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Abstract—Coresidium is a project that aims to detect gunshots 

in indoor locations in an effort to reduce school shooting response 
times.  It uses an acoustic sensor, a thermal camera an an 
embedded processor to detect the gunshots locally then sends the 
data across the Internet for further processing. The server 
determines whether the event is an actual incident, stores its data 
and displays it to the user through a web-based dashboard.  In our 
current attempts, the embedded module recognizes an event, 
stores the timestamp and send it to the server. The server 
determines whether the received data is an incident or a keepalive 
data and displays it according to the dashboard, available on 
dashboard.coresidium.com 

I. INTRODUCTION 

ERHAPS one of the most troubling epidemics of our 
generation is the continuing rise of school shootings around 

the United States and mass shootings in general. Between 
January 1st, 2009 to May 21st, 2018, 288 school shooting 
incidents have occurred in the United States [3]. This figure is 
in fact 57 times that of the total number of school shootings of 
the six other G7 countries (United Kingdom, Japan, Italy, 
Germany, France and Canada) [2].  

 In response to this problem, Congress has remained 
deadlocked on a proper solution to address the number of 
fatalities and to stem the tide of violence occurring weekly in 
schools around the nation. As a result, many schools have 
implemented novel techniques and protocols to address this 
problem. For example, some schools have begun to teach their 
students basic defense mechanisms against intruders during 
‘gym’ class. Other schools have introduced drills to allow 
students to exit the building as swiftly as possible in order to 
reduce the number of fatalities. Some parents have also forced 
their children to carry bulletproof backpacks in order to reduce 
the chances of their children being fatally shot [5]. Finally, on 
the recommendations of President Donald Trump, some 
schools have offered firearm training to their teachers and 
offered incentives to teachers who carry a firearm during the 
school day.  

While these techniques may offer a temporary patch to the 
problem, they do not offer a complete solution to the problem 
and leave the students feeling vulnerable and unsafe during 
their school day. It should also be noted that since 2000, 
186,000 students have been affected by school shootings and 
more than 1,100 students have been killed or injured [3].  

This problem is made worse by the fact that when the 

 
 
  

authorities are alerted to an incident within their district, the 
response time is often much too great, delaying the time it takes 
for the victims to receive the proper attention and medical care 
they need. This long period is due to the fact that authorities are 
often unaware of the location of the shooter within the building 
and as a result, have to methodically search through every room 
in the building in order to properly declare the campus safe from 
any further threats. Table 1 demonstrates the duration of the 
period from which the shooter enters the building until the 
building is declared safe, during 3 separate shooting incidents. 
It should be noted that although the incidents happen in 
completely different decades, and although the response time 
decreases as we progress through the incidents, the duration is 
still much too long for those within the building.  

 
 

TABLE I 
SCHOOL SHOOTINGS IN THE UNITED STATES [4][9] 

 
Incident Date 

(mm/dd/yyyy) 
State Response 

time 
(minutes) 

# of 
fatalities 

Columbine 04/20/1999 Colorado 328 15 

Virginia 
Tech 

04/16/2007 Virginia 217 33 

Douglas 
Stoneman 

High 
school 

02/14/2019 Florida 198 14 

  
 This delay in the response time can increase the number of 
fatalities and injuries within the building as well as increase the 
duration of the period in which students are traumatized as their 
worst fears become a reality. Furthermore, this increased delay 
can leave anxious parents unaware of the status of their 
children, further increasing their unease.  

Congress and schools are not the only parties that attempted 
to tackle such a problem. Companies have attempted to come 
up with novel solutions to curb this recent tide. Some of these 
attempts include bulletproof windows and doors as well as 
surveillance systems to detect intruders. Such systems are the 
focus of our project, as they can be installed at huge costs to the 
school districts, making them unaffordable to most schools [7].  
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It is difficult to come by exact figures for the cost of attaching 
such systems, since they often rely on multiple variables such 
as the area of the schools and the number of students within the 
school, as well as the reluctance of such companies to release 
their prices publicly. However, while talking with officer 
Kellogg of the University of Massachusetts Police Department, 
it has been mentioned that prices of such systems are extremely 
unaffordable for a public University with the size of the 
University of Massachusetts-Amherst. Through online 
research, we located just one school that installed such a system 
in North Carolina. Shooter Detection Services, the company 
manufacturing such a system, is Massachusetts-based and 
installed the system within the three buildings of the 1000 
student school, to the estimated cost of $400,000[1].  

