
Team 22 Midway Design Review Report

1

Abstract—Coresidium is a project that aims to detect gunshots

in indoor locations in an effort to reduce school shooting response
times. It uses an acoustic sensor, a thermal camera an an
embedded processor to detect the gunshots locally then sends the
data across the Internet for further processing. The server
determines whether the event is an actual incident, stores its data
and displays it to the user through a web-based dashboard. In our
current attempts, the embedded module recognizes an event,
stores the timestamp and send it to the server. The server
determines whether the received data is an incident or a keepalive
data and displays it according to the dashboard, available on
dashboard.coresidium.com

I. INTRODUCTION

ERHAPS one of the most troubling epidemics of our
generation is the continuing rise of school shootings around

the United States and mass shootings in general. Between
January 1st, 2009 to May 21st, 2018, 288 school shooting
incidents have occurred in the United States [3]. This figure is
in fact 57 times that of the total number of school shootings of
the six other G7 countries (United Kingdom, Japan, Italy,
Germany, France and Canada) [2].

 In response to this problem, Congress has remained
deadlocked on a proper solution to address the number of
fatalities and to stem the tide of violence occurring weekly in
schools around the nation. As a result, many schools have
implemented novel techniques and protocols to address this
problem. For example, some schools have begun to teach their
students basic defense mechanisms against intruders during
‘gym’ class. Other schools have introduced drills to allow
students to exit the building as swiftly as possible in order to
reduce the number of fatalities. Some parents have also forced
their children to carry bulletproof backpacks in order to reduce
the chances of their children being fatally shot [5]. Finally, on
the recommendations of President Donald Trump, some
schools have offered firearm training to their teachers and
offered incentives to teachers who carry a firearm during the
school day.

While these techniques may offer a temporary patch to the
problem, they do not offer a complete solution to the problem
and leave the students feeling vulnerable and unsafe during
their school day. It should also be noted that since 2000,
186,000 students have been affected by school shootings and
more than 1,100 students have been killed or injured [3].

This problem is made worse by the fact that when the

authorities are alerted to an incident within their district, the
response time is often much too great, delaying the time it takes
for the victims to receive the proper attention and medical care
they need. This long period is due to the fact that authorities are
often unaware of the location of the shooter within the building
and as a result, have to methodically search through every room
in the building in order to properly declare the campus safe from
any further threats. Table 1 demonstrates the duration of the
period from which the shooter enters the building until the
building is declared safe, during 3 separate shooting incidents.
It should be noted that although the incidents happen in
completely different decades, and although the response time
decreases as we progress through the incidents, the duration is
still much too long for those within the building.

TABLE I
SCHOOL SHOOTINGS IN THE UNITED STATES [4][9]

Incident Date

(mm/dd/yyyy)
State Response

time
(minutes)

of
fatalities

Columbine 04/20/1999 Colorado 328 15

Virginia
Tech

04/16/2007 Virginia 217 33

Douglas
Stoneman

High
school

02/14/2019 Florida 198 14

 This delay in the response time can increase the number of
fatalities and injuries within the building as well as increase the
duration of the period in which students are traumatized as their
worst fears become a reality. Furthermore, this increased delay
can leave anxious parents unaware of the status of their
children, further increasing their unease.

Congress and schools are not the only parties that attempted
to tackle such a problem. Companies have attempted to come
up with novel solutions to curb this recent tide. Some of these
attempts include bulletproof windows and doors as well as
surveillance systems to detect intruders. Such systems are the
focus of our project, as they can be installed at huge costs to the
school districts, making them unaffordable to most schools [7].

.

Coresidium: a Gunshot Detection System

Brandon Cross, CSE, Valentin Degtyarev, CSE, Andrew Eshak, CSE+EE, and Andrew LaMarche,
CSE

P

Team 22 Midway Design Review Report

2

It is difficult to come by exact figures for the cost of attaching
such systems, since they often rely on multiple variables such
as the area of the schools and the number of students within the
school, as well as the reluctance of such companies to release
their prices publicly. However, while talking with officer
Kellogg of the University of Massachusetts Police Department,
it has been mentioned that prices of such systems are extremely
unaffordable for a public University with the size of the
University of Massachusetts-Amherst. Through online
research, we located just one school that installed such a system
in North Carolina. Shooter Detection Services, the company
manufacturing such a system, is Massachusetts-based and
installed the system within the three buildings of the 1000
student school, to the estimated cost of $400,000[1].

