooter within the building and as a result, have to methodically 

search every room in the building in order to properly declare 
the campus safe from any further threats. Table 1 demonstrates 
the duration of the period from which the shooter enters an 
academic building until the building is declared safe, during 
three separate shooting incidents. It should be noted that 
although the incidents happen in completely different decades, 
and although the response time decreases as time passes, the 
duration is still much too long for those within the building.  

 
 

TABLE I 
SCHOOL SHOOTINGS IN THE UNITED STATES [4][9] 

 
Incident Date 

(mm/dd/yyyy) 
State Response 

time 
(minutes) 

# of 
fatalities 

Columbine 04/20/1999 Colorado 328 15 

Virginia 
Tech 

04/16/2007 Virginia 217 33 

Douglas 
Stoneman 

High 
School 

02/14/2019 Florida 198 14 

  
 This delay in the response time can increase the number of 
fatalities and injuries within the building. Furthermore, this 
increased delay can leave anxious parents unaware of the status 
of their children, increasing their unease.  

Congress and schools are not the only parties that attempted 
to tackle such a problem. Private companies have attempted to 
come up with novel solutions to curb this recent tide. Some of 
these attempts include bulletproof windows and doors as well 
as surveillance systems to detect intruders. Such systems are the 
reasoning behind our project, as they can be installed at large 
costs to the school districts, making them unaffordable to most 
schools [1].  

It is difficult to come by exact figures for the cost of installing 
such systems, since they often rely on multiple variables 
including the area of the school, the number of students within 
the school, as well as the reluctance of such companies to 
release their prices publicly. However, while talking with 
Officer Kellogg of the University of Massachusetts-Amherst 
Police Department, we were informed that prices of such 
systems are unaffordable for a public institution with the size of 
the University of Massachusetts-Amherst [September 15, 
2018]. Through online research, we located just one school that 
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installed such a system in North Carolina. Shooter Detection 
Services, the company manufacturing such a system, is 
Massachusetts-based and installed the system within the three 
buildings of the 1,000-student school, to the estimated cost of 
$400,000[1].  

Similar systems have also been deployed by state 
governments in order to locate gunshots on the streets of their 
cities. In such systems, microphones are placed on the streets 
and are used to triangulate the location of a gunshot when it is 
fired, using the speed of sound. The difficulty with such 
systems is that they are utilized in outdoor locations, ignoring 
the different parameters of indoor use such as echoes and the 
rate of sound travel through different materials. Most systems 
also rely on human input to be able to discern whether the alarm 
was based on a gunshot before notifying the authorities. This 
criterion was added since most systems were unable to 
differentiate between a gunshot and firecrackers. Finally, such 
systems are also immensely expensive, making them 
inapplicable for school use [1].   

In response to such difficulties, we aim to design an 
inexpensive system that would notify authorities in the event of 
a gunshot and provide a relative location of the shooter. We 
define relative location as the floor of the building as well as the 
direction within the building (east, west, north or south). This 
notification and location system will be provided to the 
authorities through a web-based dashboard.  This system would 
rely on acoustic sensors as well as visual sensors to detect the 
gunshots and utilize embedded systems and a central server to 
perform the computation.  

TABLE 2 
SPECIFICATIONS 

Requirement Specification Value 

Functionality Range 10 feet per 
module 

Functionality Response time <1 second 

Functionality Accuracy >80% 

Price Cost <$100 per 
module 

Functionality Sensitivity range >130 dB 

Functionality Timestamp accuracy <1 second 

Functionality Location accuracy Floor and 
direction within 
building 

 

II. DESIGN 

A. Overview 
Our solution to this problem entails a two-tiered system 

consisting of an embedded module to perform the sensing and 
signal filtering, and a central computing module to coordinate 
between the multiple nodes, analyze the data and output the 
results to the user [see Figure 1]. The computing node is 
implemented via an Amazon Web Services instance running 

windows server, ensuring high performance and availability to 
all the embedded modules. The embedded system 
communicates to the computing node via HTTP requests. The 
computing node is unidirectional, meaning it cannot 
communicate back to the embedded modules.  

 
 

Fig. 1.  The Block diagram of the Coresidium system. On the left is the 
embedded module while on the right is the computing node that utilizes an 
Amazon Web Services Instance.  