Similar systems have also been deployed by state 
governments in order to locate gunshots on the streets of their 
cities. In such systems, microphones are placed on the streets 
and are used to triangulate the location of a gunshot when it is 
fired, using the speed of sound. The difficulty with such 
systems is that they are utilized in outdoor locations, ignoring 
the different parameters of indoor use such as echoes and the 
rate of sound travel within different materials. Most also rely on 
human input to be able to discern whether the alarm was based 
on a gunshot before notifying the authorities. This criterion was 
added since most systems were unable to discern between a 
gunshot and firecrackers. Finally, such systems are also hugely 
expensive, making them inapplicable for school use [7].   

In response to such difficulties, we aim to design a system 
that would notify authorities in the event of a gunshot and 
provide a relative location of the shooter. We define relative 
location as the floor of the building as well as the direction 
within the building (east, west, north or south). This notification 
and location system will be provided to the authorities through 
a web-based dashboard.  This system would rely on acoustic 
sensors as well as visual sensors to detect the gunshots and 
utilize embedded systems and a central server to perform the 
computation.  

TABLE 2 
SPECIFICATIONS 

Specification Value 

Range 10 feet per module 

Response time <1 second 

Accuracy >80% 

Cost <$100 per module 

Sensitivity range >130 dB 

Timestamp accuracy <1 second 

Location accuracy Floor and direction 
within building 

 

II. DESIGN 

A. Overview 

Our solution to this problem entails a two-tiered system 
consisting of an embedded module to perform the sensing and 
signal filtering, and a central computing node to coordinate 
between the multiple nodes, analyze the data and output the data 
to the user. The computing node is implemented via an Amazon 
Web Services instance running windows server, ensuring high 
performance and availability to all the embedded modules. The 
embedded system communicates to the computing node via 
HTTP requests. The computing node cannot communicate back 
to the embedded modules, however.  

 
 

Fig. 1.  The Block diagram of the coresidium system. On the left is the 
embedded module while on the right is the computing node that utilizes an 
Amazon Web Services Instance.  

 
More specifically, the embedded module consists of an 

acoustic sensor to detect the sound signature of a gunshot as 
well as a thermal sensor to detect the muzzle flash or the heat 
signature of the gun. Both sensors are connected to a 32-bit 
microprocessor, running Linux, that performs timestamping 
and basic signal filtering before sending the data to the 
computing node over Wi-Fi. The entire module is powered by 
a power supply supplying five volts and a minimum of 240 
milli-amps.  

On the other side, the computing node is made up of an 
Amazon Web Services Instance running a Windows Server. It 
is powered by an Intel Xenon processor with 16 Gb of RAM. 
Within the server, a three-tiered system to perform the 
necessary computation. At the bottom of the system is a SQL 
database that stores the raw data from the server. In the middle 
tier, the backend controller utilizes C# to coordinate and receive 
data from the embedded modules. It also performs computation 
on the data received to check its validity, match it to a location 
and store the data in the database. Finally, it communicates to 
the dashboard in order to allow the user to view the current 
status of the modules and the incidents that have occurred. It is 
important to note that the middle tier acts as the only gateway 
that receives data from the embedded modules. This means that 
data coming from the modules cannot be stored directly in the 
database or be displayed directly to the user interface, providing 
an extra layer of computation to scrutinize the data. 
Furthermore, the SQL database cannot communicate to the user 
interface or vice versa without the use of the middle tier which 
performs the necessary calls and data translations for both tiers. 
The final tier consists of the user interface, displayed over the 



Team 22 Midway Design Review Report 
 

3

internet. It utilizes HTML and CSS as well as Angular to 
dynamically display the data in a user-friendly manner, without 
the need for a data expert to perform analysis.  