Similar systems have also been deployed by state
governments in order to locate gunshots on the streets of their
cities. In such systems, microphones are placed on the streets
and are used to triangulate the location of a gunshot when it is
fired, using the speed of sound. The difficulty with such
systems is that they are utilized in outdoor locations, ignoring
the different parameters of indoor use such as echoes and the
rate of sound travel within different materials. Most also rely on
human input to be able to discern whether the alarm was based
on a gunshot before notifying the authorities. This criterion was
added since most systems were unable to discern between a
gunshot and firecrackers. Finally, such systems are also hugely
expensive, making them inapplicable for school use [7].

In response to such difficulties, we aim to design a system
that would notify authorities in the event of a gunshot and
provide a relative location of the shooter. We define relative
location as the floor of the building as well as the direction
within the building (east, west, north or south). This notification
and location system will be provided to the authorities through
a web-based dashboard. This system would rely on acoustic
sensors as well as visual sensors to detect the gunshots and
utilize embedded systems and a central server to perform the
computation.

TABLE 2
SPECIFICATIONS

Specification Value

Range 10 feet per module

Response time <1 second

Accuracy >80%

Cost <$100 per module

Sensitivity range >130 dB

Timestamp accuracy <1 second

Location accuracy Floor and direction
within building

II. DESIGN

A. Overview

Our solution to this problem entails a two-tiered system
consisting of an embedded module to perform the sensing and
signal filtering, and a central computing node to coordinate
between the multiple nodes, analyze the data and output the data
to the user. The computing node is implemented via an Amazon
Web Services instance running windows server, ensuring high
performance and availability to all the embedded modules. The
embedded system communicates to the computing node via
HTTP requests. The computing node cannot communicate back
to the embedded modules, however.

Fig. 1. The Block diagram of the coresidium system. On the left is the
embedded module while on the right is the computing node that utilizes an
Amazon Web Services Instance.

More specifically, the embedded module consists of an

acoustic sensor to detect the sound signature of a gunshot as
well as a thermal sensor to detect the muzzle flash or the heat
signature of the gun. Both sensors are connected to a 32-bit
microprocessor, running Linux, that performs timestamping
and basic signal filtering before sending the data to the
computing node over Wi-Fi. The entire module is powered by
a power supply supplying five volts and a minimum of 240
milli-amps.

On the other side, the computing node is made up of an
Amazon Web Services Instance running a Windows Server. It
is powered by an Intel Xenon processor with 16 Gb of RAM.
Within the server, a three-tiered system to perform the
necessary computation. At the bottom of the system is a SQL
database that stores the raw data from the server. In the middle
tier, the backend controller utilizes C# to coordinate and receive
data from the embedded modules. It also performs computation
on the data received to check its validity, match it to a location
and store the data in the database. Finally, it communicates to
the dashboard in order to allow the user to view the current
status of the modules and the incidents that have occurred. It is
important to note that the middle tier acts as the only gateway
that receives data from the embedded modules. This means that
data coming from the modules cannot be stored directly in the
database or be displayed directly to the user interface, providing
an extra layer of computation to scrutinize the data.
Furthermore, the SQL database cannot communicate to the user
interface or vice versa without the use of the middle tier which
performs the necessary calls and data translations for both tiers.
The final tier consists of the user interface, displayed over the

Team 22 Midway Design Review Report

3

internet. It utilizes HTML and CSS as well as Angular to
dynamically display the data in a user-friendly manner, without
the need for a data expert to perform analysis.

It is important to note at this point that other proposals have
been explored in order to address this problem. In our initial
proposal, the thermal sensor was replaced a traditional camera
and machine vision to recognize the images of a gun. This
required the use of neural nodes, high performance machines
with dedicated graphics cards and thousands of training sets in
order to get the needed accuracy from the network. We
experimented with a neural network algorithm provided over
the web, collected over 1500 images of a variety of guns as our
data set and used one high performance computing machine in
order to perform the necessary training. However, such
endeavors were not fruitful in the sense that our accuracy was
below 30% using this method. This can be attributed to the need
for more training sets. It was also pointed out that our data set
utilized images of guns at “convenient” angles where the gun
was directly facing the camera. This contrasts with real-life
situations where guns are often hidden or at awkward angles to
perform accurate detection. It was also pointed out that a great
amount of computational performance would need to be
available in order to perform the detection in real-time. This
need for performance would come at a high monetary cost,
making this seem unviable for most schools and offsetting its
benefits compared to the available commercial systems.