 
More specifically, the embedded module consists of an 

acoustic sensor to detect the sound signature of a gunshot as 
well as a thermal sensor to detect the muzzle flash or the heat 
signature of the gun. Both sensors are connected to a 64-bit 
Raspberry Pi 3B [16], running a 32 bit version of the Linux 
operating system, that performs timestamping and basic signal 
filtering before sending the data to the computing node over 
Wi-Fi. The entire module is powered by a traditional power 
brick supplying five volts and a maximum of 1.34 amps, giving 
a maximum use of 6.7 Watts [16].  

On the server end, the computing node consists of an 
Amazon Web Services Instance running a Windows Server. It 
is powered by an Intel Xeon processor with 16 GB of RAM. 
Within the server, a three-tiered system is present to perform 
the necessary computation. At the bottom of the system is a 
SQL database that stores the raw data from the server. In the 
middle tier, the backend controller utilizes C# to coordinate and 
receive data from the embedded modules. It also performs 
computation on the data received to check its validity, match it 
to a location and store the data in the database. Finally, it 
communicates to the dashboard on the top level in order to 
allow the user to view the current status of the modules and the 
incidents that have occurred. It is important to note that the 
middle tier acts as the only gateway that receives data from the 
embedded modules. This means that data coming from the 
modules cannot be stored directly in the database or be 
displayed directly to the user interface, providing an extra layer 
of computation to scrutinize the data. Furthermore, the SQL 
database cannot communicate to the user interface or vice versa 
without the use of the middle tier which performs the necessary 
calls and data translations for both tiers. The final tier consists 
of the user interface, displayed over the internet. It utilizes 
HTML and CSS as well as Angular [8] to dynamically display 
the data in a user-friendly manner, without the need for a data 
expert to perform analysis.  

It is also important to note at this point that other proposals 
have been explored in order to address this problem. In our 
initial pitch, the thermal sensor replaced a traditional camera 



Team 22 Final Design Review Report 
 

 
 

3 

and machine vision to recognize the images of a gun. This 
required the use of neural nodes, high performance 
computational machines with dedicated graphics cards and 
thousands of training sets in order to get the needed accuracy 
from the network. We experimented with a neural network 
algorithm provided over the web, collected over 1,500 images 
of a variety of guns as our data set and used one high 
performance computing machine in order to perform the 
necessary training. However, such endeavors were not fruitful 
in the sense that our accuracy was below 30% using this 
method. This can be attributed to the need for more training 
sets. It was also pointed out that our data set utilized images of 
guns at “convenient” angles where the gun was directly facing 
the camera. This contrasts with real-life situations where guns 
are often hidden or at awkward angles hindering the machine’s 
ability to perform accurate detection. It was also pointed out 
that a great amount of computational performance would need 
to be available in order to perform the detection in real-time. 
This need for performance would come at a high monetary cost, 
making this seem unviable for most schools and offsetting its 
benefits compared to the available commercial systems.  

B. Acoustic Sensor 
Focusing on the embedded module, our first step is to explore 

the acoustic sensor. In our original design, we used a KY-038 
big sound sensor module [6]. This sensor detects large sounds, 
amplifies its signal, compares it to a predetermined value and 
outputs it through pin one. However, for our final design, we 
used a capacitor-based Electret microphone due to its ease of 
use in our PCB design [4]. This helped us eliminate the need for 
breakout boards and to customize the circuitry to our individual 
needs. Along with the microphone, we used an analog to digital 
converter [14] to convert the analog signal into a digital signal 
and a comparator chip [18] to compare the newly digital signal 
to a predetermined value. The predetermined value was 
originally configured through a potentiometer and varies from 
module to module. However, in our final design, we simply 
used a standard resistor value across all our PCBs, reducing the 
variation between each module and the need for individual 
calibration of the microphone.  To conclude, the changes that 
were made for this module include the elimination of the 
breakout board, as well as the potentiometer and replacing it 
with a uniform resistor value used across all the modules to 
reduce variation and the need for calibration in the system.  

For this module, we relied on our experience from Computer 
Systems labs to receive the data from the sensor at scheduled 
intervals using a digital to analog converter. One piece of 
information that is lacking is from our knowledge is what the 
outputs of this module represent. This means we must attempt 
to find a relation between the output voltage and the physical 
noise being received.  

