

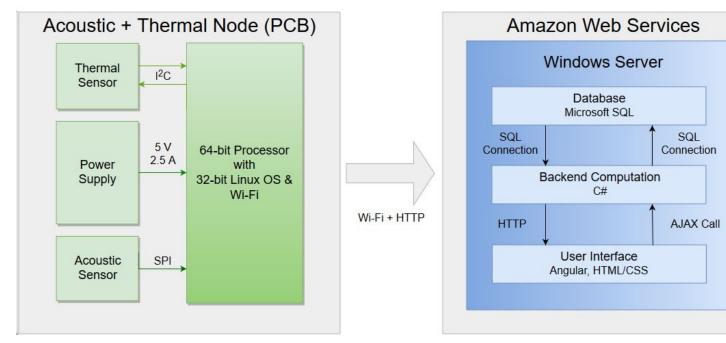
Comprehensive Design Review Team 22 - Coresidium Advisor: Professor Siqueira

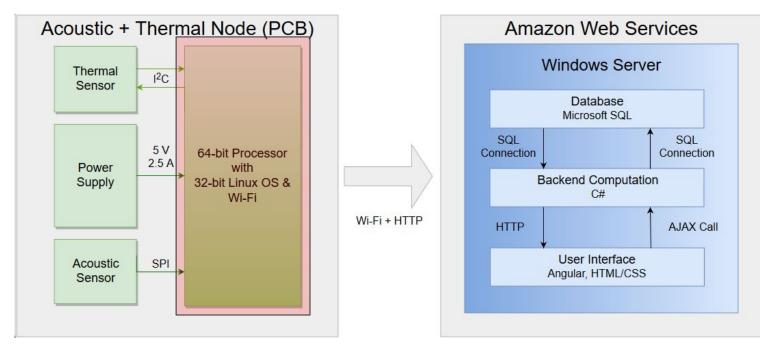
March 28, 2019

Coresidium – A School Security System

- Members
 - Valentin Degtyarev (CSE) Acoustic Sensor & PCB Design
 - Andrew Eshak (CSE + EE) Server Backend & Computation
 - Brandon Cross (CSE) Thermal Sensor
 - Andrew LaMarche (CSE) Communication & System Management

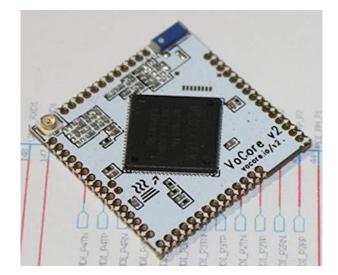
Agenda


- Problem Statement
- Hardware
- Accomplishments
- FPR Deliverables
- Demo


Problem Statement

 In the aftermath of a school shooting in the United States, it takes several hours for the campus to be declared safe. Due to this delay, help is not available to those who need it most. Our system aims to reduce this time by providing the relative location of where a shot has been fired. The proposed design uses infrared temperature cameras and acoustic sensors to accurately recognize an active shooting situation and notify the proper authorities.

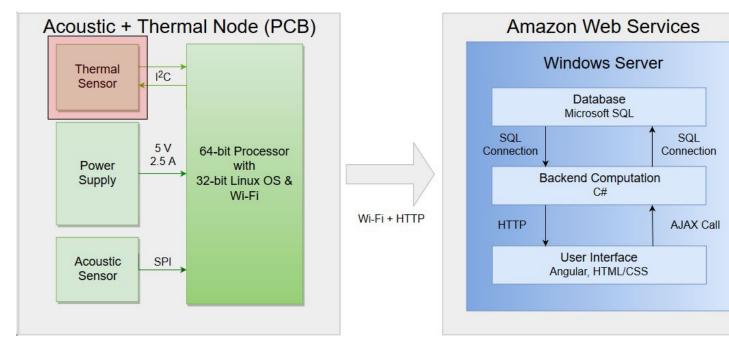
Block Diagram



Processor

VoCore v2 (Original)

- Prebuilt with Linux and Wi-Fi
- MIPS architecture Single Core
- 580 MHz clock speed
- Handles on-chip data processing
- Communicates data to server via HTTP
- 230 mA, 1.15 W



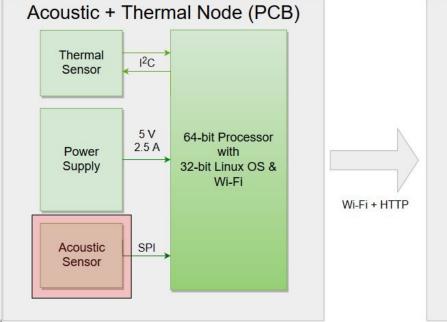
Raspberry Pi 3B (Updated)