B. Acoustic Sensor

Focusing on the embedded module, our first step is to explore
the acoustic sensor. In our design, we used a KY-038 sound
sensor module that detects large sounds, amplifies its signal,
compares it to a predetermined value and outputs it through pin
one. The predetermined value to be compared to is configured
through a potentiometer and varies from module to module. We
relied on our experience from Computer Systems labs to receive
the data from the sensor at scheduled intervals using a digital to
analog converter. One piece of information that is lacking is
from our knowledge is what the voltage outputs of this module
represent. This means attempting to find a relation between the
output voltage and the physical noise being received. We also
need to learn how to perform noise reconstruction so that we
can construct an audio file

In this sensor, the maximum detectable sound amplitude is
130 dB whereas gunshots range from 150 dB to 190 dB. As a
result, in most cases we configure our sensor to detect the
largest possible amplitude, while keeping in mind that sounds
between 130 dB and 150 dB may cause a false positive in our
results. It is also important to note that loud conversations have
a maximum amplitude of 90 dB, a loud balloon popping has a
maximum amplitude of approximately 110 dB, and an
emergeny siren has a maximum amplitude of approximately
125 dB. As a result, we believe that this sound sensor will be
sufficient for our purposes.

During our initial proposal, we considered using higher end
microphones that can operate at higher amplitudes. For
example, aersospace grade microphones, such as the HOLMCo
82-03-08274 can pick up sound in our desired range. However,

the biggest disadvantage with such microphones is their price,
which can range from a minimum of $150 to $500 per
microphone. This would make the cost of our system highly
impractical and infeasible for most schools, which is an
undesired outcome that we attempted to avoid.

 In order to test this module, we reduced the sensor’s
sensitivity, popped 25 balloons within 12 feet of 4 modules and
recorded whether each individual module picked up the loud
noise. We recorded the number of successfully reported
incidents and divided it by the total number of attempts to
receive our success percentage. The result of such a testing
procedure was around 80% success with no false positives and
20% false negatives. This leads us to believe that our system
was conservative in detecting such incidents. This problem can
also be mitigated by the addition a supplementary dedicated
microprocessor to perform the sampling on its own.

C. Thermal Camera

The thermal camera was responsible for detecting the heat
signatures of a gun that has been fired. For our purposes, we
chose the MLX90640 thermal sensor, that is capable of
detecting temperatures ranging from -40°C to 300°C. It has a
32x24 resolution and a 110°x75° field of view. The temperature
range is excellent for our purposes since gun barrels have a
minimum temperature of 150°C, making it easy to detect and
distinguish it from the traditional school environment.

While the field of view is excellent for our purposes, allowing
us to look farther and utilize fewer modules per school, the
resolution has been the most disappointing part of our attempts,
not allowing us to get clearer picture of the events. The camera
is also capable of recording up to 32 frames per second but
transmitting at such a rate has often been difficult due to
performance bottlenecks on the VoCore.

For this component, we utilized our previous knowledge of
Computer Systems Labs to build this embedded module, to
sample the data and to perform the necessary computation on it.
However, this module has been disappointing due to its low
resolution, making it difficult to distinguish objects or to view
objects at a longer distance than three feet.

In order to test this module, we flickered a lighter from 3 feet
away 100 times and recorded the number of successes over the
total number of flickers. This resulted in a 68% success rate, a
result that is both disappointing and one that we believe we may
not be able to improve due to the low resolution of the camera.

Currently, we are exploring whether we should continue using
this component or simply abandon it to focus on the acoustic
module. We are also exploring other alternatives such as using
a traditional camera to start recording the incident as soon as an
event is detected by the acoustic sensor. This video recording
can be used for further analysis or for law enforcement to use
as security footage.