In this sensor, the maximum detectable sound amplitude is 
130-dB whereas gunshots range from 150-dB to 190-dB.  As a 
result, in most cases we configure our sensor to detect the 
largest possible amplitude, while keeping in mind that sounds 
between 130-dB and 150-dB may cause a false positive in our 
results. It is also important to note that loud conversations have 

a maximum amplitude of 90-dB, a loud balloon popping has a 
maximum amplitude of approximately 110-dB, and an 
emergency siren has a maximum amplitude of approximately 
125-dB. As a result, we believe that this sound sensor will be 
sufficient for our purposes.  

During our initial proposal, we considered using higher end 
microphones that can operate at higher amplitudes. For 
example, aerospace grade microphones, such as the HOLMCo 
82-03-08274 can pick up sound in our desired range [9]. 
However, the biggest disadvantage with such microphones is 
their price, which can range from a minimum of $150 to $500 
per microphone. This would make the cost of our system highly 
impractical and infeasible for most schools, which is an 
undesired outcome that we attempted to avoid.  

 In order to test this module, we reduced the sensor’s 
sensitivity, popped twenty-five balloons within twelve feet of 
four modules and recorded whether each individual module 
picked up the loud noise. We recorded the number of 
successfully reported incidents and divided it by the total 
number of attempts to receive our success percentage. The 
result of such a testing procedure during our midway design 
review was 80% success with no false positives and 20% false 
negatives. However, for our final review, we received more 
favorable results of 96% success and 4% false negatives. Such 
an increase in our success can be attributed to the use of 
standard resistor values as well as the incremental 
improvements to our code that have improved our detection 
algorithm.  Finally, the fact that our system does not detect any 
false positives leads us to believe that our system was 
conservative in detecting such incidents.  

C. Thermal Camera 
The thermal camera is responsible for detecting the heat 

signatures of a gun that has been fired. For our purposes, we 
chose the MLX90640 thermal sensor, that is capable of 
detecting temperatures ranging from -40°C to 300°C [12]. It has 
a 32x24 resolution. The temperature range is excellent for our 
purposes since gun barrels have a minimum temperature of 
150°C, making it easy to detect and distinguish it from the 
traditional school environment.  

In the design used for our midyear design review, we used a 
camera with a 110° by 75° field of view [12]. This provided us 
a wider image while reducing the distance that we can 
accurately detect. Furthermore, we were struggling to process 
32 frames per second using the VoCore [11], the original low 
power process that we chose.  Such attempts proved to be 
unfruitful since the camera was unable to detect hot objects at 
distances that were sufficient for our application and was 
proving to be computationally strenuous on our low-power, one 
core, 580 MHz VoCore [11]. It was clear at this point that this 
sensor was not appropriate for our project, leading to a 
discussion of whether we should abandon the thermal part of 
the project and rely solely on the microphone.  

However, on the recommendations of Professor Siqueira, we 
replaced the original sensor which had a 110° by 75° [12] field 
of view, with the same model that has a 55° by 35° [12] field of 
view. It was pointed out that under ideal conditions, one can 
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achieve four times the distance of the original sensor, which 
should make it applicable for our application. Secondly, we 
decided to replace our original VoCore [11] processor with a 
Raspberry Pi 3B [16] since it provides more computational 
power, a topic will be discussed in greater detail in the 
following section. This allowed us to process the 32 frames per 
second that we viewed as adequate for our purpose, and brought 
the thermal sensor part of the module back into contention, 
allowing us to have two sources of data to detect gunshots in 
indoor locations and providing our module with greater 
accuracy and redundancy.  

Other improvements to this module involved using the 
highest pixel value above our threshold instead of using the first 
pixel value above our threshold when detecting an event. This 
allowed us to provide a datum with greater significance or 
meaning to the backend for computation. Secondly, we 
implemented the keepalive function, which allows us to know 
which models are offline or broken. For the keepalive function, 
we used an average of the pixels taken every 60 minutes and 
sent it to the backend to be used to calculate the percent 
confidence when an event is detected. Further discussion of the 
percent confidence calculations is discussed in the backend 
computation section. Finally, we eliminated the use of breakout 
boards for this module  

In order to test this module, we flickered a lighter from three 
feet away one-hundred times and recorded the number of 
successes over the total number of flickers. Our original sensor, 
with a field of view of 110° by 75°[12] resulted in a 68% 
success rate, a result that is both disappointing and one that we 
believe we could not improve on with such a setup, However, 
with the 55° by 35° [12] we were able to achieve a 100% 
success rate from both 3 feet and 6 feet away from the sensor. 
In fact, this result continued up to 9 feet away from the sensor. 
With distances greater the 9 feet away, the sensor receives 
success rates below 30%, making its maximum usable distance 
between 8 and 9 feet away for our module. We consider this 
distance acceptable since most school hallways are between 8 
and 10 feet away.  