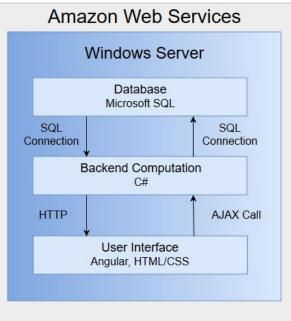
- Prebuilt with Linux and Wi-Fi
- ARM architecture Quad Core
- 1.2 GHz clock speed
- Handles on-chip data processing
- Communicates data to server via HTTP
- 1.34A, 6.7W

MLX90640 Thermal Sensor

MLX90640 Thermal Sensor (Original)

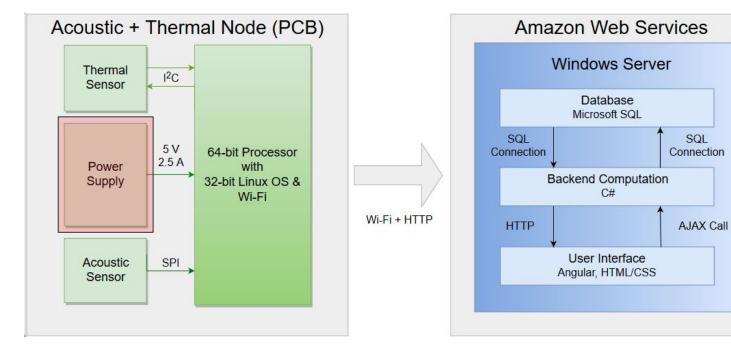
- Thermal detection of barrel upon firing
- Gunshot heats rifle barrel to ~150°C
- -40°C to 300°C
- 32x24 resolution
- 64 frames per second (Raspberry Pi)
- 110° x 75°




MLX90640 Thermal Sensor (Updated)

- 55° x 35°
- 4x previous distance
- Breakout board eliminated


KY-038 Acoustic Sensor



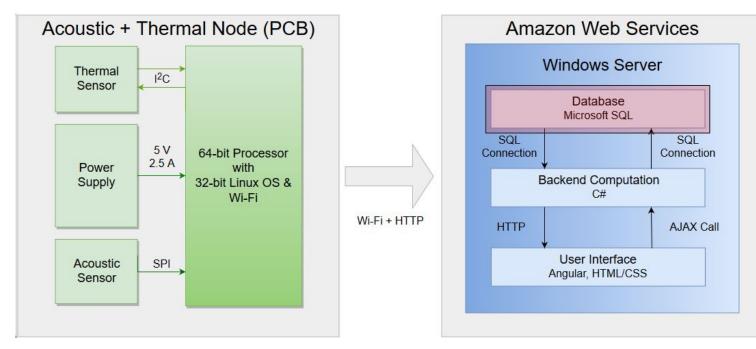
KY-038 Acoustic Sensor

- Large sound sensor to detect gunshot
- 130 dB peak detection
- Gunshot between 150 dB and 190 dB
- 21,000 samples per second (Raspberry Pi)
- Output analog sound amplitude
- Breakout board eliminated

Power Source

Original (VoCore)

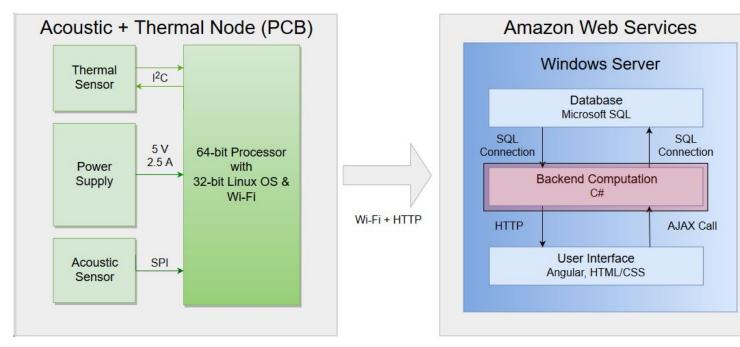
- Processor requires 5V and max ~240mA
- Thermal sensor requires max ~25mA
- Acoustic sensor requires max ~1mA
- 4 AA batteries in series
- Would last roughly 30 hours
- Portability and ease-of-use



Modified (Raspberry Pi 3B)

- Raspberry Pi requires 5V and 2.1 A
- Thermal sensor requires max ~25mA
- Acoustic sensor requires max ~1mA
- Wall power supply (5V and 2.5 A)
- Non-portable