It is important to note at this point that other proposals have 
been explored in order to address this problem. In our initial 
proposal, the thermal sensor was replaced a traditional camera 
and machine vision to recognize the images of a gun. This 
required the use of neural nodes, high performance machines 
with dedicated graphics cards and thousands of training sets in 
order to get the needed accuracy from the network. We 
experimented with a neural network algorithm provided over 
the web, collected over 1500 images of a variety of guns as our 
data set and used one high performance computing machine in 
order to perform the necessary training. However, such 
endeavors were not fruitful in the sense that our accuracy was 
below 30% using this method. This can be attributed to the need 
for more training sets. It was also pointed out that our data set 
utilized images of guns at “convenient” angles where the gun 
was directly facing the camera. This contrasts with real-life 
situations where guns are often hidden or at awkward angles to 
perform accurate detection. It was also pointed out that a great 
amount of computational performance would need to be 
available in order to perform the detection in real-time. This 
need for performance would come at a high monetary cost, 
making this seem unviable for most schools and offsetting its 
benefits compared to the available commercial systems.  

B. Acoustic Sensor 

Focusing on the embedded module, our first step is to explore 
the acoustic sensor. In our design, we used a KY-038 sound 
sensor module that detects large sounds, amplifies its signal, 
compares it to a predetermined value and outputs it through pin 
one. The predetermined value to be compared to is configured 
through a potentiometer and varies from module to module. We 
relied on our experience from Computer Systems labs to receive 
the data from the sensor at scheduled intervals using a digital to 
analog converter. One piece of information that is lacking is 
from our knowledge is what the voltage outputs of this module 
represent. This means attempting to find a relation between the 
output voltage and the physical noise being received. We also 
need to learn how to perform noise reconstruction so that we 
can construct an audio file  

In this sensor, the maximum detectable sound amplitude is 
130 dB whereas gunshots range from 150 dB to 190 dB.  As a 
result, in most cases we configure our sensor to detect the 
largest possible amplitude, while keeping in mind that sounds 
between 130 dB and 150 dB may cause a false positive in our 
results. It is also important to note that loud conversations have 
a maximum amplitude of 90 dB, a loud balloon popping has a 
maximum amplitude of approximately 110 dB, and an 
emergeny siren has a maximum amplitude of approximately 
125 dB. As a result, we believe that this sound sensor will be 
sufficient for our purposes.  

During our initial proposal, we considered using higher end 
microphones that can operate at higher amplitudes. For 
example, aersospace grade microphones, such as the HOLMCo 
82-03-08274 can pick up sound in our desired range. However, 

the biggest disadvantage with such microphones is their price, 
which can range from a minimum of $150 to $500 per 
microphone. This would make the cost of our system highly 
impractical and infeasible for most schools, which is an 
undesired outcome that we attempted to avoid.  

 In order to test this module, we reduced the sensor’s 
sensitivity, popped 25 balloons within 12 feet of 4 modules and 
recorded whether each individual module picked up the loud 
noise. We recorded the number of successfully reported 
incidents and divided it by the total number of attempts to 
receive our success percentage. The result of such a testing 
procedure was around 80% success with no false positives and 
20% false negatives. This leads us to believe that our system 
was conservative in detecting such incidents. This problem can 
also be mitigated by the addition a supplementary dedicated 
microprocessor to perform the sampling on its own.   

C. Thermal Camera 

The thermal camera was responsible for detecting the heat 
signatures of a gun that has been fired. For our purposes, we 
chose the MLX90640 thermal sensor, that is capable of 
detecting temperatures ranging from -40°C to 300°C. It has a 
32x24 resolution and a 110°x75° field of view. The temperature 
range is excellent for our purposes since gun barrels have a 
minimum temperature of 150°C, making it easy to detect and 
distinguish it from the traditional school environment.  

While the field of view is excellent for our purposes, allowing 
us to look farther and utilize fewer modules per school, the 
resolution has been the most disappointing part of our attempts, 
not allowing us to get clearer picture of the events. The camera 
is also capable of recording up to 32 frames per second but 
transmitting at such a rate has often been difficult due to 
performance bottlenecks on the VoCore.  