For this component, we utilized our previous knowledge of 
Computer Systems Labs to build this embedded module, to 
sample the data and to perform the necessary computation on it.   

D. 64-bit processor 
This component is the main processing unit in the embedded 

module. It performs event checking, timestamping and basic 
signal processing from the sensors before sending the data to 
the server-end of the module. It is responsible for 
communicating with the acoustic sensor via SPI to perform the 
event detection via sound and the keepalive for the sound 
sensor. It also communicates with the thermal sensor via I2C to 
perform the event detection using the thermal data and the 
keepalive for the thermal sensor. It is this module that consumes 
power from the power supply and supplies it to both sensors 
and performs the communication between the embedded 
module and the cloud module.  

  Originally, we were aiming to use a VoCore 32-bit 
embedded chip [11] running Linux OpenWRT, a low power 
version of Linux specifically designed for embedded chips. 

This chip is prebuilt with WiFi and an operating system, 
allowing us to focus on the goals of our project. However, while 
interfacing with this chip, we encountered quite a few 
challenges that forced us to change our direction. Our first 
challenge is that such a chip required us to write our own drivers 
to store data into memory, and to communicate via SPI and I2C. 
Such drivers were difficult to write, time consuming and were 
not fully optimized for our purposes. As a result, not only were 
they a challenge to program but were also a performance 
bottleneck for our system. For example, using our customized 
drivers on the VoCore, we were able to perform 21,000 bit I/O 
writes, making it inadequate for reading both the sound sensor 
and the thermal sensor data. Secondly, the VoCore did not 
provide the necessary performance for our computation needs 
due to its inherent design. The VoCore is a single core, 580 
MHz processor running a Linux operating system [11][5]. 
Adding our own drivers and our programs to this setup meant 
that the VoCore was simply not able to process our information 
at the required rates, leading in degradation of performance, 
such as not being able to process 32 frames per second.   

As a result, we decided to transition to a Raspberry Pi version 
3B. This computational module is a 64-bit processor with a 32-
bit Linux operating system [16]. It has a built-in Wi-Fi chip and 
does not require us to write our own drivers for I/O and memory 
storage. This allows us to focus on the important and 
challenging aspects of our project and to concentrate on 
achieving the goals of the team [16]. Another benefit of the 
Raspberry Pi is its computational performance. The Raspberry 
Pi version 3B has a 1.2 GHz clock speed along with 4 cores 
which is a significant increase over the performance 
benchmarks of the VoCore that were mentioned above [16]. 
Such improvements allowed us to access sensor data from both 
the thermal sensor and the acoustic sensor simultaneously as 
well as run the keepalive with no bottlenecks. For example, we 
were easily able to get the 32 frames per second needed for the 
thermal sensor along with acoustic sensor detection and 
keepalives for both the acoustic and thermal sensor.  

Another change that was implemented for this module in our 
final design was the use of four threads instead of two for our 
computation. Originally, we were planning on using two 
threads, one for the acoustic module and one for the thermal 
module. However, after careful consideration, we decided to 
use for threads, one to implement the detection of an event for 
the thermal sensor, one to implement the detection of an event 
for the sound sensor, one to implement a keepalive for the 
thermal sensor and a final one to implement a keepalive for the 
sound sensor. Such implementation was difficult to program 
since it required the use of locks since only one thread can 
access sensor data at a time. As a result, we used some of the 
techniques that we learned in ECE 570: System Software 
Design.  