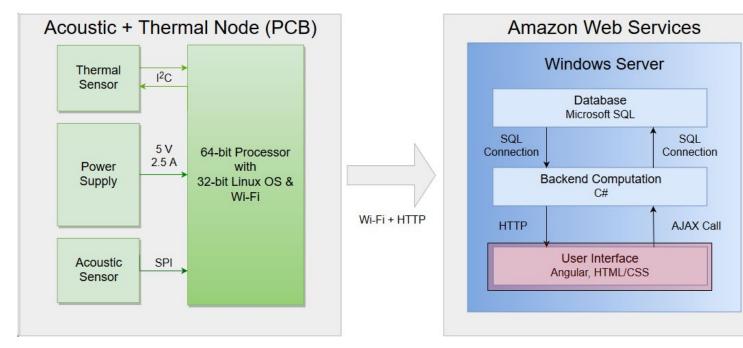
Database



Database

- Microsoft SQL based
- Stores user account information, location mappings and incident log

API



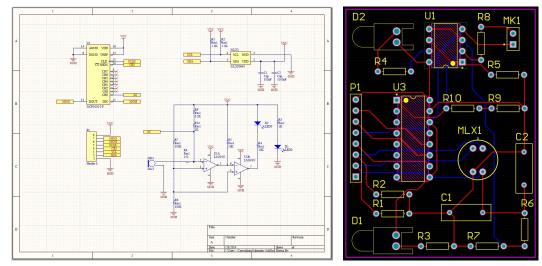
API

- Implemented in C#
- HTTP based
- Communication to the modules and to the dashboard
- Performs queries on the database as necessary
- backend.coresidium.com

Dashboard

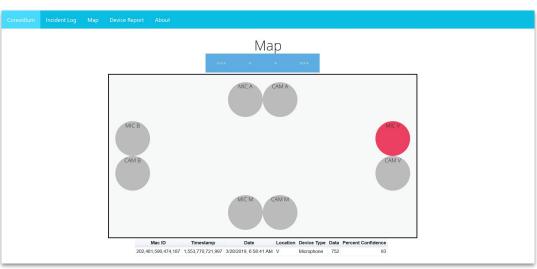
Dashboard

- Implemented in Angular, HTML/CSS
- Receives data from API
- Communicates location information to user
- dashboard.coresidium.com


Accomplishments (PI)

- One executable binary
- Multithreaded
- Keepalive implemented

Thread 1	Thread 2	Thread 3	Thread 4
Acoustic	Thermal	Acoustic	Thermal
Processor	Processor	Keepalive	Keepalive
 Read data from acoustic sensor If value is greater than threshold, timestamp and send to server 	 Read data from thermal sensor If value is greater than threshold, timestamp and send to server 	 Read data from acoustic sensor every hour Send to server if data valid and no other issues 	 Read data from thermal sensor every hour Send to server if data valid and no other issues


Accomplishments (Sensor)

- Highest value in pixels vs. first value above threshold
- Calibration and variation
- Custom PCB designed

Accomplishments (Dashboard)

- Keep Alive Page
- Percent certainty column
- Map display

Testing Procedure

- Pop 25 balloons from 12 feet away from 4 acoustic sensors
 - Repeat test in environment with different ambient noise
 - Record ratio between success rate and total attempts
 - Varying balloon size
 - Direct line of sight
- Ignite a lighter 25 times from 3 feet away from thermal sensor for 0.5 seconds

Results

- Acoustic Sensors Test #1 (No ambient noise)
 - Average success rate of acoustic sensors 92%
- Acoustic Sensors Test #2 (With ambient noise)
 - Average success rate of acoustic sensors 92%
- Thermal Sensor Test #1 (3 feet)
 - Average success rate of thermal sensor 100%
- Thermal Sensor Test #2 (8 feet)
 - Average success rate of thermal sensor 100%

CDR Deliverables

- ✓ 90% sound sensor accuracy
- ✓ 70% thermal sensor accuracy
- Eliminate breakout boards for acoustic/thermal sensors
- Implement keepalive for each node
- Voting/redundancy system
- Improve dashboard UI
- ? Functional VoCore

FPR Deliverables

- PCB ordered and assembled
- Three demo modules assembled
- Custom casing for module
- Demo Ready
- Additional testing of system

Expenses (per device)

• • • • • • •	Raspberry Pi 3B+ Thermal Sensor (MLX90640): Analog to Digital Converter (MCP3008): 2.2k Ohm Resistor x2 1k Ohm Resistor x2 8.2K Ohm Resistor x2 8.2K Ohm Resistor x2 10k Ohm Resistor x2 100k Ohm Resistor x2 1uF Capacitor 100nF Capacitor Diodes x2 LM393N Header	\$35.00 \$40.00 \$2.75 \$0.60 \$0.60 \$0.60 \$0.60 \$0.25 \$0.25 \$0.25 \$1.00 \$0.01 \$2.00
•	Custom PCB Electret Microphone	\$0.01 \$8.00 \$0.67
	-	

Total:

٠

\$93.58

DEMO