For this component, we utilized our previous knowledge of 
Computer Systems Labs to build this embedded module, to 
sample the data and to perform the necessary computation on it. 
However, this module has been disappointing due to its low 
resolution, making it difficult to distinguish objects or to view 
objects at a longer distance than three feet.  

In order to test this module, we flickered a lighter from 3 feet 
away 100 times and recorded the number of successes over the 
total number of flickers. This resulted in a 68% success rate, a 
result that is both disappointing and one that we believe we may 
not be able to improve due to the low resolution of the camera.  

Currently, we are exploring whether we should continue using 
this component or simply abandon it to focus on the acoustic 
module. We are also exploring other alternatives such as using 
a traditional camera to start recording the incident as soon as an 
event is detected by the acoustic sensor. This video recording 
can be used for further analysis or for law enforcement to use 
as security footage.  

D. 32-bit processor 

This component is the main processing unit in the embedded 
module. It performs event checking, timestamping and basic 
signal processing from the sensors before sending the data to 
the server-end of the module. In our current implementation, we 
use a Raspberry Pie version 3 B but we are striving to replace 
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this component with a VoCore embedded chip. This chip has 
on-board wifi as well as Linux WRT, a special version of the 
Linux operating system designed specifically for embedded 
systems. This system has two threads, one for the thermal 
camera and one for the acoustic sensor. Both threads run in an 
infinite loop and never exit until an event is detected, then the 
main threat timestamps the event, forms a struct with the 
event’s data and sends it over to the server wirelessly via HTTP 
POST requests. 

Testing this component has consisted of manually pushing 
write requests upon boot to the server. If the server receives the 
test data, then the embedded system is connected to the internet 
and able to push requests to the server. Secondly, we tested the 
threats from both the acoustic sensor and the thermal sensor by 
lowering the sensitivities on both and triggering the sensors 
using a clap of the hands or the heat of a hand. One can check 
if both threads work properly by checking if the server receives 
data for both incident reports. If the server does not receive the 
data, one knows that the problem is with the individual sensor 
computation since the code responsible for sending data over 
the internet has already been verified 
       All of the code for this module was done using the C 
language and relied on our previous knowledge of embedded 
system computing that we learned in Computer Systems labs. 
The next step for this module is implementing the keepalive so 
that the user is aware of the non-functional devices. We also 
hope to sample at a minimum of 40 kHz so that we can record 
a 30 second audio recording of the incident occurring for further 
human analysis. This would require the addition of dedicated 
memory components since the on-board memory is incapable 
of handling such data. Furthermore, it would require the 
optimization of our current code since currently, we can only 
sample at up to 21 kHz, meaning that we can only pick up on 
noises up to 10.5 kHz, much less than the maximum 20 kHz 
audible frequency.  
 It is also important to note that other options have been 
considered for this module. Our primary alternative was using 
an embedded ATmega 32-bit processor to perform the 
computation. This would have been much cheaper considering 
that the VoCore costs approximately $18 while an Atmega 32-
bit processor would cost below $2. However, this was not 
pursued due to the superior performance of the VoCore, 
running at above 500 MHz compared to the Atmega’s 48 MHz 
. This was also chosen since it is a complete module with low 
power use, onboard memory, a dedicated operating system, a 
built-in WiFi chip that does not need configuration and superior 
performance. 

E. SQL database 

The SQL database stores data regarding our system, to be 
used later on by the other components of the module. It only 
communicates to the C# based middle tier. In our current 
implementation, we use three tables. The first table is a user 
accounts table that stores authorized users’ names, emails and 
passwords in a hashed format. The incident table is the second 
table and it stores data from the embedded module about 
whether a significant event occurred or not. More specifically, 
it stores the communicating device’s MAC address, whether a 
microphone or a camera caused the alarm, whether this message 

is a keep alive signal or an alarm for an incident that occurred, 
as well as the sensor data sent by the module. The third table 
stores the device-to-location mappings. This means that the 
table stores the MAC address of each device used in our module 
as well as the location of each module, which we stored as a 
string. This enabled the middle tier to display the incident report 
by checking the incident table then matching each incident to a 
location in the location mappings table using a “left join” query 
statement. We relied on our previous knowledge of data 
structures and relations to form this relational database. 
However, one needs to learn how to store sound data and store 
it into a file for our project.  