Testing this component has consisted of manually pushing 
write requests upon boot to the server. If the server receives the 
test data, then the embedded system is connected to the internet 
and able to push requests to the server. Secondly, we tested the 
threats from both the acoustic sensor and the thermal sensor by 
lowering the sensitivities on both and triggering the sensors 
using a clap or the heat of a hand. Finally, we tested both 
keepalive threads by allowing them to send keepalive signals 
every 30 seconds instead of every 60 minutes.  One can check 
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if all the threads work properly by checking if the server 
receives data in the incident reports and the keepalive reports. 
If the server does not receive the data, one knows that the 
problem is with the individual sensor since the code responsible 
for sending data over the internet has already been verified.  
 It is also important to note that other options have been 
considered for this module. Our primary alternative was using 
an embedded ATmega 32-bit processor to perform the 
computation [15]. This would have been much cheaper 
considering that the Raspberry Pi Version 3B costs 
approximately $39.99 while an Atmega 32-bit processor would 
cost below $2 [15] [16]. However, this was not pursued due to 
the superior performance of the Raspberry Pi, running at 1.2 
GHz compared to the Atmega’s 48 MHz [15] [16]. This was 
also chosen since it is a complete module onboard memory, a 
dedicated operating system, and a built-in Wi-Fi chip that does 
not need special configuration or other hardware. One 
disadvantage however of the Raspberry Pi is its power 
consumption since it uses 1.34 A compare to the VoCore 0.234 
A [11][16]. This power consumption requires to use a power 
brick instead of a power battery, decreasing the portability of 
the system.  

E. SQL database 
The SQL database stores data regarding our system, to be 

used later on by the other components of the module. It only 
communicates to the C# based middle tier. In our current 
implementation, we use three tables. The first table is a user 
accounts table that stores authorized users’ names, emails and 
passwords in a hashed format. The incident table is the second 
table and it stores data from the embedded module about 
whether a significant event occurred or not. More specifically, 
it stores the communicating device’s MAC address, whether a 
microphone or a camera caused the alarm, whether this message 
is a keep alive signal or an alarm for an incident that occurred, 
as well as the sensor data sent by the module. The third table 
stores the device-to-location mappings. This means that the 
table stores the MAC address of each device used in our module 
as well as the location of each module, which we stored as a 
string. This enabled the middle tier to display the incident report 
by checking the incident table then matching each incident to a 
location in the location mappings table using a “left join” query 
statement. We relied on our previous knowledge of data 
structures and relations to form this relational database.  

It is important to note at this point that other options have 
been considered, such as storing the data in a JSON file , a CSV 
file or in a text file. This approach however, seemed the most 
logical and the easiest to work with due to the compact and 
concise data storage available with SQL.   

In order to test this module, we simply ran a number of 
insertion, join and deletion queries to make sure that the 
database accepts reasonable data and a reasonable number of 
requests. When the middle tier was developed, we manually 
triggered several incidents to view if they will be stored 
properly in the database. The results of such experiments were 
surprisingly pleasing, with no major issues due to the simplicity 
of this component. This leads us to believe that this component 
is ready for use in our system.  

F. Backend computation 
     The middle tier of the server side of the project is based on 
the C# language. Its main purposes include receiving data from 
the embedded module, storing it in the SQL database, 
processing the requests made by the dashboard, and packaging 
data from the SQL database for the frontend. It utilizes 
techniques from Software Engineering and relies on the model-
view-controller concept.  
    More specifically, this tier relies on two controllers. The first 
controller is the read controller that reads data from the SQL 
database, performs some basic data processing such as 
discarding of erroneous records, and relays such information to 
the frontend. The second controller is the write controller, used 
by both the frontend and the embedded modules to store data 
into the SQL database. Its basic processing requests include 
authenticating users attempting to log in to the dashboard, 
distinguishing between events and keepalive records in the 
database and sending them to the appropriate page, and 
checking whether the keepalive messages are received from all 
the nodes to ensure that they are all functioning properly.   
 Changes that were made to this module included 
implementing the keepalive by distinguishing them from actual 
events and pushing such differences to the frontend in an 
appropriate data structure as well as calculating the percent 
confidence as a measure to how confident the system is that an 
event has been detected. The percent confidence relies on the 
keepalive data of each individual sensor, taking the average of 
such a data and standard deviation. Followingly, when an event 
occurs, one can calculate how many standard deviations away 
from the average the event data is. For example, one can store 
the keepalive data sent from the acoustic sensors and calculate 
the averages and standard deviation of such data. Then, when 
an event is detected, one can use a gaussian estimation to 
calculate how many standard deviations away from the average 
the incident data is. This would ideally give us a percent 
confidence about whether an event that is detected is truly an 
alarm that needs to be considered by the user or whether it is an 
erroneous piece of data. One problem that we encountered with 
such an implementation is that our keepalive data did not 
resemble a gaussian function but was more of a uniform 
function. This made our standard deviation relatively small and 
our percent confidence extremely large, making it inapplicable 
for further application. It was however kept in the current 
version of our project as a proof of concept.  
 In order to check this tier, we manually pushed some write 
requests from the embedded modules, checking whether all the 
types of requests to be made are accepted without causing errors 
and that the data is stored properly in the database. We also 
pushed some manual HTTP requests simulating the frontend to 
observe if the requested data is returned to the developer 
console in Google Chrome. This enabled us to check whether 
frontend information is stored properly in the database and 
whether users are authenticated properly. In our experiments, 
as soon as one request was processed properly, all the requests 
were processed due to the simple nature of this module.   
 Testing this module has consisted of manually forcing some 
HTTP requests upon boot to ensure that the system can receive 
data, store it in the database or load it to the web-based 
graphical user interface. If the outputs of other modules 
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function correctly, then one can assume that this module also 
operates correctly since all other modules are dependent on this 
one.  