D. 32-bit processor

This component is the main processing unit in the embedded
module. It performs event checking, timestamping and basic
signal processing from the sensors before sending the data to
the server-end of the module. In our current implementation, we
use a Raspberry Pie version 3 B but we are striving to replace

Team 22 Midway Design Review Report

4

this component with a VoCore embedded chip. This chip has
on-board wifi as well as Linux WRT, a special version of the
Linux operating system designed specifically for embedded
systems. This system has two threads, one for the thermal
camera and one for the acoustic sensor. Both threads run in an
infinite loop and never exit until an event is detected, then the
main threat timestamps the event, forms a struct with the
event’s data and sends it over to the server wirelessly via HTTP
POST requests.

Testing this component has consisted of manually pushing
write requests upon boot to the server. If the server receives the
test data, then the embedded system is connected to the internet
and able to push requests to the server. Secondly, we tested the
threats from both the acoustic sensor and the thermal sensor by
lowering the sensitivities on both and triggering the sensors
using a clap of the hands or the heat of a hand. One can check
if both threads work properly by checking if the server receives
data for both incident reports. If the server does not receive the
data, one knows that the problem is with the individual sensor
computation since the code responsible for sending data over
the internet has already been verified
 All of the code for this module was done using the C
language and relied on our previous knowledge of embedded
system computing that we learned in Computer Systems labs.
The next step for this module is implementing the keepalive so
that the user is aware of the non-functional devices. We also
hope to sample at a minimum of 40 kHz so that we can record
a 30 second audio recording of the incident occurring for further
human analysis. This would require the addition of dedicated
memory components since the on-board memory is incapable
of handling such data. Furthermore, it would require the
optimization of our current code since currently, we can only
sample at up to 21 kHz, meaning that we can only pick up on
noises up to 10.5 kHz, much less than the maximum 20 kHz
audible frequency.
 It is also important to note that other options have been
considered for this module. Our primary alternative was using
an embedded ATmega 32-bit processor to perform the
computation. This would have been much cheaper considering
that the VoCore costs approximately $18 while an Atmega 32-
bit processor would cost below $2. However, this was not
pursued due to the superior performance of the VoCore,
running at above 500 MHz compared to the Atmega’s 48 MHz
. This was also chosen since it is a complete module with low
power use, onboard memory, a dedicated operating system, a
built-in WiFi chip that does not need configuration and superior
performance.

E. SQL database

The SQL database stores data regarding our system, to be
used later on by the other components of the module. It only
communicates to the C# based middle tier. In our current
implementation, we use three tables. The first table is a user
accounts table that stores authorized users’ names, emails and
passwords in a hashed format. The incident table is the second
table and it stores data from the embedded module about
whether a significant event occurred or not. More specifically,
it stores the communicating device’s MAC address, whether a
microphone or a camera caused the alarm, whether this message

is a keep alive signal or an alarm for an incident that occurred,
as well as the sensor data sent by the module. The third table
stores the device-to-location mappings. This means that the
table stores the MAC address of each device used in our module
as well as the location of each module, which we stored as a
string. This enabled the middle tier to display the incident report
by checking the incident table then matching each incident to a
location in the location mappings table using a “left join” query
statement. We relied on our previous knowledge of data
structures and relations to form this relational database.
However, one needs to learn how to store sound data and store
it into a file for our project.

It is important to note at this point that other options have
been considered, such as storing the data in a JSON file or in a
text file. This approach however, seemed the most logical and
the easiest to work with due to the compact and concise data
storage available with SQL.

In order to test this module, we simply ran a number of
insertion, join and deletion queries to make sure that the
database accepts reasonable data and a reasonable number of
requests. When the middle tier was developed, we manually
triggered a number of incidents to view if they will be stored
properly in the database. The results of such experiments were
surprisingly pleasing, with no major issues due to the simplicity
of this component. This leads us to believe that this component
is ready for use in our system.