It is important to note at this point that other options have 
been considered, such as storing the data in a JSON file or in a 
text file. This approach however, seemed the most logical and 
the easiest to work with due to the compact and concise data 
storage available with SQL.   

In order to test this module, we simply ran a number of 
insertion, join and deletion queries to make sure that the 
database accepts reasonable data and a reasonable number of 
requests. When the middle tier was developed, we manually 
triggered a number of incidents to view if they will be stored 
properly in the database. The results of such experiments were 
surprisingly pleasing, with no major issues due to the simplicity 
of this component. This leads us to believe that this component 
is ready for use in our system.  

F. Backend computation 

     The middle tier of the server end of the module is based on 
the C# language. Its main purposes include receiving data from 
the embedded module and storing it in the SQL database, 
processing the requests made by the dashboard, and taking data 
from the SQL database for the frontend. It utilizes techniques 
from Software Engineering and relies on the model-view-
controller concept.  
    More specifically, this tier relies on two controllers. The first 
controller is the read controller that reads data from the SQL 
database, does some basic processing on such as discarding of 
erroneous ones, and relays such information to the frontend. 
The second controller is the write controller, used by both the 
frontend and the embedded modules to store data into the SQL 
database. Its basic processing requests include authenticating 
users attempting to log in to the dashboard, distinguishing 
between events and keepalive records in the database and 
sending them to the appropriate page, and checking whether the 
keepalive messages are received from all the nodes to ensure 
that they are all functioning properly.   
 In order to check this tier, we manually pushed some write 
requests from the embedded modules, checking whether all the 
types of requests to be made are accepted without causing errors 
and that the data is stored properly in the database. We also 
pushed some manual HTTP requests simulating the frontend to 
see if the requested data is returned to the developer console in 
Google chrome, to check whether frontend information is 
stored properly in the database and whether users are 
authenticated properly. In our experiments, as soon as one 
request was processed properly, all the requests were processed 
due to the simple nature of this module.  
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 In the future, this module will be used for other experiments 
such as triangulation, Fourier transforms for sound matching 
and reconstruction of the sound files based on the data received 
by the embedded module. All such experiments require a 
relatively high level of sophistication, something that isn’t 
available on the VoCore. As a result, it will be implemented in 
this tier in the hopes of increasing the accuracy of the gunshot 
detection as well as the usability of the system to its users.  
 Testing this module has consisted of manually forcing some 
HTTP requests upon boot to ensure that the system can receive 
data, store it in the database or load it to the web-based 
graphical user interface.  

G. User interface  

The final component of this module is the user interface. This 
interface is web-based and is built based on HTML/CSS and 
Angular. It currently sends requests via HTTP to the C# based 
middle tier, that queries the database and sends the data back to 
be displayed to the user. This dashboard is available at 
dashboard.coresidium.com and currently displays the data in a 
table format based on the dates of the incidents. It also has a 
separate table for keepalive devices, demonstrating devices that 
do not work properly. As a result, the frontend is configured to 
work with keepalive messages, awaiting the message from the 
embedded module. 

 This module relies on information we learned in the software 
engineering course. One limitation however of the current 
implementation is that it does not receive the data in live time. 
This means that if an incident happens while the user is logged 
in, the incident is not displayed to the user until the time he logs 
out and logs in once more. Furthermore, we plan to improve this 
module by introducing a map of the room in which the modules 
are placed as well as the relative location of the event that 
occurred. We also plan to improve the user interface by 
removing any bugs and making it more intuitive.  