G. User interface  
The final component of this module is the user interface. This 

interface is web-based and is based on HTML/CSS and Angular 
[8]. It currently sends requests via HTTP to the C# based middle 
tier, that queries the database and sends the data back to be 
displayed to the user. This dashboard is available at 
dashboard.coresidium.com and has three main pages to 
communicate data to the user. The first page is the device report 
page which relies on the keepalive data from the middle tier. 
This page demonstrates the current status of the devices in our 
arsenal. If a device has not sent a keepalive signal within the 
last 60 minutes, it is highlighted in the page as a broken device, 
otherwise the devices are labeled as working. A screenshot of 
the Device Report page is shown in figure 2 in the appendix of 
our report. The second page was the events table page in which 
all the events that have been detected by the system are 
displayed to the user in a table format. This allows the user to 
look for a specific event and to sort events in a timely order or 
in accordance with a specific sensor or module. A screenshot of 
the events table page is shown in figure 3 in the appendix of our 
report. The final page was a mapper page that provided a 
physical mapping of the location of the sensors and highlighted 
which sensors were triggered by an event as well as the time the 
event was detected. This allows the user to view a temporal 
sequence of events and the actual location of the attacker within 
the building. A screenshot of the mapper page is shown in figure 
4 in the appendix of our report. 

The final change that was made to this module included using 
bootstrap and removing a few bugs that were present during our 
midyear design review. We also added a refresh button 
allowing the user to refresh the mapper to see if any new events 
have occurred since the page has been loaded. Finally, his 
module relies on information we learned in the software 
engineering course. 

III. PROJECT MANAGEMENT 
Table 3 provides the specifications that were promised by the 

end of the year as well as which ones were achieved at this 
point. Such goals include providing greater than 80% accuracy 
for our acoustic sensor, as well as the ability of the thermal 
sensor to recognize hot objects. Furthermore, we promised to 
finish our SQL database design, the frontend dashboard, and the 
middle tier to communicate information to both modules. All 
the previous requirements have been satisfied.  

Our first specification was to deliver a product that could 
provide 10 feet of range since we estimate that this is an average 
width of a hallway, making it our product applicable for most 
schools. During our testing, the acoustic sensor was easily able 
to achieve a range of 12 feet while maintaining accuracies of 
above 90% while the thermal sensor was able to pick up flames 
at distances of 9 feet, making it adequate for most conditions, 
especially considering that it often works in contagion with the 
sound sensor.  

Secondly, we wanted our sensors to sample at approximately 
one sample per second since we do not believe that a shooter is 
capable of firing over 60 rounds per minute in one individual 
location. However, we were able to achieve samples of just 
under 1 millisecond since the Raspberry Pi often has to scan all 
the pixels of each individual frame of the 32 frames per second 
and find the average or the highest pixel depending on the 
functionality. As a result, we believe that we have easily 
overachieved for this goal and have confidence that a gunshot 
will not be missed due to the low sampling rate of our system.  

We also wanted our system to be able to detect 80% of 
simulated gunshots under any condition. This meant that under 
both noisy and quiet conditions, if a gunshot was simulated 
using a handclap or a balloon pop, our system should be able to 
detect 80% of such cases. However, during our tests, the system 
was able to pick up 96% of such simulated gunshots making 
such a goal one that was achieved.  