F. Backend computation

 The middle tier of the server end of the module is based on
the C# language. Its main purposes include receiving data from
the embedded module and storing it in the SQL database,
processing the requests made by the dashboard, and taking data
from the SQL database for the frontend. It utilizes techniques
from Software Engineering and relies on the model-view-
controller concept.
 More specifically, this tier relies on two controllers. The first
controller is the read controller that reads data from the SQL
database, does some basic processing on such as discarding of
erroneous ones, and relays such information to the frontend.
The second controller is the write controller, used by both the
frontend and the embedded modules to store data into the SQL
database. Its basic processing requests include authenticating
users attempting to log in to the dashboard, distinguishing
between events and keepalive records in the database and
sending them to the appropriate page, and checking whether the
keepalive messages are received from all the nodes to ensure
that they are all functioning properly.
 In order to check this tier, we manually pushed some write
requests from the embedded modules, checking whether all the
types of requests to be made are accepted without causing errors
and that the data is stored properly in the database. We also
pushed some manual HTTP requests simulating the frontend to
see if the requested data is returned to the developer console in
Google chrome, to check whether frontend information is
stored properly in the database and whether users are
authenticated properly. In our experiments, as soon as one
request was processed properly, all the requests were processed
due to the simple nature of this module.

Team 22 Midway Design Review Report

5

 In the future, this module will be used for other experiments
such as triangulation, Fourier transforms for sound matching
and reconstruction of the sound files based on the data received
by the embedded module. All such experiments require a
relatively high level of sophistication, something that isn’t
available on the VoCore. As a result, it will be implemented in
this tier in the hopes of increasing the accuracy of the gunshot
detection as well as the usability of the system to its users.
 Testing this module has consisted of manually forcing some
HTTP requests upon boot to ensure that the system can receive
data, store it in the database or load it to the web-based
graphical user interface.

G. User interface

The final component of this module is the user interface. This
interface is web-based and is built based on HTML/CSS and
Angular. It currently sends requests via HTTP to the C# based
middle tier, that queries the database and sends the data back to
be displayed to the user. This dashboard is available at
dashboard.coresidium.com and currently displays the data in a
table format based on the dates of the incidents. It also has a
separate table for keepalive devices, demonstrating devices that
do not work properly. As a result, the frontend is configured to
work with keepalive messages, awaiting the message from the
embedded module.

 This module relies on information we learned in the software
engineering course. One limitation however of the current
implementation is that it does not receive the data in live time.
This means that if an incident happens while the user is logged
in, the incident is not displayed to the user until the time he logs
out and logs in once more. Furthermore, we plan to improve this
module by introducing a map of the room in which the modules
are placed as well as the relative location of the event that
occurred. We also plan to improve the user interface by
removing any bugs and making it more intuitive.

III. PROJECT MANAGEMENT
TABLE 3

MID-WAY DESIGN REVIEW GOALS
MDR Deliverables

Acoustic module identifies simulated gunshot with 65%
accuracy

Thermal camera recognizes objects above 120°C for 0.5
seconds

Store data in SQL, compute location and coordinate
between modules

Simple online dashboard with relative location of threat
(floor & side)

Find acceptable insulation for microphone

Our first MDR goal required the acoustic sensor to work

properly and detect simulated gunshots with 65% accuracy. In
our tests, we were able detect a simulated gunshot (using a

balloon popping at approximately 110 dB), at 12 feet away from
the sensor with 80% accuracy. As a result, we exceeded our
MDR goals. We also demanded that objects with temperatures
above 120°C for 0.5 seconds be recognized by the thermal
camera. This was simulated using the flicker of a lighter, 3 feet
away from the sensor, and in our tests, we were able to achieve
such a goal with 68% accuracy. It should however be pointed
out, that due to the low resolution of the sensor, it is unable to
detect hot objects at distances greater than 3 feet, putting into
question its practicality for the goal of this project. We also
required that we explore the proper insulation for the
microphone. This was needed since the microphone could only
recognize sounds up to 130 dB whereas gunshots range from
150 dB to 190 dB. As a result, we believed we could utilize this
to reduce the amplitude of the gunshot, making it fall in the
acceptable range while ignoring lower amplitude noises. This
in effect would reduce our false positives and conversely
increase our false negatives since it would reduce the amplitude
of regular noise, making it undetectable to the microphone,
while increasing the chances that a gunshot from a distance is
not detected by the microphone. In our tests however, it was
discovered that we did not need such insulation since if a signal
above the 130dB threshold occurs, it will simply saturate the
microphone and not have any detrimental effects on its
components. Also, during our tests, we received no false
positives and only 20% false negatives, making the use of
insulation unnecessary.