   

III. PROJECT MANAGEMENT 
TABLE 3 

MID-WAY DESIGN REVIEW GOALS 
MDR Deliverables 

Acoustic module identifies simulated gunshot with 65% 
accuracy 

Thermal camera recognizes objects above 120°C for 0.5 
seconds 

Store data in SQL, compute location and coordinate 
between modules 

Simple online dashboard with relative location of threat 
(floor & side) 

Find acceptable insulation for microphone 

 
Our first MDR goal required the acoustic sensor to work 

properly and detect simulated gunshots with 65% accuracy. In 
our tests, we were able detect a simulated gunshot (using a 

balloon popping at approximately 110 dB), at 12 feet away from 
the sensor with 80% accuracy. As a result, we exceeded our 
MDR goals. We also demanded that objects with temperatures 
above 120°C for 0.5 seconds be recognized by the thermal 
camera. This was simulated using the flicker of a lighter, 3 feet 
away from the sensor, and in our tests, we were able to achieve 
such a goal with 68% accuracy. It should however be pointed 
out, that due to the low resolution of the sensor, it is unable to 
detect hot objects at distances greater than 3 feet, putting into 
question its practicality for the goal of this project. We also 
required that we explore the proper insulation for the 
microphone. This was needed since the microphone could only 
recognize sounds up to 130 dB whereas gunshots range from 
150 dB to 190 dB. As a result, we believed we could utilize this 
to reduce the amplitude of the gunshot, making it fall in the 
acceptable range while ignoring lower amplitude noises. This 
in effect would reduce our false positives and conversely 
increase our false negatives since it would reduce the amplitude 
of regular noise, making it undetectable to the microphone, 
while increasing the chances that a gunshot from a distance is 
not detected by the microphone. In our tests however, it was 
discovered that we did not need such insulation since if a signal 
above the 130dB threshold occurs, it will simply saturate the 
microphone and not have any detrimental effects on its 
components. Also, during our tests, we received no false 
positives and only 20% false negatives, making the use of 
insulation unnecessary.  

For the computing node, our goal was to set up a SQL 
database to store the sensor data and to perform the basic 
computation to determine the location of the gunshot. This was 
achieved since our SQL database had 3 tables: User Accounts 
table, sensor data table, and location mapping table. The sensor 
data table stored the timestamp of the communication, the MAC 
ID of the sender, whether it was a keepalive signal or not and 
the type of sensor sending data. The location mapping 
performed the mapping between the MAC ID and the location 
of the device. We also utilized the middle tier to receive and 
coordinate the data coming from the sensors and to manage the 
database data. It also responded to the requests from the user 
interface to provide the location and statistics about the 
incidents that have occurred. The API for the middle tier can be 
found at http://backend.coresidium.com. The user interface has 
also been accomplished, providing the location and timestamp 
of the incidents in a table format to the authorized users. It can 
be found at dashboard.coresidium.com 

Our next steps would be to improve the acoustic sensor 
accuracy to greater than 85%. We are also considering 
abandoning the thermal sensor in order to focus solely on 
improving the accuracy of the acoustic sensor or to perform 
more specific experiments such as sound signal signature 
matching using Fourier transforms. This type of Fourier 
transforms would be done on the server side. We are also 
exploring sampling and recording the acoustic data in an effort 
to create an audio recording of the incident. All such endeavors 
are experimental however and we cannot guarantee their 
completeness in May. We are also aiming to improve the user 
interface of the dashboard. More specifically, we are hoping to 
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remove the data table format from the interface and adding a 
more intuitive map to describe the location and timing of the 
incidents. Finally, we are hoping to implement “keep alive” 
functions on the embedded systems and displaying these device 
reports online so that users can view broken modules and aim 
to replace them.  

In terms of division of responsibilities, our team divided the 
work equally according to each individual’s strength. Brandon 
Cross was responsible for managing the thermal camera, along 
with its code and its tests. Valentin Degtyarev was responsible 
for setting up the acoustic sensor module and making sure it 
communicates properly to the VoCore. Andrew LaMarche was 
responsible for the general setup of the VoCore, taking data 
from both the thermal camera thread and the acoustic sensor 
thread, and sending it over to the server side of the computation. 
Finally, Andrew Eshak was responsible for server-side 
computation, setting up the SQL database, the C# API and the 
Angular/HTML based frontend.  