In terms of the acoustic sensor, we wanted to focus on sounds 
that were above the 130-dB noise level. To put this into 
perspective, a typical conversation will have a maximum of 90-
dB while a balloon pop will typically be around 110-dB. 
Finally, a gunshot ranges between 150-dB and 190-dB. As a 
result, we believe that focusing on sounds that are above the 
130-dB range allows us to ignore the typical noises that may 
occur in a school or an indoor environment in general while 
focusing on all the noises that could be associated with a 
gunshot. In our project, we were able to focus on noises that 
were above the 130-dB mark and this was simulated using an 
airhorn and measured using a decibel meter that was often 
saturated in our tests. Our module was easily able to detect 
sounds in the range while ignoring sounds that were below such 
a level, even in noisy conditions that were simulated using 
traditional conversations and speakers. As a result, our system 
is able to meet that requirement.  

Most importantly, it is crucial to note that the original goal of 
our system was to notify the proper authorities and the users of 
our system with the relative location of the shooter within the 
building. The relative location was defined as the side of the 
building (east, west, north and south) and the floor within the 
building. This was achieved using the mapper page that 
translated the MAC ID of the triggered device into a location of 
the device within the building and highlights it. Therefore, 
using that page we were able to achieve the most important goal 
of providing the relative location of the shooter.   

Finally, we wanted our system to cost under $100 per 
module. This requirement was placed as an attempt to make this 
system affordable for schools since our system was primarily 
designed with school campuses on mind. Our development 
costs, which is the cost of building one module came in at 
$91.50 while our production cost, which is the cost of building 
1000 modules came in at around $72.88. The breakdowns of the 
development and production costs are shown in table 4 and 
table 5 respectively. 
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TABLE 3 
SPECIFICATIONS AND ACCOMPLISHMENTS 

 
Requirement Desired Achieved 

Range 10 feet per module 10 feet per 
module 

Response Time < 1 second time <1 second 

Accuracy >80% >90% 

Sound 
Sensitivity 

>130 dB >130 dB 

Location 
Accuracy 

Location and floor Location and 
floor 

Timestamp 
Accuracy 

<1 second ≈ 1	𝑚𝑠 

Cost <$100 $72.88 

 
 

 
 
 
 
 
 
 

TABLE 4 
DEVELOPMENT COSTS OF CORESIDIUM 

 
Item Development Cost 

Raspberry Pi 3B+ $35 

MLX90640 Thermal 
Sensor 

$44.99 

Electret Microphone $0.95 
MCP3008 ADC $2.75 

Resistors $5.40 

Capacitors $0.50 

Diodes $0.50 

LM393N $1.0 

Header $0.01 

Custom PCB $0.4 

Total $91.50 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 5 
PRODUCTION COSTS OF CORESIDIUM   

 
Item Development Cost 

Raspberry Pi 3B+ $34.50 

MLX90640 Thermal 
Sensor 

$34.04 

Electret Microphone $0.86 
MCP3008 ADC $1.71 

Resistors $0.20 

Capacitors $0.08 

Diodes $0.09 

LM393N $1.0 

Header $0.01 

Custom PCB $0.4 

Total $72.88 

 
 
 
It is important at this point to discuss the achievements and 

modifications that were made for each individual component of 
our module.  For the acoustic sensor, our first accomplishment 
was to eliminate the breakout board and to integrate the sensor 
directly into our PCB. This involved using a standard resistor 
value across all the sensor modules which enabled us to avoid 
calibration and modification of each individual sensor as well 
as the use of an amplifier and an Analog to Digital Converter 
[14] [18]. We also replaced the KY-038 acoustic sensor with an 
Electret Microphone due to its ease of integration into the PCB 
board and its availability [4][6].  

For the thermal sensor module, we also eliminated the 
breakout board integrating the thermal sensor directly into our 
PCB. Secondly, we used a sensor with a small filer of view, 55° 
by 35° , instead of a 110° by 75°, giving us a greater range of 
detection [12]. We also modified the code that was used for the 
detection of events, so that when an event is detected, we send 
the highest pixel value above the threshold instead of the first 
value above the threshold. Finally, for the keepalive, we 
decided to send the average value of the pixels in the keepalive 
image.  

For the embedded computing module, we abandoned our 
pursuit of using the VoCore Version 2 and continued to use the 
Raspberry Pi Version 3B due to its improved performance [11] 
[16]. We used four threads in this module, instead of two. Two 
threads were used for the keepalive of the acoustic module and 
the thermal sensor respectively, and the other two threads were 
used for detection of events on thermal sensor and acoustic 
sensor as well.  