For the computing node, our goal was to set up a SQL
database to store the sensor data and to perform the basic
computation to determine the location of the gunshot. This was
achieved since our SQL database had 3 tables: User Accounts
table, sensor data table, and location mapping table. The sensor
data table stored the timestamp of the communication, the MAC
ID of the sender, whether it was a keepalive signal or not and
the type of sensor sending data. The location mapping
performed the mapping between the MAC ID and the location
of the device. We also utilized the middle tier to receive and
coordinate the data coming from the sensors and to manage the
database data. It also responded to the requests from the user
interface to provide the location and statistics about the
incidents that have occurred. The API for the middle tier can be
found at http://backend.coresidium.com. The user interface has
also been accomplished, providing the location and timestamp
of the incidents in a table format to the authorized users. It can
be found at dashboard.coresidium.com

Our next steps would be to improve the acoustic sensor
accuracy to greater than 85%. We are also considering
abandoning the thermal sensor in order to focus solely on
improving the accuracy of the acoustic sensor or to perform
more specific experiments such as sound signal signature
matching using Fourier transforms. This type of Fourier
transforms would be done on the server side. We are also
exploring sampling and recording the acoustic data in an effort
to create an audio recording of the incident. All such endeavors
are experimental however and we cannot guarantee their
completeness in May. We are also aiming to improve the user
interface of the dashboard. More specifically, we are hoping to

Team 22 Midway Design Review Report

6

remove the data table format from the interface and adding a
more intuitive map to describe the location and timing of the
incidents. Finally, we are hoping to implement “keep alive”
functions on the embedded systems and displaying these device
reports online so that users can view broken modules and aim
to replace them.

In terms of division of responsibilities, our team divided the
work equally according to each individual’s strength. Brandon
Cross was responsible for managing the thermal camera, along
with its code and its tests. Valentin Degtyarev was responsible
for setting up the acoustic sensor module and making sure it
communicates properly to the VoCore. Andrew LaMarche was
responsible for the general setup of the VoCore, taking data
from both the thermal camera thread and the acoustic sensor
thread, and sending it over to the server side of the computation.
Finally, Andrew Eshak was responsible for server-side
computation, setting up the SQL database, the C# API and the
Angular/HTML based frontend.

We also utilized a “buddy system” in which two people
studied the same piece of code in order to offer multiple
perspectives on a solution and to ensure a “backup” person in
case of emergencies. Using such a system, Brandon Cross
worked with Andrew LaMarche towards VoCore
communications, and Andrew LaMarche worked with Valentin
Degtyarev towards the acoustic sensor. Andrew Eshak worked
with Brandon Cross to verify the thermal sensor and Valentin
Degtyarev worked with Andrew Eshak towards ensuring proper
use of the server code.

To manage communications, our team utilizes Discord and
iMessage group chats in order to discuss future endeavors for
the project, the status of current attempts and meeting times. In
addition, biweekly meetings were set up in accordance with
every person’s schedule in order to ensure that all the individual
pieces of the project worked properly with each other. Finally,
a weekly meeting occurred with Professor Siqueira, often on
Mondays at 1:30 P.M., in order to provide a status report and to
receive advise on our next steps. All such forms of
communications helped ensure that the project remained on
track and that all our individual modules culminated into one
complete system.

IV. CONCLUSION

In conclusion, during the first semester of the 2018-2019
year, our team has built the embedded module utilizing both an
acoustic microphone and a thermal camera as well as a
Raspberry Pie Version 3. The microphone detects acoustic
anomalies and the thermal sensor detects high temperatures that
last for a short duration such as a muzzle flash. The Raspberry
Pie was responsible for taking sensor data and detecting an
event, performing the timestamp and communicating the data
to the server module.

We also built the sever side of the module, utilizing a SQL
database with three tables, a C# computing tier, and an
Angular/HTML/CSS frontend to display the data. The SQL
database consisted of a table for user accounts to remember
authorized users, a table for incidents, and a table for device to
location mappings. The C# middle tier receives data from the

embedded module and performs the necessary computation to
store it in the database or display it to the front end. The
frontend displays the data for the user in a user-friendly manner,
through a web-based website. Currently, this data is being
displayed in a table-manner to the user.