We also utilized a “buddy system” in which two people 
studied the same piece of code in order to offer multiple 
perspectives on a solution and to ensure a “backup” person in 
case of emergencies. Using such a system, Brandon Cross 
worked with Andrew LaMarche towards VoCore 
communications, and Andrew LaMarche worked with Valentin 
Degtyarev towards the acoustic sensor. Andrew Eshak worked 
with Brandon Cross to verify the thermal sensor and Valentin 
Degtyarev worked with Andrew Eshak towards ensuring proper 
use of the server code.   

To manage communications, our team utilizes Discord and 
iMessage group chats in order to discuss future endeavors for 
the project, the status of current attempts and meeting times. In 
addition, biweekly meetings were set up in accordance with 
every person’s schedule in order to ensure that all the individual 
pieces of the project worked properly with each other. Finally, 
a weekly meeting occurred with Professor Siqueira, often on 
Mondays at 1:30 P.M., in order to provide a status report and to 
receive advise on our next steps. All such forms of 
communications helped ensure that the project remained on 
track and that all our individual modules culminated into one 
complete system.  

IV. CONCLUSION 

In conclusion, during the first semester of the 2018-2019 
year, our team has built the embedded module utilizing both an 
acoustic microphone and a thermal camera as well as a 
Raspberry Pie Version 3. The microphone detects acoustic 
anomalies and the thermal sensor detects high temperatures that 
last for a short duration such as a muzzle flash. The Raspberry 
Pie was responsible for taking sensor data and detecting an 
event, performing the timestamp and communicating the data 
to the server module. 

We also built the sever side of the module, utilizing a SQL 
database with three tables, a C# computing tier, and an 
Angular/HTML/CSS frontend to display the data. The SQL 
database consisted of a table for user accounts to remember 
authorized users, a table for incidents, and a table for device to 
location mappings. The C# middle tier receives data from the 

embedded module and performs the necessary computation to 
store it in the database or display it to the front end. The 
frontend displays the data for the user in a user-friendly manner, 
through a web-based website. Currently, this data is being 
displayed in a table-manner to the user.  

In the future, we plan to increase the accuracy of our 
detection to 85% as well as utilize a VoCore embedded chip 
instead of a Raspberry Pie to perform the computation. We also 
plan to replace the table in the user interface with a map that 
displays the location of the gunshot and the sequence of events 
that occurred. We also will implement a “keep alive” function 
that will notify the system whether all the systems are in a 
functioning condition. In addition, we plan to use the keepalive 
data to perform averages, standard deviation and bell curves to 
detect true statistical anomalies and whether an alarm is 
merited. We will also experiment with other functions such as 
triangulation, and acoustic sound signature matching. The 
results of such attempts cannot be guaranteed and may not be 
employed in the final version of the project. We may also 
abandon the thermal camera due to its low resolution and its 
inability to accurately detect events from a distance greater than 
three feet.  

In terms of difficulties, we anticipate that increasing the 
accuracy of the module will cause greater difficulty than 
expected. We also expect that tuning each individual 
microphone will require greater care and longer planning. We 
are also experiencing difficulties with our current attempts to 
perform sound sampling and reconstruction of sound events due 
to the lack of processing power on the embedded module. This 
limits us to matching sounds up to 10kHz, mea ning that we are 
unable to process all audible sounds (5 Hz to 20 kHz). We are 
attempting to mitigate this problem by optimizing our code to 
utilize less of the processing power. We are also suggesting 
using a separate ATmega processor for the microphone. This 
would offset some of the computation from the VoCore in an 
attempt to be able to accurately perform the sound sampling.    
Finally, in order to perform acoustic sound signature matching, 
one needs to have a prior knowledge of gunshot signatures. It is 
challenging however to find such data, especially ones that 
propagate indoors. We will continue to search for data online 
on such signatures or we will attempt to use an error correcting 
factor to perform accurate sound matching.  

 
 
 
 
 
 
 
 
 

APPENDIX 

THE FOLLOWING IS A GANTT CHART TO DEMONSTRATE THE 

SCHEDULE FOR OUR PLANNED ACTIVITIES.  
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