No changes were made to the SQL server. This is due to the 
fact the three tables that were initially constructed were flexible 
enough for all our future uses providing user access control, 



Team 22 Final Design Review Report 
 

 
 

8 

location mappings and keeping track of both keepalive and 
detected events.  

For the middle tier, we continued to use C# but we 
implemented functions to check for keepalive signals and 
provide it to the frontend to display to the user. We also 
implemented the percent confidence function so that one can 
determine how far an event is from the average and how 
confident the system is that an event detected by the embedded 
module is an actual event worthy of alerting the user over. We 
also implemented a few bug fixes to ensure the robustness of 
the system and to prevent the system from breaking down under 
certain edge conditions.  

Finally, for the frontend, we implemented two new pages so 
that users can tell which devices are broken as well as to provide 
a visual mapping of the devices and the current location of the 
shooter within the building, We also added refresh buttons for 
our pages so that users can update their maps or tables to keep 
their pages up to date without the need to restart the entire 
application.  

In terms of division of responsibilities, our team divided the 
work equally according to each individual’s strength. Brandon 
Cross was responsible for managing the thermal camera, along 
with its code and its tests. Valentin Degtyarev was responsible 
for setting up the acoustic sensor module along with its code 
and its tests. Additionally, Valentin focused on the hardware 
and PCB design of the module. Andrew LaMarche was 
responsible for the general setup of the VoCore, taking data 
from both the thermal camera thread and the acoustic sensor 
thread, and sending it over to the server side of the computation. 
Finally, Andrew Eshak was responsible for server-side 
computation, setting up the SQL database, the C# API and the 
HTML/Angular [8] based frontend.  

We also utilized a “buddy system” in which two people 
studied the same piece of code in order to offer multiple 
perspectives on a solution and to ensure a “backup” person in 
case of emergencies. Using such a system, Brandon Cross 
worked with Andrew LaMarche towards VoCore 
communications, and Andrew LaMarche worked with Valentin 
Degtyarev towards the acoustic sensor. Andrew Eshak worked 
with Brandon Cross to verify the thermal sensor and Valentin 
Degtyarev worked with Andrew Eshak towards ensuring proper 
use of the server code.   

To manage communications, our team utilizes Discord and 
iMessage group chats in order to discuss future endeavors, the 
status of current attempts and meeting times. In addition, 
biweekly meetings were set up in accordance with every 
person’s schedule in order to ensure that all the individual 
pieces of the project worked properly with each other. Finally, 
a weekly meeting occurred with Professor Siqueira, often on 
Mondays at 1:30 P.M., in order to provide a status report and to 
receive advise on our next steps. All such forms of 
communications helped ensure that the project remained on 
track and that all our individual modules culminated into one 
complete system.  

IV. CONCLUSION 
In conclusion, Coresidium is a system that aims to detect 

gunshots during school shootings, in an effort to reduce 
response times and the number of fatalities. During the first 
semester of the 2018-2019 year, our team has built the 
embedded module utilizing both an acoustic microphone and a 
thermal camera as well as a Raspberry Pi Version 3B [16]. The 
microphone detects acoustic anomalies and the thermal sensor 
detects high temperatures that last for a short duration such as a 
muzzle flash. The Raspberry Pi was responsible for taking 
sensor data and detecting an event, performing the timestamp 
and communicating the data to the server module. 

We also built the sever side of the module, utilizing a SQL 
database with three tables, a C# computing tier, and an 
HTML/CSS/Angular [8] frontend to display the data. The SQL 
database consisted of a table for user accounts to remember 
authorized users, a table for incidents, and a table for device to 
location mappings. The C# middle tier receives data from the 
embedded module and performs the necessary computation to 
store it in the database or display it to the front end. The 
frontend displays the data for the user in a user-friendly manner, 
through a web-based website. Such data is displayed in a table 
manner so that the user is able to check all the detected events, 
as well as in a table manner so that the user can view a pictorial 
time sequence of the events occurring within the building.   

Some of the difficulties that we encountered during this 
project included the need to implement locks within our threads 
for our embedded computing module, a topic that we were in 
the process of learning about it and were not entirely familiar 
with. We also encountered difficulty choosing a resistor value 
for our microphone sensor due to the variation in the internal 
resistance of the microphone itself. No other difficulties were 
encountered with our system.  

APPENDIX 
FIGURE 2 

DEVICE REPORT PAGE 
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FIGURE 3 
INCIDENT LOG PAGE 

 
 

FIGURE 4 
MAP PAGE 
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