In the future, we plan to increase the accuracy of our
detection to 85% as well as utilize a VoCore embedded chip
instead of a Raspberry Pie to perform the computation. We also
plan to replace the table in the user interface with a map that
displays the location of the gunshot and the sequence of events
that occurred. We also will implement a “keep alive” function
that will notify the system whether all the systems are in a
functioning condition. In addition, we plan to use the keepalive
data to perform averages, standard deviation and bell curves to
detect true statistical anomalies and whether an alarm is
merited. We will also experiment with other functions such as
triangulation, and acoustic sound signature matching. The
results of such attempts cannot be guaranteed and may not be
employed in the final version of the project. We may also
abandon the thermal camera due to its low resolution and its
inability to accurately detect events from a distance greater than
three feet.

In terms of difficulties, we anticipate that increasing the
accuracy of the module will cause greater difficulty than
expected. We also expect that tuning each individual
microphone will require greater care and longer planning. We
are also experiencing difficulties with our current attempts to
perform sound sampling and reconstruction of sound events due
to the lack of processing power on the embedded module. This
limits us to matching sounds up to 10kHz, mea ning that we are
unable to process all audible sounds (5 Hz to 20 kHz). We are
attempting to mitigate this problem by optimizing our code to
utilize less of the processing power. We are also suggesting
using a separate ATmega processor for the microphone. This
would offset some of the computation from the VoCore in an
attempt to be able to accurately perform the sound sampling.
Finally, in order to perform acoustic sound signature matching,
one needs to have a prior knowledge of gunshot signatures. It is
challenging however to find such data, especially ones that
propagate indoors. We will continue to search for data online
on such signatures or we will attempt to use an error correcting
factor to perform accurate sound matching.

APPENDIX

THE FOLLOWING IS A GANTT CHART TO DEMONSTRATE THE

SCHEDULE FOR OUR PLANNED ACTIVITIES.

Team 22 Midway Design Review Report

7

ACKNOWLEDGMENT

We thank Professor Siqueira for his assistance with our
project and his advice to perform Fourier transforms and sound
signature matching. We also would like to thank Professor
Krishna and Professor Soules for their fair criticism and their
advice to implement the keep alive function and to use averages

REFERENCES
[1] “Active Shooter Detection System Launched at Triad School; A First In

NC.” WFMY, WFMY, 14 Aug. 2018,
www.wfmynews2.com/article/news/local/active-shooter-detection-
system-launched-at-triad-school-a-first-in-nc/83-583962141.

[2] Ahmed, Saeed, and Christina Walker. “There Has Been, on Average, 1
School Shooting Every Week This Year.” CNN, Cable News Network,
25 May 2018, www.cnn.com/2018/03/02/us/school-shootings-2018-list-
trnd/index.html.

[3] “Analysis | More than 210,000 Students Have Experienced Gun
Violence at School since Columbine.” The Washington Post, WP
Company, www.washingtonpost.com/graphics/2018/local/school-
shootings-database/?noredirect=on&utm_term=.d9f2772bfe62

[4] “Columbine High School Shootings Fast Facts.” CNN, Cable News
Network, 25 Mar. 2018, www.cnn.com/2013/09/18/us/columbine-high-
school-shootings-fast-facts/index.html.

[5] “DeVos Gives Quiet Nod to Arming Teachers, despite Hearing from
Many Who Disagree.” NBCNews.com, NBCUniversal News Group,
www.nbcnews.com/politics/white-house/devos-gives-quiet-nod-arming-
teachers-despite-hearing-many-who-n950151.

[6] Lloyd, Whitney. “Schools Preparing for Active Shooters the Wrong
Way, Experts Say.” ABC News, ABC News Network, 28 Feb. 2018,
abcnews.go.com/US/schools-preparing-active-shooters-wrong-
experts/story?id=53360957.

[7] Smith, Ryan. “Tampa Police to Use ShotSpotter Devices in High-Crime
Areas.” WFTS, 19 Dec. 2018, www.abcactionnews.com/news/region-
hillsborough/tampa-police-to-use-shotspotter-technology-in-high-crime-
area.

[8] “The Extraordinary Number of Kids Who Have Endured School
Shootings since Columbine.” The Washington Post, WP Company,
www.washingtonpost.com/graphics/2018/local/us-school-shootings-
history/?utm_term=.ffd603c7b40f.

[9] “Timeline: How the Virginia Tech Shootings Unfolded.” NPR, NPR, 17
Apr. 2007, www.npr.org/templates/story/story.php?storyId=9636137.

